-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathupernet_agent_swin_t_9-12-14-7.py
69 lines (66 loc) · 2.03 KB
/
upernet_agent_swin_t_9-12-14-7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
_base_ = [
'../_base_/models/upernet_swin.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
checkpoint_file = './data/agent_swin_t_max_acc.pth'
model = dict(
backbone=dict(
init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file),
type='AgentSwinTransformer',
img_size=224,
patch_size=4,
in_chans=3,
num_classes=80,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=56,
mlp_ratio=4,
out_indices=(0, 1, 2, 3),
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.3,
ape=False,
patch_norm=True,
use_checkpoint=False,
agent_num=[9, 16, 49, 49],
downstream_agent_shapes = [(9, 9), (12, 12), (14, 14), (7, 7)],
kernel_size=3,
attn_type='AAAB',
scale=-0.5,
),
decode_head=dict(in_channels=[96, 192, 384, 768], num_classes=150),
auxiliary_head=dict(in_channels=384, num_classes=150))
# AdamW optimizer, no weight decay for position embedding & layer norm
# in backbone
optimizer = dict(
_delete_=True,
type='AdamW',
lr=0.00006,
betas=(0.9, 0.999),
weight_decay=0.01,
paramwise_cfg=dict(
custom_keys={
'absolute_pos_embed': dict(decay_mult=0.),
'relative_position_bias_table': dict(decay_mult=0.),
'norm': dict(decay_mult=0.),
'an_bias': dict(decay_mult=0.),
'na_bias': dict(decay_mult=0.),
'ah_bias': dict(decay_mult=0.),
'aw_bias': dict(decay_mult=0.),
'ha_bias': dict(decay_mult=0.),
'wa_bias': dict(decay_mult=0.)
}))
lr_config = dict(
_delete_=True,
policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0,
min_lr=0.0,
by_epoch=False)
# By default, models are trained on 8 GPUs with 2 images per GPU
data = dict(samples_per_gpu=2)