-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
307 lines (261 loc) · 9.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
from datetime import datetime, timedelta
import json
from time import sleep
import keyboard
from math import sqrt
import os
from PIL import ImageGrab
import keyboard
import numpy as np
import psutil
import pyautogui as pag
import tkinter as tk
from tkinter import messagebox
import cv2
from time import sleep
import ultralytics
from random import randint
ultralytics.checks()
root = tk.Tk()
root.withdraw()
config = json.loads(open('config.json').read())
model = ultralytics.YOLO(config["model"]+"_model.pt")
scrn = list(pag.size())
timeout_looting = config["timeout_looting"]
timeout_map = config["timeout_map"]
pag.FAILSAFE = False
person = [1280//2, 720//2-30]
system_drive = f"{os.getenv('APPDATA')}\\Skinner"
print(system_drive)
try:
os.mkdir(system_drive)
except:
pass
path_screen = '13yolo.jpg'
profile = config["profile"]
img_atack = cv2.imread(f'atack_{profile}.png')[68:71, 283:295]
img_looting = cv2.imread(f'looting_{profile}.png')[447:472, 520:530]
img_dange = cv2.imread('dange.png')[667:691, 350:371]
img_move_zone = cv2.imread('move_zone.png')[146:150, 400:535]
loot_similarity = config["loot_similarity"]
atack_similarity = config["atack_similarity"]
class Bot_API:
def __init__(self) -> None:
self.use = [config['skills'][0],
[timedelta(0, i) for i in config['skills'][1]]
]
self.timer = {i: datetime.now() for i in self.use[0]}
self.fight = 0
self.arr_dviz = {'1': [640, 1], '2': [1279, 1], '3': [1279, 360], '4': [
1279, 719], '5': [640, 719], '6': [1, 719], '7': [1, 360], '8': [1, 1]}
self.move_position = 1
self.dviz = self.arr_dviz[str(self.move_position)]
self.fight_one = 0
self.looting_one = 0
def atack_press_skills(self):
for i in range(len(self.use[0])):
if datetime.now() - self.timer[self.use[0][i]] > self.use[1][i]:
pag.press(self.use[0][i])
self.timer[self.use[0][i]] = datetime.now()
def skaning(self):
if self.fight:
sleep(2)
self.fight = 0
self.fight_one = 0
return False
screenshot = ImageGrab.grab()
screenshot.save(path_screen)
sleep(0.01)
results = model.predict(path_screen, show=False, save=False, imgsz=(
1280, 736), conf=config['cnn'])
mobs = [[]]
for r in results:
for c in r.boxes:
x = (int(c.xyxy[0][0])+int(c.xyxy[0][2]))//2
y = (int(c.xyxy[0][1])+int(c.xyxy[0][3]))//2
mobs[0].append([x, y])
if mobs[0]:
x1, y1 = person
min_distance = 10_000
nearest_point = None
for point in range(len(mobs[0])):
x2, y2 = mobs[0][point][0], mobs[0][point][1]
distance = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
if distance < min_distance:
min_distance = distance
nearest_point = mobs[0][point]
pag.click(nearest_point)
sleep(3)
if self.atack_or_looting():
for kol in range(2):
pag.click(self.dviz[0], self.dviz[1])
sleep(0.6)
return True
else:
False
return True
def atack_or_looting(self):
screenshot = ImageGrab.grab()
open_cv_image = np.array(screenshot)
img2 = open_cv_image[:, :, ::-1].copy()
pixel2 = img2[68:71, 283:295].copy()
diff = cv2.absdiff(img_atack, pixel2)
similarity = cv2.mean(diff)[0]
if int(similarity) <= atack_similarity:
if self.fight_one == 0:
self.time_atack = datetime.now()
self.fight_one = 1
else:
if datetime.now() - self.time_atack >= timedelta(0, 20):
self.move_position = self.move_position + \
4 if 0 < self.move_position <= 4 else self.move_position-4
self.dviz = self.arr_dviz[str(self.move_position)]
keyboard.press_and_release('alt+s')
for kolw in range(5):
pag.click(self.dviz[0], self.dviz[1])
sleep(0.7)
self.fight_one = 0
self.fight = 0
pag.press('space')
for i in range(len(self.use[0])):
if datetime.now() - self.timer[self.use[0][i]] > self.use[1][i]:
pag.press(self.use[0][i])
self.timer[self.use[0][i]] = datetime.now()
self.fight = 1
sleep(1.1)
self.last_scan = datetime.now()
return False
else:
if self.fight:
self.fight = 0
self.fight_one = 0
print('unatack')
sleep(0.3)
if self.atack_or_looting():
sleep(2)
else:
return False
pixel2 = img2[447:472, 520:530].copy()
diff = cv2.absdiff(img_looting, pixel2)
similarity = cv2.mean(diff)[0]
if int(similarity) <= loot_similarity:
if self.looting_one == 0:
self.looting_one = 1
sleep(timeout_looting)
self.last_scan = datetime.now()
return False
else:
if self.looting_one:
self.looting_one = 0
sleep(0.1)
return True
def exit_dange(self):
screenshot = ImageGrab.grab()
open_cv_image = np.array(screenshot)
img2 = open_cv_image[:, :, ::-1].copy()
pixel2 = img2[667:691, 350:371]
diff = cv2.absdiff(img_dange, pixel2)
similarity = cv2.mean(diff)[0]
if int(similarity) <= 9:
print('dange')
sleep(2)
keyboard.press_and_release('a')
sleep(12)
self.scrolling()
pag.moveTo(1150, 600)
self.scrolling()
pag.moveTo(640, 360)
sleep(1)
return False
return True
def check_map(self):
if datetime.now() - self.last_scan > timedelta(0, timeout_map):
screenshot = ImageGrab.grab()
open_cv_image = np.array(screenshot)
img2 = open_cv_image[:, :, ::-1].copy()
maper = img2[554:660, 1086:1191]
diff = cv2.absdiff(maper, self.map)
similarity = cv2.mean(diff)[0]
if int(similarity) == 0:
self.map = maper
self.reverse_dviz()
self.last_scan = datetime.now()
else:
self.map = maper
self.last_scan = datetime.now()
diff = cv2.absdiff(img_move_zone, img2[146:150, 400:535])
else:
screenshot = ImageGrab.grab()
open_cv_image = np.array(screenshot)
img2 = open_cv_image[:, :, ::-1].copy()
diff = cv2.absdiff(img_move_zone, img2[146:150, 400:535])
similarity = cv2.mean(diff)[0]
if int(similarity) <= 3:
pag.click(740, 560)
self.move_position = self.move_position + \
4 if 0 < self.move_position <= 4 else self.move_position-4
self.dviz = self.arr_dviz[str(self.move_position)]
def reverse_dviz(self):
random_position = randint(1, 8)
while self.move_position == random_position:
random_position = randint(1, 8)
self.move_position = random_position
self.dviz = self.arr_dviz[str(self.move_position)]
def scrolling(self):
for i in range(20):
pag.scroll(1000)
sleep(0.01)
def RUN(self):
os.chdir(system_drive)
print('START')
pag.moveTo(640, 360)
self.scrolling()
pag.moveTo(1150, 600)
self.scrolling()
pag.moveTo(640, 360)
screenshot = ImageGrab.grab()
open_cv_image = np.array(screenshot)
img2 = open_cv_image[:, :, ::-1].copy()
self.map = img2[554:660, 1086:1191]
self.last_scan = datetime.now()
while 1:
if self.exit_dange():
self.check_map()
if self.atack_or_looting():
if self.skaning():
pag.click(self.dviz[0], self.dviz[1])
print(self.fight)
print(self.fight_one)
bot = Bot_API()
print('APP WAS LOADED')
scrn = list(pag.size())
processes = psutil.process_iter()
flag = 1
dtnt = [0, 0]
for i in processes:
if i.name() == 'Albion-Online.exe':
flag = 0
dtnt[0] = 1
if scrn != [1280, 720]:
messagebox.showerror("Неправильное разрешение экрана",
"Установите разрешение 1280х720")
else:
dtnt[1] = 1
if flag:
messagebox.showerror("Запустите игру",
"На данный момент Albion-Online не запущен")
print('STARTING APP...')
def qexit():
global running
running = 0
running = 1
print('''
Текущая конфигурация:''')
print(f'''[+] Точность для определяемого объекта: {config['cnn']}''')
print(f'''[+] Прожимаемые скилы: {config['skills']}''')
keyboard.add_hotkey("alt+s", lambda: qexit())
keyboard.add_hotkey("alt+p", lambda: qexit())
while running:
sleep(0.3)
if dtnt[0] and dtnt[1]:
bot.RUN()