-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_v2.py
executable file
·376 lines (348 loc) · 18 KB
/
train_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import os, yaml, tqdm
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
import numpy as np
from pathlib import Path
from monai.data import DataLoader
from monai.metrics import compute_roc_auc
from monai.transforms import AsDiscrete, Activations
import torch
import torch.nn as nn
from torch.nn.modules.loss import BCEWithLogitsLoss
from utils import (
EarlyStopping,
PolynomialLRDecay,
plot_fig,
Save_best_n_models,
get_network,
plot_scores,
cls_bce_loss,
DWA_bce_loss,
cls_ce_loss,
check_dir
)
###! data parameters
IMAGE_KEY = 'image'
LABEL_KEY = 'label'
MASK_KEY = 'mask'
FEATURE_KEY = 'features'
def train_core(
files_train,
files_valid,
dataset_type,
**kwargs,
):
torch.multiprocessing.set_sharing_strategy('file_system')
#! Setup datasets
net = kwargs['net']
out_dir = kwargs.get('out_dir')
input_nc = kwargs.get('in_channels', 3)
output_nc = kwargs.get('out_channels', 1)
output_nc_f = kwargs.get('out_channels_f', 1)
batch_size = kwargs.get('batch_size', 20)
preload = kwargs.get('preload', 0)
train_ds = dataset_type(files_train, 'train', {'input_nc': input_nc,'output_nc': output_nc, 'preload': preload})
valid_ds = dataset_type(files_valid, 'valid', {'input_nc': input_nc,'output_nc': output_nc, 'preload': preload})
with check_dir(out_dir, 'train_list.yml', isFile=True).open('w') as f:
yaml.dump(files_train, f)
with check_dir(out_dir, 'valid_list.yml', isFile=True).open('w') as f:
yaml.dump(files_valid, f)
train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True, num_workers=10)
valid_loader = DataLoader(valid_ds, batch_size=batch_size, shuffle=False, num_workers=10)
#! Define network
device = torch.device("cuda")
model = get_network(
name=net,
dimensions=kwargs['dimensions'],
features=tuple(kwargs['features']),
in_channels=input_nc,
out_channels=output_nc,
out_channels_f=output_nc_f,
device=device,
mode=kwargs['mode'],
save_attentionmap_fpath=None,
use_attention=False,
use_cbam=False,
use_mask=False,
use_aspp=False,
).to(device)
model_saver_dir_SBA = check_dir(Path(out_dir)/'Models'/'SBA')
model_saver_dir_SBL = check_dir(Path(out_dir)/'Models'/'SBL')
model_saver_dir_SBAA = check_dir(Path(out_dir)/'Models'/'SBAA')
model_saver_SBA = Save_best_n_models(model, model_saver_dir_SBA, n_saved=1)
model_saver_SBL = Save_best_n_models(model, model_saver_dir_SBL, n_saved=1)
model_saver_SBAA = Save_best_n_models(model, model_saver_dir_SBAA, n_saved=1)
early_stopping = EarlyStopping(patience=kwargs['early_stop'], verbose=True, path=model_saver_dir_SBA.parent/'checkpoint.pt')
if os.path.isfile(kwargs.get('pretrain_model')):
print('load pretrain model ....')
checkpoint = torch.load(kwargs['pretrain_model'])
model_dict = model.state_dict().copy()
filtered_dict = {k: v for k, v in checkpoint.items() if v.shape == model_dict[k].shape}
model_dict.update(filtered_dict)
model.load_state_dict(model_dict)
lr = kwargs.get('lr', 0.001)
n_epoch = kwargs['n_epoch']
optim = kwargs['optim']
loss_name = kwargs['loss_name']
lr_policy = kwargs['lr_policy']
weight = kwargs.get('weight', [1.])
pos_weight = kwargs.get('pos_weight', [1.])
reduction = kwargs.get('reduction', 'mean')
if loss_name == 'DWA-BCE':
train_loss_before = []
valid_loss_before = []
loss_function = DWA_bce_loss(pos_weight=pos_weight)
elif loss_name == 'BCE':
loss_function = BCEWithLogitsLoss()
elif loss_name == 'CE':
loss_function = nn.CrossEntropyLoss()
elif loss_name == 'multi-BCE':
print(pos_weight)
loss_function = cls_bce_loss(pos_weight=pos_weight, weight=weight, reduction=reduction)
elif loss_name == 'multi-CE':
loss_function = cls_ce_loss(pos_weight=pos_weight, weight=weight, reduction=reduction)
if optim == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr, weight_decay=0.0001)
elif optim =='adam':
optimizer = torch.optim.Adam(model.parameters(), lr)
if lr_policy == 'const':
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x:1)
elif lr_policy == 'plateau':
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
mode='max',
factor=0.1,
patience=15,
cooldown=50,
min_lr=1e-5)
elif lr_policy == 'poly':
lr_scheduler = PolynomialLRDecay(optimizer,
n_epoch,
end_learning_rate=lr*0.1,
power=0.9)
###! model training
amp = kwargs.get('amp', True)
best_metric = -1
best_metric_epoch = -1
train_iters, valid_iters = [], []
epoch_loss_values = []
valid_loss_values = []
learning_rate = []
metric_values= []
epoch_feat_auc = []
for epoch in range(n_epoch):
model.train()
epoch_loss = 0
step = 0
scaler = torch.cuda.amp.GradScaler() if amp else None
pbar = tqdm.tqdm(train_loader)
for batch_data in pbar:
pbar.set_description(f'Epoch:{epoch}')
step += 1
inputs, labels, masks, features = (
batch_data[IMAGE_KEY].to(device),
batch_data[LABEL_KEY].to(device),
batch_data[MASK_KEY].to(device).float(),
torch.as_tensor(batch_data[FEATURE_KEY]).to(device))
optimizer.zero_grad()
if amp and scaler is not None:
with torch.cuda.amp.autocast():
#! 暂时判断是resnet 只传入图像
if 'res' in net:
outputs = model(inputs)
else:
outputs = model(inputs, labels, features, masks)
if loss_name == 'multi-BCE':
loss, label_loss, feature_loss = loss_function(outputs, labels, features)
if loss_name == 'multi-CE':
loss, label_loss, feature_loss = loss_function(outputs, labels, features)
elif loss_name == 'BCE':
loss = loss_function(outputs.squeeze(), labels.to(torch.float32))
elif loss_name == 'DWA-BCE':
loss, train_loss_before = loss_function(train_loss_before, outputs, labels, features)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
if 'res' in net:
outputs = model(inputs)
else:
outputs = model(inputs, labels, features, masks)
if loss_name == 'multi-BCE':
loss, label_loss, feature_loss = loss_function(outputs, labels, features)
if loss_name == 'multi-CE':
loss, label_loss, feature_loss = loss_function(outputs, labels, features)
elif loss_name == 'BCE':
loss = loss_function(outputs.squeeze(), labels.to(torch.float32))
elif loss_name == 'DWA-BCE':
loss, train_loss_before = loss_function(train_loss_before, outputs, labels, features)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_len = len(train_ds)// train_loader.batch_size
pbar.set_postfix({'loss' : '{0:.3f}'.format(loss.item())})
epoch_loss /= step
epoch_loss_values.append(epoch_loss)
train_iters.append(epoch)
if (epoch + 1) % kwargs['valid_interval'] == 0:
model.eval()
with torch.no_grad():
if amp:
with torch.cuda.amp.autocast():
y_pred = torch.tensor([], dtype=torch.float32, device=device)
y = torch.tensor([], dtype=torch.long, device=device)
y_feat_pred = torch.tensor([], dtype=torch.float32, device=device)
y_feat = torch.tensor([], dtype=torch.long, device=device)
val_loss = 0
valid_step = 0
for val_data in valid_loader:
valid_step += 1
val_images, valid_labels, val_masks, val_features = (
val_data[IMAGE_KEY].to(device),
val_data[LABEL_KEY].to(device),
val_data[MASK_KEY].to(device).float(),
torch.as_tensor(val_data[FEATURE_KEY]).to(device),
)
# valid_labels =valid_labels if out_channels == 1 else AsDiscrete(to_onehot=True, n_classes=2)(valid_labels)
if 'res' in net:
val_outputs = model(val_images)
else:
val_outputs = model(val_images, valid_labels, val_features, val_masks)
y = torch.cat([y, valid_labels], dim=0)
y_feat = torch.cat([y_feat, val_features], dim=0)
if type(val_outputs) is tuple:
val_output1 = val_outputs[0]
val_output2 = val_outputs[1]
if len(val_output2.shape) == 1:
val_output2 = val_output2.unsqueeze(0)
if len(val_output1.shape) == 1:
val_output1 = val_output1.unsqueeze(0)
y_feat_pred = torch.cat([y_feat_pred, val_output2], dim=0)
y_pred = torch.cat([y_pred, val_output1], dim=0)
else:
y_pred = torch.cat([y_pred, val_outputs], dim=0)
##! 计算validation loss
if loss_name == 'multi-BCE':
val_loss_iter, _, _ = loss_function(val_outputs, valid_labels, val_features)
elif loss_name == 'multi-CE':
val_loss_iter, _, _ = loss_function(val_outputs, valid_labels, val_features)
elif loss_name == 'BCE':
val_loss_iter = loss_function(val_outputs.squeeze(), valid_labels.to(torch.float32))
elif loss_name == 'DWA-BCE':
val_loss_iter, valid_loss_before = loss_function(valid_loss_before, val_outputs, valid_labels, val_features)
val_loss += val_loss_iter
else:
y_pred = torch.tensor([], dtype=torch.float32, device=device)
y = torch.tensor([], dtype=torch.long, device=device)
y_feat_pred = torch.tensor([], dtype=torch.float32, device=device)
y_feat = torch.tensor([], dtype=torch.long, device=device)
val_loss = 0
valid_step = 0
for val_data in valid_loader:
valid_step += 1
val_images, valid_labels, val_masks, val_features = (
val_data[IMAGE_KEY].to(device),
val_data[LABEL_KEY].to(device),
val_data[MASK_KEY].to(device).float(),
torch.as_tensor(val_data[FEATURE_KEY]).to(device),
)
if 'res' in net:
val_outputs = model(val_images)
else:
val_outputs = model(val_images, valid_labels, val_features, val_masks)
y = torch.cat([y, valid_labels], dim=0)
y_feat = torch.cat([y_feat, val_features], dim=0)
if type(val_outputs) is tuple:
val_output1 = val_outputs[0]
val_output2 = val_outputs[1]
if len(val_output2.shape) == 1:
val_output2 = val_output2.unsqueeze(0)
if len(val_output1.shape) == 1:
val_output1 = val_output1.unsqueeze(0)
y_feat_pred = torch.cat([y_feat_pred, val_output2], dim=0)
y_pred = torch.cat([y_pred, val_output1], dim=0)
else:
y_pred = torch.cat([y_pred, val_outputs], dim=0)
##! 计算validation loss
if loss_name == 'multi-BCE':
val_loss_iter, _, _ = loss_function(val_outputs, valid_labels, val_features)
elif loss_name == 'multi-CE':
val_loss_iter, _, _ = loss_function(val_outputs, valid_labels, val_features)
elif loss_name == 'BCE':
val_loss_iter = loss_function(val_outputs.squeeze(), valid_labels.to(torch.float32))
elif loss_name == 'DWA-BCE':
val_loss_iter, valid_loss_before = loss_function(valid_loss_before, val_outputs, valid_labels, val_features)
val_loss += val_loss_iter
valid_iters.append(epoch)
val_loss /= valid_step
valid_loss_values.append(val_loss)
if type(val_outputs) is tuple:
if 'BCE' in loss_name:
y_feat_pred_act = Activations(sigmoid=True)(y_feat_pred)
feat_auc = []
for i in range(y_feat_pred_act.shape[1]):
_feat_auc = compute_roc_auc(y_feat_pred_act[:, i], y_feat[:, i])
feat_auc.append(_feat_auc)
elif 'CE' in loss_name:
y_feat_pred_detach = torch.chunk(y_feat_pred, y_feat.shape[1], 1)
y_feat_detach = torch.chunk(y_feat, y_feat.shape[1], 1)
y_feat_pred_act = [Activations(softmax=True)(y_feat_pred_detach[i]) for i in range(y_feat.shape[1])]
y_feat = [AsDiscrete(to_onehot=True, n_classes=2)(a) for a in y_feat_detach]
feat_auc = []
for i in range(len(y_feat_pred_act)):
_feat_auc = compute_roc_auc(y_feat_pred_act[i], y_feat[i])
feat_auc.append(_feat_auc)
epoch_feat_auc.append(feat_auc)
del y_feat_pred_act
else:
feat_auc = [0, 0] ##只是为了计算,没有意义
if output_nc == 1 :
y_pred_act = Activations(sigmoid=True)(y_pred)
else :
y_pred_act = Activations(softmax=True)(y_pred)
y = AsDiscrete(to_onehot=True, n_classes=2)(y)
auc_metric = compute_roc_auc(y_pred_act, y)
metric_values.append(auc_metric)
# all_auc = auc_metric + sum(feat_auc)
# all_auc = 5*auc_metric + sum(feat_auc)
all_auc = 5*auc_metric + sum(feat_auc[:-1]) + 5*feat_auc[-1]
acc_value = torch.eq(AsDiscrete(threshold_values=True, logit_thresh=0.5)(y_pred_act).squeeze(), y)
del y_pred_act
acc_metric = acc_value.sum().item() / len(acc_value)
model_saver_SBA(auc_metric, epoch)
model_saver_SBL(-val_loss, epoch)
model_saver_SBAA(all_auc, epoch)
lr_scheduler.step(auc_metric)
learning_rate.append(lr_scheduler._last_lr[0])
early_stopping(val_loss, model)
if early_stopping.early_stop:
print("Early stopping")
break
print(
f"current epoch: {epoch + 1} current AUC: {auc_metric:.4f}"
f" current accuracy: {acc_metric:.4f}"
f" current lr: {lr_scheduler._last_lr[0]:.4f}"
)
train_plt = dict({'loss': epoch_loss_values})
valid_plt = {'auc': metric_values}
if type(val_outputs) is tuple:
epoch_feat_auc_arr = np.array(epoch_feat_auc)
_valid_plt = {f'feat{i}_auc': epoch_feat_auc_arr[:,i] for i in range(epoch_feat_auc_arr.shape[1])}
valid_plt.update(_valid_plt)
plot_scores(
epoch,
n_epoch,
train_iters,
valid_iters,
train_plt,
valid_plt,
len(train_ds),
len(valid_ds),
os.path.join(out_dir,'results.png'),
)
plot_fig(
epoch,
n_epoch,
valid_iters,
{'lr': learning_rate},
len(train_ds),
os.path.join(out_dir,'lr.png'),
)