-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
163 lines (132 loc) · 5.02 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# References:
# https://wandb.ai/wandb_fc/korean/reports/-Frechet-Inception-distance-FID-GANs---Vmlldzo0MzQ3Mzc
# https://m.blog.naver.com/chrhdhkd/222013835684
# https://notou10.github.io/deep%20learning/2021/05/31/FID.html
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import scipy
from tqdm import tqdm
import math
import argparse
from inceptionv3 import InceptionV3
from data import CelebADS, ImageGridDataset
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--real_data_dir", type=str, required=True)
parser.add_argument("--gen_data_dir", type=str, required=True)
parser.add_argument("--batch_size", type=int, required=True)
parser.add_argument("--n_eval_imgs", type=int, required=True)
parser.add_argument("--n_cpus", type=int, required=False, default=0)
parser.add_argument("--padding", type=int, required=False, default=1)
parser.add_argument("--n_cells", type=int, required=False, default=100)
args = parser.parse_args()
return args
def get_matrix_sqrt(x):
conv_mean = scipy.linalg.sqrtm(x)
if np.iscomplexobj(conv_mean):
conv_mean = conv_mean.real
return conv_mean
def get_mean_and_cov(embed):
mu = embed.mean(axis=0)
sigma = np.cov(embed, rowvar=False)
return mu, sigma
def get_frechet_distance(mu1, mu2, sigma1, sigma2):
cov_mean = get_matrix_sqrt(sigma1 @ sigma2)
fd = ((mu1 - mu2) ** 2).sum() + np.trace(sigma1 + sigma2 - 2 * cov_mean)
return fd.item()
def get_fid(embed1, embed2):
mu1, sigma1 = get_mean_and_cov(embed1)
mu2, sigma2 = get_mean_and_cov(embed2)
fd = get_frechet_distance(mu1=mu1, mu2=mu2, sigma1=sigma1, sigma2=sigma2)
return fd
def get_inception_score(prob, eps=1e-16):
p_yx = prob # $p(y|x)$
p_y = p_yx.mean(axis=0, keepdims=True) # $p(y)$
kld = p_yx * np.log((p_yx + eps) / (p_y + eps)) # $p(y|x)\log(P(y|x) / P(y))$
sum_kld = kld.sum(axis=1)
avg_kld = sum_kld.mean()
inception_score = np.exp(avg_kld)
return inception_score
def get_dls(real_data_dir, gen_data_dir, batch_size, img_size, n_cpus, n_cells, padding):
real_ds = CelebADS(data_dir=real_data_dir, img_size=img_size)
real_dl = DataLoader(
real_ds,
batch_size=batch_size,
shuffle=True,
num_workers=n_cpus,
pin_memory=False,
drop_last=False,
)
gen_ds = ImageGridDataset(
data_dir=gen_data_dir,
img_size=img_size,
n_cells=n_cells,
padding=padding,
)
gen_dl = DataLoader(
gen_ds,
batch_size=batch_size,
shuffle=True,
num_workers=n_cpus,
pin_memory=False,
drop_last=False,
)
return real_dl, gen_dl
class Evaluator(object):
def __init__(self, ddpm, n_eval_imgs, batch_size, real_dl, gen_dl, mode, device):
self.ddpm = ddpm
self.n_eval_imgs = n_eval_imgs
self.batch_size = batch_size
self.real_dl = real_dl
self.gen_dl = gen_dl
self.mode = mode
self.device = device
self.ddpm.eval()
self.model1 = InceptionV3(output_blocks=[3]).to(device)
if mode in ["is", "both"]:
self.model2 = InceptionV3(output_blocks=[3, 4]).to(device)
else:
self.model2 = self.model1
self.model1.eval()
self.model2.eval()
self.process_real_dl()
@torch.no_grad()
def process_gen_dl(self, gen_dl):
embeds = list()
gen_di = iter(gen_dl)
for _ in tqdm(range(math.ceil(self.n_eval_imgs / self.batch_size))):
x0 = next(gen_di)
x0 = x0.to(self.device)
out = self.model1(x0.detach())
embed = out[0]
embeds.append(embed.squeeze().detach().cpu().numpy())
self.real_embed = np.concatenate(embeds)[: self.n_eval_imgs]
@torch.no_grad()
def process_real_dl(self, real_dl):
embeds = list()
probs = list()
real_di = iter(real_dl)
for _ in tqdm(range(math.ceil(self.n_eval_imgs / self.batch_size))):
x0 = next(real_di)
x0 = x0.to(self.device)
out = self.model2(x0.detach())
embed = out[0]
embeds.append(embed.squeeze().detach().cpu().numpy())
if self.mode in ["is", "both"]:
logit = out[1]
prob = F.softmax(logit, dim=1)
probs.append(prob.detach().cpu().numpy())
gen_embed = np.concatenate(embeds)[: self.n_eval_imgs]
if self.mode in ["is", "both"]:
gen_prob = np.concatenate(probs)[: self.n_eval_imgs]
return gen_embed, gen_prob if self.mode in ["is", "both"] else gen_embed
def evaluate(self):
gen_embed, gen_prob = self.process_real_dl()
fid = get_fid(self.real_embed, gen_embed)
print(f"[ FID: {fid:.2f} ]")
if self.mode in ["is", "both"]:
inception_score = get_inception_score(gen_prob)
print(f"[ IS: {inception_score:.2f} ]")