-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
120 lines (98 loc) · 3.26 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# References:
# https://github.com/fregu856/deeplabv3/blob/master/utils/utils.py
from PIL import Image
import torch
import torchvision.transforms.functional as TF
from torchvision.utils import make_grid
from time import time
from datetime import timedelta
from torch.cuda.amp import GradScaler
import re
from collections import OrderedDict
import random
import os
import numpy as np
VOC_CLASS_COLOR = {
"background": (0, 0, 0),
"aeroplane": (128, 0, 0),
"bicycle": (0, 128, 0),
"bird": (128, 128, 0),
"boat": (0, 0, 128),
"bottle": (128, 0, 128),
"bus": (0, 128, 128),
"car": (128, 128, 128),
"cat": (64, 0, 0),
"chair": (192, 0, 0),
"cow": (64, 128, 0),
"diningtable": (192, 128, 0),
"dog": (64, 0, 128),
"horse": (192, 0, 128),
"motorbike": (64, 128, 128),
"person": (192, 128, 128),
"pottedplant": (0, 64, 0),
"sheep": (128, 64, 0),
"sofa": (0, 192, 0),
"train": (128, 192, 0),
"tvmonitor": (0, 64, 128),
"GRID": (255, 255, 255),
}
VOC_CLASSES = list(VOC_CLASS_COLOR.keys())[: -1]
N_CLASSES = len(VOC_CLASSES)
VOC_COLORS = list(VOC_CLASS_COLOR.values())
def get_device():
if torch.cuda.is_available():
device = torch.device("cuda")
else:
if torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
return device
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def get_grad_scaler(device):
return GradScaler() if device.type == "cuda" else None
def get_elapsed_time(start_time):
return timedelta(seconds=round(time() - start_time))
def visualize_batched_image(image, n_cols):
grid = make_grid(image, nrow=n_cols, normalize=True, pad_value=1)
grid = TF.to_pil_image(grid)
return grid
def visualize_batched_gt(gt, n_cols):
"""
Args:
gt: `(b, 1, h, w)` (dtype: `torch.long()`)
"""
gt[gt == 255] = 0
grid = make_grid(gt, nrow=n_cols, pad_value=21)
grid = Image.fromarray(grid[0].numpy().astype("uint8"), mode="P")
grid.putpalette(sum(VOC_COLORS, ()))
return grid.convert("RGB")
def visualize_batched_image_and_gt(image, gt, n_cols, alpha=0.7):
image = visualize_batched_image(image, n_cols=n_cols)
gt = visualize_batched_gt(gt, n_cols=n_cols)
Image.blend(image, gt, alpha=alpha).show()
def modify_state_dict(state_dict, pattern=r"^module.|^_orig_mod."):
new_state_dict = OrderedDict()
for old_key, value in state_dict.items():
new_key = re.sub(pattern=pattern, repl="", string=old_key)
new_state_dict[new_key] = value
return new_state_dict
def denorm(tensor, mean, std):
return TF.normalize(
tensor, mean=- np.array(mean) / np.array(std), std=1 / np.array(std),
)
def image_to_grid(image, mean, std, n_cols, padding=1):
tensor = image.clone().detach().cpu()
tensor = denorm(tensor, mean=mean, std=std)
grid = make_grid(tensor, nrow=n_cols, padding=1, pad_value=padding)
grid.clamp_(0, 1)
grid = TF.to_pil_image(grid)
return grid