-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgener.py
365 lines (272 loc) · 15.3 KB
/
gener.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import os
import math
import json
import random
import shutil
import time
from copy import deepcopy
from functools import partial
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms.functional as TF
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader, Subset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from einops import rearrange, repeat
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.modules.attention import GatedCrossAttentionDense
from ldm.util import instantiate_from_config
from dataset.concat_dataset import ConCatDataset # , collate_fn
from scripts.distributed import get_rank, synchronize, get_world_size
from trainer import (
ImageCaptionSaver,
read_official_convnext_ckpt,
read_official_gligen_ckpt,
read_official_sd_ckpt,
batch_to_device,
sub_batch,
disable_grads,
count_params,
update_ema,
create_expt_folder_with_auto_resuming,
)
try:
from apex import amp
except ImportError:
pass
# = = = = = = = = = = = = = = = = = = useful functions = = = = = = = = = = = = = = = = = #
def set_alpha_scale(model, alpha_scale):
for module in model.modules():
if type(module) == GatedCrossAttentionDense:
module.scale = alpha_scale
def alpha_generator(length, type=None):
"""
length is total timestpes needed for sampling.
type should be a list containing three values which sum should be 1
It means the percentage of three stages:
alpha=1 stage
linear deacy stage
alpha=0 stage.
For example if length=100, type=[0.8,0.1,0.1]
then the first 800 stpes, alpha will be 1, and then linearly decay to 0 in the next 100 steps,
and the last 100 stpes are 0.
"""
if type == None:
type = [1,0,0]
assert len(type)==3
assert type[0] + type[1] + type[2] == 1
stage0_length = int(type[0]*length)
stage1_length = int(type[1]*length)
stage2_length = length - stage0_length - stage1_length
if stage1_length != 0:
decay_alphas = np.arange(start=0, stop=1, step=1/stage1_length)[::-1]
decay_alphas = list(decay_alphas)
else:
decay_alphas = []
alphas = [1]*stage0_length + decay_alphas + [0]*stage2_length
assert len(alphas) == length
return alphas
def read_val_ckpt(ckpt_path):
"Read val ckpt and convert into my style"
print("\n" + "*" * 20 + " load model from {}!".format(ckpt_path) + " *" * 20 + "\n")
state_dict = torch.load(ckpt_path, map_location="cpu")
return state_dict
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
class Gener:
def __init__(self, config):
self.config = config
self.device = torch.device("cuda")
self.l_simple_weight = 1
self.name, self.writer, checkpoint = create_expt_folder_with_auto_resuming(config.OUTPUT_ROOT, config.name)
if get_rank() == 0:
shutil.copyfile(config.yaml_file, os.path.join(self.name, "train_config_file.yaml") )
self.config_dict = vars(config)
torch.save( self.config_dict, os.path.join(self.name, "config_dict.pth") )
# = = = = = = = = = = = = = = = = = create model and diffusion = = = = = = = = = = = = = = = = = #
self.model = instantiate_from_config(config.model).to(self.device)
self.autoencoder = instantiate_from_config(config.autoencoder).to(self.device)
self.text_encoder = instantiate_from_config(config.text_encoder).to(self.device)
self.diffusion = instantiate_from_config(config.diffusion).to(self.device)
self.convnext = instantiate_from_config(config.convnext).to(self.device)
convnext_tiny_checkpoint = read_official_convnext_ckpt(os.path.join(config.DATA_ROOT, 'convnext_tiny_1k_224_ema.pth') )
convnext_tiny_checkpoint['model'].pop('head.weight')
convnext_tiny_checkpoint['model'].pop('head.bias')
self.convnext.load_state_dict( convnext_tiny_checkpoint['model'] )
state_dict = read_val_ckpt( config.val_ckpt_name )
if self.config.official_ckpt_name == "sd-v1-4.ckpt":
official_state_dict = read_official_sd_ckpt( os.path.join(config.DATA_ROOT, config.official_ckpt_name) )
else:
official_state_dict = read_official_gligen_ckpt( os.path.join(config.DATA_ROOT, config.official_ckpt_name) )
# load original GLIGEN ckpt (with inuput conv may be modified)
missing_keys, unexpected_keys = self.model.load_state_dict( state_dict["model"], strict=False )
assert unexpected_keys == []
# original_params_names = list( state_dict["model"].keys() ) # used for sanity check later
self.autoencoder.load_state_dict( official_state_dict["autoencoder"] )
self.text_encoder.load_state_dict( official_state_dict["text_encoder"] )
self.diffusion.load_state_dict( official_state_dict["diffusion"] )
self.autoencoder.eval()
self.text_encoder.eval()
self.convnext.eval()
disable_grads(self.autoencoder)
disable_grads(self.text_encoder)
disable_grads(self.convnext)
if get_rank() == 0:
count_params(self.autoencoder, verbose=True)
count_params(self.text_encoder, verbose=True)
count_params(self.diffusion, verbose=True)
count_params(self.model, verbose=True)
# = = = = = = = = = = = = = = = = = = = = create data = = = = = = = = = = = = = = = = = = = = #
dataset_val = ConCatDataset(config.val_dataset_names, config.DATA_ROOT, train=False, repeats=None)
dataset_train = ConCatDataset(config.train_dataset_names, config.DATA_ROOT, train=True, repeats=None)
##########################
num_val_samples = len(dataset_val)
num_train_samples = len(dataset_train)
sub_val_indices = list(range(num_val_samples-config.total_batch_size, num_val_samples))
sub_train_indices = list(range(num_train_samples-config.total_batch_size, num_train_samples))
sub_dataset_val = Subset(dataset_val, sub_val_indices)
sub_sampler_val = DistributedSampler(sub_dataset_val, seed=config.seed, shuffle=False) if config.distributed else None
sub_loader_val = DataLoader(sub_dataset_val, batch_size=config.batch_size,
shuffle=False,
num_workers=config.workers,
pin_memory=False,
sampler=sub_sampler_val,
drop_last=True)
sub_dataset_train = Subset(dataset_train, sub_train_indices)
sub_sampler_train = DistributedSampler(sub_dataset_train, seed=config.seed, shuffle=False) if config.distributed else None
sub_loader_train = DataLoader(sub_dataset_train, batch_size=config.batch_size,
shuffle=False,
num_workers=config.workers,
pin_memory=False,
sampler=sub_sampler_train,
drop_last=True)
sampler_val = DistributedSampler(dataset_val, seed=config.seed, shuffle=False) if config.distributed else None
loader_val = DataLoader(dataset_val, batch_size=config.batch_size,
shuffle=False,
num_workers=config.workers,
pin_memory=False,
sampler=sampler_val,
drop_last=True)
sampler_train = DistributedSampler(dataset_train, seed=config.seed, shuffle=False) if config.distributed else None
loader_train = DataLoader(dataset_train, batch_size=config.batch_size,
shuffle=False,
num_workers=config.workers,
pin_memory=False,
sampler=sampler_train,
drop_last=True)
self.dataset_val = dataset_val
self.loader_val = loader_val
self.dataset_train = dataset_train
self.loader_train = loader_train
self.sub_dataset_val = sub_dataset_val
self.sub_loader_val = sub_loader_val
self.sub_dataset_train = sub_dataset_train
self.sub_loader_train = sub_loader_train
if get_rank() == 0:
total_val_image = dataset_val.total_images()
print("Total validation images: ", total_val_image)
total_train_iamge = dataset_train.total_images()
print("Total training images: ", total_train_iamge)
# = = = = = = = = = = = = = = = = = = = = misc and ddp = = = = = = = = = = = = = = = = = = = =#
# func return input for controlling condition encoding
self.controlling_condition_input = instantiate_from_config(config.controlling_condition_input)
self.model.controlling_condition_input = self.controlling_condition_input
dirs = os.path.join(self.name, "validation")
if not os.path.exists(dirs):
os.makedirs(dirs, exist_ok=True)
self.image_caption_saver = ImageCaptionSaver(base_path=dirs, nrow=6)
if config.distributed:
self.model = DDP( self.model, device_ids=[config.local_rank], output_device=config.local_rank, broadcast_buffers=False )
@torch.no_grad()
def apdate_batch(self, batch):
box_name = np.array(batch['box_name'])
num_cam, num_box, b = box_name.shape
box_name = list(box_name.reshape(-1))
_, text_feature = self.text_encoder.encode(box_name, return_pooler_output=True)
text_feature = rearrange(text_feature, '(n m b) c -> n m b c', n=num_cam, b=b, m=num_box)
batch['box_text_embedding'] = rearrange(text_feature, 'n m b c -> b n m c')
B, N, C, H, W = batch["road_map"].shape
road_map = rearrange(batch["road_map"], 'b n c h w -> (b n) c h w')
uroad_map = torch.ones_like(road_map, dtype=road_map.dtype).to(road_map.device)
road_map_embedding = self.convnext(road_map)
road_map_embedding = rearrange(road_map_embedding, '(b n) c -> b n c', b=B,n=N)
uroad_map_embedding = self.convnext(uroad_map)
uroad_map_embedding = rearrange(uroad_map_embedding, '(b n) c -> b n c', b=B,n=N)
# del batch['road_map']
# del batch['box_name']
context = self.text_encoder.encode( batch["scene_description"] )
batch['context'] = context
batch['ucontext'] = self.text_encoder.encode( context.shape[0] * [""] )
del batch['scene_description']
batch["road_map_embedding"] = road_map_embedding
batch["uroad_map_embedding"] = uroad_map_embedding
return batch
@torch.no_grad()
def get_input(self, batch):
z = self.autoencoder.encode( batch["image"] )
_t = torch.rand(z.shape[0]).to(z.device)
t = (torch.pow(_t, 1) * 1000).long()
t = torch.where(t!=1000, t, 999) # if 1000, then replace it with 999
return z, t
def start_validation(self, is_train=False):
self.model.eval()
if not is_train:
data = [self.loader_val, self.sub_loader_val]
else:
data = [self.loader_train, self.sub_loader_train]
for loader in data:
for iter_idx, batch in enumerate(tqdm(loader)):
self.iter_idx = iter_idx
batch_to_device(batch, self.device)
with torch.no_grad():
batch = self.apdate_batch(batch)
model_wo_wrapper = self.model.module if self.config.distributed else self.model
# iter_name = self.iter_idx + 1 # we add 1 as the actual name
# Do inference
batch_here = self.config.batch_size
if self.config.plms:
sampler = PLMSSampler(self.diffusion, model_wo_wrapper)
else:
sampler = DDIMSampler(self.diffusion, model_wo_wrapper)
shape = (batch_here, model_wo_wrapper.num_camera, model_wo_wrapper.in_channels, model_wo_wrapper.image_size[0], model_wo_wrapper.image_size[1])
controlling_condition_input = self.controlling_condition_input.prepare(batch)
input = dict(x=None,
timesteps=None,
controlling_condition_input=controlling_condition_input)
z0 = None # used for replacing known region in diffusion process
# alpha_generator_func = partial(alpha_generator, type=[0.8,0.1,0.1])
# alpha_generator_func = partial(alpha_generator, type=[1,0,0])
samples = sampler.sample(S=self.config.step, shape=shape, input=input, guidance_scale_c=self.config.guidance_scale_c, mask=None, x0=z0)
autoencoder_wo_wrapper = self.autoencoder # Note itself is without wrapper since we do not train that.
samples = autoencoder_wo_wrapper.decode(samples).cpu()
samples = torch.clamp(samples, min=-1, max=1)
save_image_path = batch["save_image_path"]
b, n, c, h, w = samples.shape
assert batch_here == b
cameras = ['CAM_FRONT_LEFT', 'CAM_FRONT', 'CAM_FRONT_RIGHT',
'CAM_BACK_RIGHT', 'CAM_BACK', 'CAM_BACK_LEFT']
for i in range(b):
for j in range(n):
img = TF.to_pil_image(samples[i][j] * 0.5 + 0.5)
if n > 1:
cam = cameras[j]
img_path = save_image_path[cam][i]
else:
img_path = save_image_path[j][i]
save_path = os.path.join(self.config.gen_path, img_path.replace('jpg', "png"))
par_save_path = os.path.dirname(save_path)
if not os.path.exists(par_save_path):
os.makedirs(par_save_path, exist_ok=True)
img.save(save_path)
if iter_idx % 100 == 0 and get_rank() == 0:
print(f"**************** Validation {iter_idx} / {len(loader)} *****************\n")
synchronize()
synchronize()
synchronize()
print("Validation finished. Start exiting")
exit()