-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNOBIAS_theta.m
60 lines (51 loc) · 1.72 KB
/
NOBIAS_theta.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function theta = NOBIAS_theta(theta,Suff_Stat, prior_params)
% Please refer to for derative of the E. B. Fox. Bayesian Nonparametric Learning of Complex Dynamical Phenomena. Ph.D. thesis,
% MIT, Cambridge, MA, 2009 for how the 2D gaussian is sampled
store_card = Suff_Stat.card;
nu = prior_params.nu;
nu_delta = prior_params.nu_delta;
YYt = Suff_Stat.YYt;
sumY = Suff_Stat.sumY;
N_cur = length(store_card);
K = prior_params.K;
M = prior_params.M;
MK = prior_params.M*prior_params.K;
MKM = MK*prior_params.M';
mu=theta.mu;
Sigma=theta.Sigma;
invSigma=theta.invSigma;
for n = 1: N_cur
if store_card(n)>0
%% Given X, Y get sufficient statistics EBfox thesis 2.83-2.86
Sxx = store_card(n) + K; % kappabar=kappa+N
Syx = sumY(:,n) + MK; % 2.84
Syy = YYt(:,:,n) + MKM;
SyxSxxInv = Syx/Sxx;
Sygx = Syy - SyxSxxInv*Syx';
Sygx = (Sygx + Sygx')/2;
else
Sxx = K;
SyxSxxInv = M;
Sygx = 0;
end
% Sample Sigma given s.stats
try chol(Sygx + nu_delta);
catch ME
disp('Matrix is not symmetric positive definite')
end
[sqrtSigma,sqrtinvSigma] = randiwishart(Sygx + nu_delta,nu+store_card(n));
invSigma(:,:,n) = sqrtinvSigma'*sqrtinvSigma;
Sigma(:,:,n) = inv(invSigma(:,:,n));
% Sample A given Sigma and s.stats
cholinvSxx = chol(inv(Sxx));
tempmu = SyxSxxInv(:);
tempsqrtsigma = kron(cholinvSxx,sqrtSigma);
S = tempmu + tempsqrtsigma'*randn(length(tempmu),1);
S = reshape(S,size(SyxSxxInv));
mu(:,n)=S;
clear S tempmu tempsqrtsigma
end
theta.Sigma = Sigma;
theta.mu = mu;
theta.invSigma=invSigma;
end