diff --git a/CNN_emotion_recognition.ipynb b/CNN_emotion_recognition.ipynb
new file mode 100644
index 0000000..c9ef0fb
--- /dev/null
+++ b/CNN_emotion_recognition.ipynb
@@ -0,0 +1,6186 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# I. Importing the required libraries"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/vnd.plotly.v1+html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Orignial Notebook: https://github.com/MITESHPUTHRANNEU/Speech-Emotion-Analyzer/blob/master/final_results_gender_test.ipynb\n",
+ "# This notebook author: Reza Chu\n",
+ "# Last Editing Date: 31st May 2019\n",
+ "\n",
+ "## Python\n",
+ "import os\n",
+ "import random\n",
+ "import sys\n",
+ "\n",
+ "\n",
+ "## Package\n",
+ "import glob \n",
+ "import keras\n",
+ "import IPython.display as ipd\n",
+ "import librosa\n",
+ "import librosa.display\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import plotly.graph_objs as go\n",
+ "import plotly.offline as py\n",
+ "import plotly.tools as tls\n",
+ "import seaborn as sns\n",
+ "import scipy.io.wavfile\n",
+ "import tensorflow as tf\n",
+ "py.init_notebook_mode(connected=True)\n",
+ "\n",
+ "\n",
+ "## Keras\n",
+ "from keras import regularizers\n",
+ "from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping\n",
+ "from keras.callbacks import History, ReduceLROnPlateau, CSVLogger\n",
+ "from keras.models import Model, Sequential\n",
+ "from keras.layers import Dense, Embedding, LSTM\n",
+ "from keras.layers import Input, Flatten, Dropout, Activation, BatchNormalization\n",
+ "from keras.layers import Conv1D, MaxPooling1D, AveragePooling1D\n",
+ "from keras.preprocessing import sequence\n",
+ "from keras.preprocessing.sequence import pad_sequences\n",
+ "from keras.preprocessing.text import Tokenizer\n",
+ "from keras.utils import np_utils\n",
+ "from keras.utils import to_categorical\n",
+ "\n",
+ "\n",
+ "## Sklearn\n",
+ "from sklearn.metrics import confusion_matrix\n",
+ "from sklearn.preprocessing import LabelEncoder\n",
+ "\n",
+ "\n",
+ "## Rest\n",
+ "from scipy.fftpack import fft\n",
+ "from scipy import signal\n",
+ "from scipy.io import wavfile\n",
+ "from tqdm import tqdm\n",
+ "\n",
+ "input_duration=3\n",
+ "# % pylab inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# II. Reading the data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "['Actor_01', 'Actor_02', 'Actor_03', 'Actor_04', 'Actor_05', 'Actor_06', 'Actor_07', 'Actor_08', 'Actor_09', 'Actor_10', 'Actor_11', 'Actor_12', 'Actor_13', 'Actor_14', 'Actor_15', 'Actor_16', 'Actor_17', 'Actor_18', 'Actor_19', 'Actor_20', 'Actor_21', 'Actor_22', 'Actor_23', 'Actor_24']\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Data Directory\n",
+ "# Please edit according to your directory change.\n",
+ "dir_list = os.listdir('data/')\n",
+ "dir_list.sort()\n",
+ "print (dir_list)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Create DataFrame for Data intel\n",
+ "data_df = pd.DataFrame(columns=['path', 'source', 'actor', 'gender',\n",
+ " 'intensity', 'statement', 'repetition', 'emotion'])\n",
+ "count = 0\n",
+ "for i in dir_list:\n",
+ " file_list = os.listdir('data/' + i)\n",
+ " for f in file_list:\n",
+ " nm = f.split('.')[0].split('-')\n",
+ " path = 'data/' + i + '/' + f\n",
+ " src = int(nm[1])\n",
+ " actor = int(nm[-1])\n",
+ " emotion = int(nm[2])\n",
+ " \n",
+ " if int(actor)%2 == 0:\n",
+ " gender = \"female\"\n",
+ " else:\n",
+ " gender = \"male\"\n",
+ " \n",
+ " if nm[3] == '01':\n",
+ " intensity = 0\n",
+ " else:\n",
+ " intensity = 1\n",
+ " \n",
+ " if nm[4] == '01':\n",
+ " statement = 0\n",
+ " else:\n",
+ " statement = 1\n",
+ " \n",
+ " if nm[5] == '01':\n",
+ " repeat = 0\n",
+ " else:\n",
+ " repeat = 1\n",
+ " \n",
+ " data_df.loc[count] = [path, src, actor, gender, intensity, statement, repeat, emotion]\n",
+ " count += 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2452\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " path | \n",
+ " source | \n",
+ " actor | \n",
+ " gender | \n",
+ " intensity | \n",
+ " statement | \n",
+ " repetition | \n",
+ " emotion | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " data/Actor_01/03-02-04-02-02-01-01.wav | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " data/Actor_01/03-01-04-02-01-02-01.wav | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " data/Actor_01/03-02-05-02-01-01-01.wav | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " data/Actor_01/03-01-04-01-01-02-01.wav | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " data/Actor_01/03-01-02-01-02-01-01.wav | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " path source actor gender intensity \\\n",
+ "0 data/Actor_01/03-02-04-02-02-01-01.wav 2 1 male 1 \n",
+ "1 data/Actor_01/03-01-04-02-01-02-01.wav 1 1 male 1 \n",
+ "2 data/Actor_01/03-02-05-02-01-01-01.wav 2 1 male 1 \n",
+ "3 data/Actor_01/03-01-04-01-01-02-01.wav 1 1 male 0 \n",
+ "4 data/Actor_01/03-01-02-01-02-01-01.wav 1 1 male 0 \n",
+ "\n",
+ " statement repetition emotion \n",
+ "0 1 0 4 \n",
+ "1 0 1 4 \n",
+ "2 0 0 5 \n",
+ "3 0 1 4 \n",
+ "4 1 0 2 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "print (len(data_df))\n",
+ "data_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# III. Plotting the audio file's waveform and its spectrogram"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "data/Actor_10/03-01-05-01-01-02-10.wav\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(22050, array([-3.77176912e-05, -1.10931855e-04, 2.90319556e-04, ...,\n",
+ " 2.24706928e-05, -3.84291661e-06, 0.00000000e+00], dtype=float32))"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "filename = data_df.path[1021]\n",
+ "print (filename)\n",
+ "\n",
+ "samples, sample_rate = librosa.load(filename)\n",
+ "sample_rate, samples"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(88289, 22050)"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(samples), sample_rate"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def log_specgram(audio, sample_rate, window_size=20,\n",
+ " step_size=10, eps=1e-10):\n",
+ " nperseg = int(round(window_size * sample_rate / 1e3))\n",
+ " noverlap = int(round(step_size * sample_rate / 1e3))\n",
+ " freqs, times, spec = signal.spectrogram(audio,\n",
+ " fs=sample_rate,\n",
+ " window='hann',\n",
+ " nperseg=nperseg,\n",
+ " noverlap=noverlap,\n",
+ " detrend=False)\n",
+ " return freqs, times, np.log(spec.T.astype(np.float32) + eps)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.24974798672541312"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sample_rate/ len(samples)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0.5, 0, 'Seconds')"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAHwCAYAAABDrzX1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XeYU1X6B/Dvm0wFhj6ANIeuIIiK2AWVYmFFXXFRV8F1i65l1V13cdXFstjbWlbFVey6rPpTlCbSq/Reh2Fow8AwA9Nbkvf3x703c5NJz725Seb9PE8ekntPzj3JJOG+95zzHmJmCCGEEEIIIYQIj83qBgghhBBCCCFEIpJgSgghhBBCCCEiIMGUEEIIIYQQQkRAgikhhBBCCCGEiIAEU0IIIYQQQggRAQmmhBBCCCGEECICEkwJIYQQQgghRAQkmBJCiDhFRP8kouNEVBhieSai3ma3SwghhBAKCaaEEJYgonwiqiaiCiIqJKIPiaiF1e2KF0TUHcCfAfRn5k4G152jBl4pYT6vMxEd8tq2iIhOEFG6mccOo41TiWgXEbmIaKKP/Q+qn7cyIvrAu91EdAERrdC1dSERVRHRTiIaoSs3Xj1OKREdI6KPiKhlkLb5PTYRPU1EW4jIQURPhPA6A7VtIhE51e+WdhseoC4ioueJqFi9PU9EpNsf8D31Ud9gIlqntm0dEQ3W7btMbXcpEeWHUJffthFRXyL6joiKiKiEiOYSUb8g9UX1+RBCCG8STAkhrPQLZm4BYDCAswA8YnF74kl3AMXMfMzqhuhcDWCO9oCIcgBcAoABXBuLBoQQhG0C8EcA6308dzSASQCuAHAqgJ4AnvQqdg2AWer9LwBsANAOwKMAviKibHXfcgAXMXMrtZ4UAP8M0O5gx84F8FcAM4O8Pk2gtgHASmZuobstClDX7wFcB+BMAIMA/ALAH3T7/b6n3ogoDcB3AD4F0AbARwC+U7cDQCWADwA8HPQVBm9bawAzAPQD0BHAavXYgUT7+RBCCA8STAkhLMfMhQDmQgmqAABEdA0RbVCvEB/UX61XewH+rN7vovZ03KM+7qVepW70+0ZE+4noHPX+rerzBqiP7ySib9X7Q4loJRGdJKIjRPSmdjJIRG8T0Ute9X5HRA+p9zsT0dfq1fJ9RHS/v9dNRK2I6GO17H4ieoyIbGovwzwAndVehQ/9PP9htX0FRPQbr31+3z8AS9R/T6r1X6C+bwvUq//HiegzImrtdcir0RBoAMDtAFYB+BDABK/jZxLRy+rrKiWiZUSU6efYNvW17yell+djImql1qP1ZN1JRAcALPD3fgIAM7/FzPMB1PjYPQHA+8y8jZlPAHgawERfr5GI+gI4G8BkZq5m5q8BbAHwS/U4B5n5uO55TgCBhlgGPDYzf8TMswGUB3p9gNIjE6htEZgA4GVmPsTMhwG87NW2QO+pt+FQAsvXmLmWmV8HQAAuV+tazcyfAMiLtm1qXe8zcwkz1wN4FUA/ImrnrzIDPh8AACJaTES/VO9fpH5Gr1EfX0FEG9X7fr9XRPQ3IvrKq95/EdHrIb43Qog4IMGUEMJyRNQVwFVQrs5rKqGcrLeG0ltwNxFdp+5bDOWkDQCGQTkxu1T3eCkzu3wcKtjzFqv3nQAeBNAewAVQrlT/Ud33BYBfEbmHGrUBMArAl2oA9z2Uq99d1Oc9oF7x9uUNAFrPxjD19d7BzD+p70eB2qsw0fuJRHQlgL8AGAmgD4ARXkUCvX/aa26t1r8SygnvswA6AzgdQDcAT+iOl6o+b57uGLcD+Ey9jSaijrp9LwE4B8CFANpC6XVx+Tn2RPV2mfpetADwptfrGaa2y997GYoBUP42mk0AOmon30R0CpQejg1q2TxmLvcqP0B7QEQXE1EplADolwBei/TYEbyOgG0DcJZ68r6biB6nwD16vto2wE/ZUNq2mZlZt21zlPWF2rZLARQyc7GBx/L3Nwr1tyTQ9+pLAFcTURYAEJEdwE0APo+w/UIIC0gwJYSw0rdEVA7gIIBjACZrO5h5ETNvYWYXM2+GEsQMU3cvBnCxGrxcCuAFABep+/QnMt4W6+q4BMpJjvbY/TxmXsfMq5jZwcz5AN7VlVsKZVjbJerjG6EMqSoAcC6AbGZ+ipnrmDkPwHsAxns3RD1xGg/gEWYuV4/zMoDbAr1hOjcBmMbMW5m5ErrAR30Ngd6/Rpg5l5nnqb0JRQBe8Sp/KYBN2gk8EV0MZSjUdGZeB2AvgFvUfTYAvwHwJ2Y+zMxOZl7BzLV+Dn8rgFeYOY+ZK6AM9xzvFQA8wcyVzFwd2tvjUwsApbrH2v0s9d+rAcxRAwHvslp5rSyYeZk6zK8rgBcB5Edx7HAEa9sSAGcA6AAlyLsZgYfV+WpbC+2CgcFti7Y+n21TL8i8BeChCI/j71iA77brf0suhf/fEr/fK2beD2W44fXq8y4HUMXMq6J4DUKIGJNgSghhpeuYOQvKFd7ToPQEAQCI6DxSJqoXqVf/79L2M/NeKD0vg6EENT8AKCBl8nmwYOoStQfCDmA6gItImfvTCoA2NKcvEf1A6kR0AM/ojs1QrijfrNZ5C5SeGUAJLjqrwwNPEtFJAH+H0tvhrT2AVAD7ddv2Q+nRCkVnKEGo/rlugd4/X4ioIxF9SUSH1df8qVd57yF+EwD8qBvq9jkahvq1B5ABJcAK9bV4vw8p8HzfDiJ6FQD0SSK0+1oPj/41epfVyjcahqcOP5sD5XOhDSHVEj/MDvHYfhHRNl19lwRrmxqU7lMD6S0AnoIS9IOI/q6r650Abavw6l3y1zZ9kovuwdoWpK6I2kbKXLEfAfybmb8I0LZgwvkbrQTQV+2NHQzgYwDdiKg9gKFQh7OG8L36HJ6/JdIrJUSCkWBKCGE5Zl4MZd6Nfi7S51Aml3dTr/6/A2XIjGYxlBPENPVkdjGUk/k2UIMiH8fJBVAF4D4AS5i5DEAhlEnuy3RDA98GsBNAH2ZuCSUg0h/7CwA3EtGpAM4D8LW6/SCAfczcWnfLYuarfTTnOIB6KAGYpjuAw77a7sMRKEOG9M/VC/T++TpJfkbdPlB9zb+G52t2Bxrq3KebAAxTA85CKMMizySiM9XXVgOgl4/j+Dp2ARq/Dw4AR4M8L1zboCQy0JwJ4CgzF6vDGIehYRjjNgA9tSFYuvLb/NSdAvX1MvNn3JD44apgxw7WaGYeoKtvaQRtY6h/S2Z+RlfXXQHa5q8u77bpk1wcUJ83yKvnaFAo9UXSNnWY7Y8AZjDzlCBtCybkvxEzVwFYB+BPALYycx2AFVB6xvbqLjIE+179D8BwtWftekgwJUTCkWBKCBEvXgMwUj0ZB5ShNSXMXENEQ6EOIdNZDOBeNCQ0WKQ+XsbMzgDH0Z6n9V4t8nqsHbsMQAURnQbgbn0FzLwBSsDwHwBzmfmkums1gHJ1YnkmEdmJ6AwiOte7EWobpwOYQkRZamD2EJQr16GYDmAiEfUnombQDZHUvQZ/718RlPlLPb3KVwAoJaIu0A0LI6IeANKZeYe66Too88r6Q7kqPxjKfJClAG5Xg9IPALxCSkIOOymJJtL9HPsLAA8SUQ9S0uM/A+C/zOwI8b1wI6I0IsqAcsKaSkQZ1JCM5GMAd6rvWWsAj0EJ4gHgYihzfcoAgJl3QwnKJ6t1XA8lKPhaPc6tWm+H+rebAmB+gKYFOjaIKFVttw1AinpMu6+KQmjbVWqPCdTP7+MInOXuYwAPkZLMpTOUlPz6tgV6T70tgvLZuJ+I0onoXnX7ArUum1pXqvKQMqgh019YbSMlFf1cAMuZeVKAOtyi+Hz4Eupvic/vFQCoQ/8WAZgG5ULMDgghEgszy01ucpNbzG9Q5peM8Nr2NoCv1fs3QhnuVQ5lGN+bAD7Vle0H5YrvBPVxKyi9GX8Lctw/qM87VX08Rn18nq7MpVB6piqgBAhPQQnS9PU8rj5vnNf2zlCCg0IAJ6Bkuxvhpy1toARPRVB6tf4BwKbuGw7gUJDXMkk9TgGUOUoMoHeI799T6nFPAjgfyuT7depr3gjlpPWQWvZeAG/qnjsHSoY17/bcpLYnBUAmlAD5MJS5J0sAZPo5tk197QfV7Z8CaKOWzVFfV0qIn6tFann9bbhu/0NQerzKoJzApqvbXwLwF6+6ctT6qgHs0v8doQRPh6AMNz0EYCqAdkHa5vPY6r4PfbR7YoC6ArXtJfU4lVASIzwFIDVAXQRl3mGJensBAIX6nvqo7yz1s1QNZU7QWbp9w33UtSiStkHpiWb1dVbobt2N/nyo+7YBuFX3eLT6/GHq4zPUx7/SlfH7vdKVuU193sOhfMblJje5xddN+0ESQgghfCKiWVCCqVlBCycoItoO4EZm3m51W4QQQiQOGeYnhBAimEUAFlrdCLOow8w+lkBKCCFEuKRnSgghRMIgoluhpKr3tp+ZI13LSAghhIiIBFNCCCGEEEIIEQEZ5ieEEEIIIYQQEUgJXiS5tG/fnnNycqxuhhBCCCGEECJOrVu37jgzZwcr1+SCqZycHKxdu9bqZgghhBBCCCHiFBHtD6WcDPMTQgghhBBCiAhIMCWEEEIIIYQQEZBgSgghhBBCCCEiIMGUEEIIIYQQQkTA8mCKiK4kol1ElEtEk3zsf4iIthPRZiKaT0Sn6vZNIKI96m1CbFsuhBBCCCGEaMosDaaIyA7gLQBXAegP4GYi6u9VbAOAIcw8CMBXAF5Qn9sWwGQA5wEYCmAyEbWJVduFEEIIIYQQTZvVPVNDAeQycx4z1wH4EsBYfQFmXsjMVerDVQC6qvdHA5jHzCXMfALAPABXxqjdQggh4ojD6bK6CUIIIZogq4OpLgAO6h4fUrf5cyeA2RE+VwghRBKqd7rQ+9HZwQsKIYQQBrM6mAoZEf0awBAAL0bw3N8T0VoiWltUVGR844QQQlimXu2Vuv7fyy1uiRBCiKbG6mDqMIBuusdd1W0eiGgEgEcBXMvMteE8FwCYeSozD2HmIdnZ2YY0XAghhPVyJs1EcUUdAGDDgZMWt0YIIURTY3UwtQZAHyLqQURpAMYDmKEvQERnAXgXSiB1TLdrLoBRRNRGTTwxSt0mhBAiidU7Xe7eKAC45IWFFrZGCPMwM1wutroZQogALA2mmNkB4F4oQdAOANOZeRsRPUVE16rFXgTQAsD/iGgjEc1Qn1sC4GkoAdkaAE+p24QQQiSxX727En0enY1j5TVWN0UIUz0/ZxcGPfmj1c0QQgSQYnUDmHkWgFle2/6huz8iwHM/APCBea0TQggRbzYdKgUADJ0yv9G+0up6tMpMjXWThDDFtoJSVNQ6rG6GECIAq4f5CSGEEGGhAPtW5RXHrB1CmGnP0XIs3XPc6mYIIYKQYEoIIURCoUDRlBBJ4oW5u6xughAiBBJMCSGESBhlNfWod/qfkM8yV18kCbtcNRAiIUgwJYQQImEcLKkKuP+L1Qdi1BIhzGWTMzQhEoJ8VYUQQiSM6jpnwP2Ld8vC7CI5kPRMCZEQJJgSQgiRMKqCBFNCJAsZ5idEYpBgSgghRMIIJZgqqayLQUuEMJdNYikhEoIEU0IIIRJI8AwTT8zYFoN2CGEum/RMCZEQJJgSQsTMsbIaq5sgEl7wE8xahwwFFInPJl1TQiQECaaEEDEz9Jn5QbOxCRFIKBfrA6VOFyJSS/cUoarOEbPjSSwlRGKQYEoIEVPSayDMtmDnsZie9Iqm4bb3V+OTlfujrsfpYvx3TfAU/jLMT4jEIMGUEEKIpLP3WKXVTRDCp7yiCvzt6y1By8kwPyESgwRTQoiY+nH7UaubIBKYnF6KRKcNQl0SZE00iaWESAyWB1NEdCUR7SKiXCKa5GP/pUS0nogcRHSj1z4nEW1UbzNi12ohRKRemLPL6iaIBDZl1o6QynEIWf+ECNfL83ZHXQerH83bP1jtc39JZR16PDJThvkJkSAsDaaIyA7gLQBXAegP4GYi6u9V7ACAiQA+91FFNTMPVm/XmtpYIYQQlttfHFoCk4f/t9nkloimqM7hirqOYIF+wclqMMucKSESRYrFxx8KIJeZ8wCAiL4EMBbAdq0AM+er+6L/BRNCWKamXhJPiNjZdbTc6iYI4RMH6TTVYigJpoRIDFYP8+sC4KDu8SF1W6gyiGgtEa0iouuMbZoQwkjj3lnpvn+iss7ClgghRHiKK2oNqytYMKUFUTJnSojEYHUwFa1TmXkIgFsAvEZEvXwVIqLfq0HX2qKiwBM+hRDm2FZQ6r5fa8BQGSGEiJVQsu9pftp+FP0em+13vytINOXumQoSTeVMmom52wpDbpcQwhxWB1OHAXTTPe6qbgsJMx9W/80DsAjAWX7KTWXmIcw8JDs7O/LWCiEilmKz+udGJLr9xZLuXFij3hn6BaCnftge1QUjUnNWhtIxtb2gLOLjCCGMYfXZzRoAfYioBxGlARgPIKSsfETUhojS1fvtAVwE3VwrIUR8SbFHPmZlztZC/N+GQ7IQaxM37MVFVjdBiICYGQdKAidJCTbMz02G+QmRECwNppjZAeBeAHMB7AAwnZm3EdFTRHQtABDRuUR0CMA4AO8S0Tb16acDWEtEmwAsBPAcM0swJUScimYy9V2frsOD/92Em9/72cAWiUThdDHyj0uvlIgPP+cV+9136YsL3fdnbznis8y87YGH5mk/le8uzgvaFlkAQAjrWZ3ND8w8C8Asr23/0N1fA2X4n/fzVgAYaHoDhRCGqKiNvldp08GTBrREJJrHvt2KL1YfsLoZQgBQ1jqbce/FPvcdLKl235+1tRBXDTylUZnXF+QGrF86pIRILFYP8xNCNEHXvrkMjjDmIIimbWdhZPNCvt9UYHBLhDAfhdOLH/KYQSGEWSSYEkLE3LHyWlTJulMiRJFeqd96uDR4ISGiVHCyGle+tqTR9uoQ53jmH6/E8tzj7seyvJQQiUWCKSGEJeR8QYQqrCv1OnLN3hxGDNlNFGU19ZjwwWos3u1/WZXtBWXYWdh4keifdhxDXlFF0GM8/NUm3PqfhvmgReXGrWklhDCfBFNCCCHimgTe8eWMyXORe6xx8JCM9hytCBhIAUCgVR8uf3lxwOeuyit2p0IHgMLSGoyfuirk9skFAyGsJ8GUECKulVbXW92EhHXb+z/joxX5Vjcjamv3n4joeSzzSUyzfn/sk8H84o1lmLf9aMyP663gZLXH42A9p8fKa/zum7O1IbOfy8WoC7A+VXlNPXImzfTYVutwyfxTISwmwZQQwhKhDt2SIS+RmbP1CJbuOY6ZftIzCxGNv369OaQhbEbacrgU/11z0PLg4XhFncdje5DfsveWBElxrj69599n4ed9vtOuf7H6AMpqGg+vnLokDw9N3xS4fiGEqSSYEkKYbseRxtnYpszcEfA59U4XfvXuSox4JfAwGeHbXZ+uV+404c4Z6ZgyV12MghqXi7FCTdDw046j+Nf8PTE5LgAs2Bm8J2yLmujEXw+UK8Dn0Lv31NfcKwB45Jst7vvewaSv31chROxIMCWEMN2Nb69otG3BzqPYVViOkso6H88Ayqrr8fO+kkbbT/gpLxq8MGen1U2IC8ekV9NUzkBRgoH++Nl63KJL0PDGglyUVsVm+O9bC/f63P7Qfze6f7tenLsLAHDN68t8lnWFEdWfqAr++9b70dkejyX7nxDWkmBKCGG6FHvjn5qjZbUY/doSXP/v5Xg+jJP/epkfENS6COcYJZsZss6U4fRrfl3z+jK/F0OMtDq/8UWVWoe1Syt8s+EwNhzw/J75G5LscjFKq+tR42c5CH0s5HD6D7wkZhIiPkkwJYQwnd3m/zRgf3EV3l7UcPX3k5X5+CnQJHM5o3DTn5xV1jrcJ7pypVqY5crXlno83hmDIWa+Ps4x6hQzxEcr9+PMJ3/EvZ+v97nPVw+8ECJxSDAlhDDVn6dvCuvq9ePfbcNvP14LZwhDY2I1zChenfb4HPeci5d/3I0rX1uK/OOVHqmWhYjWvxfl4te6YXZ6t/jZbjY2eTLgoRNV2HM0cPr3Oz9aG1adGw8GX0Q60KuSiyRCxCcJpoQQplqV5zs7VTCBYql6pwu/fHsFev19lsewo6ZEC6K096lGHfY0/KVFHiddq/NL8HoMJ+yL5MLM+HL1QSzLPe6RxjtWymvqUezjYoyR11GmzNyOlXuL3ccDgPFTV2Hkq0uMOwiA4xW12HQwcEr57wMMTZWEKkLEJwmmhBCmSrWHdjm1sNQzE9Z5z8z3WY5AGPfOSve8oKaaOl07ser591n4Zv0hd7YzoPEV7I1BTuCSWVmNrFMWjRfm7sKBkioAwF2frvNZ5q9fbcLa/BL834ZDqKprnL47Gh+v3O9zu8vAaOq9pftw83urcKS0GgOf+BE19c6Ac5f0wk2EMfat5ZE0EQBw4XMLIn6uEMI8lgdTRHQlEe0iolwimuRj/6VEtJ6IHER0o9e+CUS0R71NiF2rhRChSvWRfMKX85+dH/ICvU05ONDoM4Q9NH0T8our3I+9h/kl8uK10bZ9wgerDWpJ07T1cPChadPXHsKN76zEg//dhCte9lzK4K2FuQEXrQ3G39A2Mz7Sh04oi/E6XRzykLqrX18avJAQIqlZGkwRkR3AWwCuAtAfwM1E1N+r2AEAEwF87vXctgAmAzgPwFAAk4mojdltFkKEZ8+x0Bf2PPPJH01sSXIJZ27Fwl1F+GL1AVPbY5ZoT5oPllQFLyR8enfxXizdczx4QZ0jXj3ML87dhVmbI1s4mpn9XmB5cPpGQ3unAGDcOysBAAMmzw35OYVlkQeKQojkYHXP1FAAucycx8x1AL4EMFZfgJnzmXkzAO98yKMBzGPmEmY+AWAegCtj0WghhHVkErYiUJDhK+FHpHPXEl2tI3ap9Jk5pJ6cRLH5kDGvJdKQZ/bWQry7OM/nvnX7T8BhQDC1v7jS5/ZQf2aaehIcIYT1wVQXAAd1jw+p28x+rhAiBsxYWHPpniLD60xEgbKZbStonJQjUUf6vb3Y96KpoaqLYTD1874SjHnD98KticioCxeRfvaCzYeMNqPfkdJqDHtxkc99lEBXbSR7pxDWsjqYigki+j0RrSWitUVFciImRCzkHqvA2LeMP7FckevZw3Lb+6sxfe1BP6WTV7gnqN4JPhLFi3N3RfX8WAZTybagdKD14eLB3G0B1qMLQSw/G0KI5GV1MHUYQDfd467qNkOfy8xTmXkIMw/Jzs6OqKFCiPCMeGWxR1IEo/xv3aFG2/761WbDjxPvwg2mVueXYFdh4HVzklGsOuSq6hx49P+2xuho5tt3vBLfbfSfpjscT/2wHUcjmFsUrHPo/i82RNgiYPOhk/h2g//Xd/hkdcR1CyGalhSLj78GQB8i6gElEBoP4JYQnzsXwDO6pBOjADxifBOFEPEugUbkGCaSIU7lCZYmPJHmH+0qLHenEE8G4Sy07c3pYox7ZwXWH2jIurlkdxHGDekW4Fmx9cfP1ruz9wkhRDQs7ZliZgeAe6EERjsATGfmbUT0FBFdCwBEdC4RHQIwDsC7RLRNfW4JgKehBGRrADylbhNCNDHMQF5R6FkDk0Ek81DqQ1w7J15IJj7rRDPEb+Qriz0CKSCyHkIzr5FI4gghhFGsHuYHZp7FzH2ZuRczT1G3/YOZZ6j31zBzV2ZuzsztmHmA7rkfMHNv9TbNqtcghLDe5V7r2yQ7VwTRlMOVWHNEquudhtRzoLgKT8zYZkhdTYU9iu7evOO+M+SF6/HvzPubGZEJMF40xZ55IeKJ5cGUEEKI8EVyKuhIsJ6pmnpjgr+JH67GhyvyTR3mmEjZ30JhM/rsIM4+ekavUSWEaLokmBJCiAQ06InwFzi+48M1mLHJmKQCelsPl2L3UeOTW9QY1DOVV6T0lEz6Zosh9TUFKQZHU+H2pLLJufxlmJ8QwigSTAkhksZbC3OtbkJMRJPS+f4vNqC02pgempp6J3KPlWPMG8tw49srDKnTTGase+YLM+N4ReA1kuJZTb0Tz8/ZaWkbzIx1isprcdKg74BVthi0oLIQInoSTAkhksYnK/db3YSY6PvY7Kieb1SPzxsL9mDEK0sMqcsXo0fOLcs9bmyFOrt1aecX7y7CkH/+BJeL8cGyfaYd0yx5RZVYsPOYoXWG2ytoZs/UrC1HTKs7Vn7xZvIsDi1EopNgSgghRNge+3YL3lq41/3YjDlDT36/3fA6jXaguAqzthzBX79uWOtsW0EZAODbjYfx1A/x/xq8mTX9q7ou9CDezJ4ps4cQCiGaFqvXmRJCJCGrTlaSLAeATzmTZkZdhxF/nnnbj3o8Nvq9r6h1GFuhSS59cWGjbS/O3QUAeGj6plg3xxBmfY9KqurQJS0zpLLFleYNk5RQSghhJOmZEkIYzqq53U0gloobNq8zbqPf+7EyjCls7y3Jw6/eXRl1PWTSN6kyjAD5gmcXmNIGAFiVV2xa3UKIpkeCKSGE4Ua+as2aT8mWnjqeeQdTRjNqrSJvZqZHt9qSPUX4eV8J/vTlBlzz+tKI6xn9mjnz4OIlg97cbUeDFxJCiBBJMCWEMJyWitoKh05U4b7P11t2/ETABgx08o6lThicKS+aRWMDmWzg4r3bCkLLqOZwNmRfvPK1JVibX2JYG/TaNEsDAHy3scA9byuexEswJYQQRpJgSgiRNIiA3GMV+H5z4mfr8mXkK8b0+BkxZ8rsnimzqv9m/WHD6rrm9dCGIvZ+tCH74s7CctOyCmakxvd/6Q4Tgil9oBqKZEw+kXyvSIjEEt+/vEIIEQYCkJ5it7oZptlzrMKQeow4+TJ7RKXdlnxDNvPVoYtG9NAUltZ4BAa5xyowfe2hqOv942froq7DH6cr8vXR/NEHqqFIwlhKCGExCaaEEEnrb19tliF/PrgMOJk3axiexuyeLysMf2kRAOCNBbn4z9K8qOo6/9n5WLDzGA6frAYArNjbuLcrkkQLs7YURtWuQBxO6yMZVzJGU0n4koRIJBJMCSEMZWVKayLymA80Y1NB0g75i8Z9X2yIunck0ljH5WJMXbI3aLlkC6a8h5d9tS76XqSdheW46LkFeOXHXSiuqGu0f/zUVVEfw0jxMGfK+hYYj0j53TVi2QQhRPgTOeY7AAAgAElEQVQkmBJCGOpnq9MOq2dLzIz0FOUnrrS6PinnSkRq48GTqHWEvoCqL5EGO8WVdXhm1s7g9SfZ/05ztnr2+ETzcbzi5UUedb6+IBc7jjROOBFvc6hu+c/PKFB70gIxMyhIxp6p3UfLw0o7L4QwluW/tER0JRHtIqJcIprkY386Ef1X3f8zEeWo23OIqJqINqq3d2LddiFEYzaL57pop0rMQJoaTJ355I+YtjzfsjYlIzM7jpbtOY6yavNODq0IrO/+zHO4aWl1PY6W1URU1141W+aWww3ZBH/c3jjdd4v0lIjqN9PhEIIpM01dHN3wynjkYuC3H621uhlCNFmWBlNEZAfwFoCrAPQHcDMR9fcqdieAE8zcG8CrAJ7X7dvLzIPV210xabQQIiCz59IEQgT8vE9JOz1r6xEcK69179saYhrrpiLaeCLShV21YZiBAprlPub/GMmMrHLhKiyrwXnPzMeiXcdMO0aq3fLrpY1ovcWxxswY/uJCvDxvtyXHN5s+sBZCxJbVv7RDAeQycx4z1wH4EsBYrzJjAXyk3v8KwBUkK3MKEbesnOtCAF6fvwcAsG7/CY99ZdXmL9Z6tKwGtQ4nDhRXGVqv08Uo0gWGRoh2uFOkw/C0eTOB5s80SzU3I2M8zN3RTJy2JqzyMzYVmNSS2DAj2+aJyjocrwj8/Vi9rwT5Bn8vhRACCDGYIqJmRPQ4Eb2nPu5DRGMMOH4XAAd1jw+p23yWYWYHgFIA7dR9PYhoAxEtJqJLArT/90S0lojWFhUVGdBsIYQ/Vs510feWrD9wMibHzJk0Ez/nFaO0qh7nPTMf7y3Jw6UvLsTCncdworJxUoBIfLH6AM6d8pMhdWmizVIdbtB8vKIWz87a4c7oFqh3KDPN3GCqPsy1ieJFZa0D93+xIeTy4V7WMDpg98WIBaO9TZy2GkP++RPeXLDHbxkrE+PEksvFGPjEXHy30bj11IQQgYV62jMNQC2AC9THhwH805QWhe4IgO7MfBaAhwB8TkQtfRVk5qnMPISZh2RnZ8e0kUIkg2BXffWsHOanP1HbdDA2wRQA/GrqKny55gAA4ESV0gN2x4drcNbT8/DthsN4+oftUdVfakKvWrQ9U+H+mRfuPIZ3l+S5g6hAwVS7FmnRNM2Dr2Ya0TO1MYafL82AyXPDKl9QWoOVe0NPCGN0wO6LGb2CTvWz/OmqA37LJGoAHS4nM8prHFibfyJ4YSGEIUINpnox8wsA6gGAmasQ/kUvXw4D6KZ73FXd5rMMEaUAaAWgmJlrmblYbc86AHsB9DWgTUIInao6B4b8s/FJ1vNzdmL4iwsbbf/1+z/HollxQT/vZ2uBkk3t/WX7PMpMmbWj0bZwmTHPxBntML8A0RQzo6beM1ugdjRt4VaH04XiilqMe2dFo+ebvfByvQHrHV331nIDWqKYs/WIaUkxnpu9w5R6I7X5kPFze7YeVr57LTP9J9yoi4M1rmJBC1YZjK2HSyVduhAxEOr/0HVElAn1/0Mi6gWlpypaawD0IaIeRJQGYDyAGV5lZgCYoN6/EcACZmYiylYTWICIegLoAyD50vQIYTGtB0F/svf2or14e9Fen3MQjDhRNYfxPWb6q+zf+5nLEs3QqaLyWuw+Wo50E+YQmZkiesamApz2+Bwws/tz8/T3Su9cvW6Y39aCMqzxcQXd7DlNjjDHOB46Ye5cm7s+XY8NJvV0xdH0MADAI99sMW04YaCPdDjDIxOZ/nu9s7DcwpYI0XSEGkxNBjAHQDci+gzAfAB/jfbg6hyoewHMBbADwHRm3kZETxHRtWqx9wG0I6JcKMP5tPTplwLYTEQboSSmuIuZS6JtkxDCE6vnnUfLat1rE8VyCF04Yn3eaHZWuHs+W49Rry5Bignp5odOmR9Vb0idw39AUnBSSfk9YdoaXPP6Mtzz2XqUq3NWtEDJ4WTU1vte68rIQM9XTScqQx82WVZTj4ufb9wDa/SfpKYu8Lpfby3MjajeeEzXFO0aZ/7sK640re5E4e6ZYmuWABCiKQopmGLmeQBuADARwBcAhjDzIiMawMyzmLkvM/di5inqtn8w8wz1fg0zj2Pm3sw8lJnz1O1fM/MANS362cz8vRHtEUJ40q7in//sfDyrLrYab4uBavYHyNZl9MT3nEkzMXdbYfCCUahRTwzbNTduDpFepL2I1XXOgFe9tfW9lucex/YjZZi55Yh735g3lgFQPle1fgIys88Br359achltaDRpQucmdnwHh9/PVMOpwvMjBfn7oqo3s2HSrH7aHz1UGjD8ozmcLI7m2dTpXW6Msz/HgkhFAHPiIjobO0G4FQoSR8KAHRXtwkhkpy+9+XQiSrUOVwxy5RnKBNOLB7+3+aQy26NYh0Ys86J6iKclO9vmNzafGVwgDbHK1DvjdPF7h6oZXuOI2fSTPdwuoUmrr0ULi2Y0gd+ZgTRWrCUM2kmcibNxPQ1B7H1cCl6Pzob7y2NbgT7u3G2UO1dn67zOVcO8D9cNlSHT1i7KHAgsegk1OZCMpuTOVEI0Viwy8svq7e3APwMYCqA99T7b5nbNCFEPNAHUz/tOIYb31mBAyXKSa/dhOFnZpm/8xienRX9ZHyH04VPVuYDCC8YmfRN6IEXABRX1LrTOZs1XMffMLtg/E05uvGdlSitqsecrUqwEajn60RVPf705UYADYv03v7BagDAdxvNX0sp1In5WhBVWFaDZXuUduYdrzStXZq/fr3Z3Yv3jNojHKniSvNTnofL11w5ALgvyrlNvlKgN6Xhbg0XOjx7Tw+WVKGyiaSHFyLWAgZTzHwZM18GpUfqbDW9+DkAzkLjrHtCiCTk9Doh1mfjambyekBG2xJh75B+ftCqvBI8/t22sOvYergMGw6c8BguFsgv3lyGvCLlpN2sqVn+htkFEygT4KRvNmNZ7vGgdeiz4XXMSo+oHdFyuhjfbTwcMPW/lpXwudk73JkqzTop/Wb9IVPqDSWhx7r9sZ9y/MqPkQ1dDKSi1tEoeDJ7bmM8cQ/zY8+5h5e8sBCTvtliUauESG6hTnzox8zubyEzbwVwujlNEkLEk0CZz8prHCEHB/EgKyMFDqcLLhdj2vJ92FkYfO6Gw+lC38dmo7rOiROVdVGlfr/+3yuwKq9h3Z/DJ6txx7TVWLpHWUz8eEUtTn98DgCgtKohSYJZ2e0iDqZc7DcpxuytoQ2B0z9b68GK9Wep199n4U9fbsQfP13vt4z2HlUFSRBhhIembzKlXgqShaKy1oFfvr0ysrojepbi9QW5mLP1SPCCYViVV4L/rjnosc0RJxlGY9EKj2F+Xgc8bHJWSiGaqlCDqc1E9B8iGq7e3gMQ3pgVIURCCnZVt+ffZ8WoJdFbuLMI5075CY9+uxVPfr8dU5fk4Vh5TaM5OqXV9XCoQ/iOlCqZ6W54ezn2FUc/vEvfq7NybzEW7irCbe+vxuvz92BXYTmq1Z4Q/QmwWWnMj5RGNr/ExYwUe3RDPPWvSFuU2Feq/Vgoq/Gf3U8bCqlP551oo8YCjcZdt/9E2IsBG+kuXSD7wJfGpC+f9M0WLNh5FDuOlMHl4ojnBiYi70QpehU1MsxPCDOEGkzdAWAbgD+pt+3qNiFEEnO5GKNeXRJy+Xifm1DndOFEVb37anh6ig3frD+MO6at8Sh35pM/4rnZyjwVbQ7GjiPluOHfvifNh+ODZft8rlv0yrzdOKnrjdKf/3ovgGuUW977OaLeIKeLQQZOp39Tl/Z7e4E5md4CKav2H0xpFxP086Ti+1Pe2KJdRVjuZ+jlsTLlYoGVGTqv/7cy5FOf9TFav/lwLa7611JMnrENMzYaMyshEWaIaoluGI0zTpZJMCWEKUJNjV7DzK8y8/Xq7VVmrjG7cUKI2Kmpd+LODxuCCmbG/J2hZVWbvuYgjpXV4JNV+81qnqFs6qX6VLvNPR/Ke92kPccqAAAbDV5Ta+GuIszeUohtBaX4y/88h3VpQyqZ2ePMzcwhZuURnGA5XWza+kXhpC03SkFpDQpLG3ooT1TWuXur6p2+Px+J5oNl+3xu13pKm6WlRFSvEYHlhgMnUe90mZLQ5pNV+yOa4+hLIgTRd3+m9PT5WmeqPEAPrBAiciEFU0S0j4jyvG9mN04IETvHK2o9gqeVecX43cdrQ3ruX7/ejKHPzMdaPxm64o0236feye6Ype9jsz3KVNc7wcx4xIRJ21Nm7cA9nzWep6PNHXK42OMquJnB1D9nbg/7OU6v9iWDNfkluGPaGpTX1OPi5xdg0BM/oqbe2Sgj4eTvtuLtRXstamXk/M2b0ubjZaRYu3Zcn0dno6Y+sQPWeKAtSzBvx1GUVNZ57KuMwbw/IZqiUC9FDdHdzwAwDkBb45sjhLBKik35T7jO4UJaii2iSdszolwjJlaOlinzX3wNn7v0hYUAgNX7SjDilcUe+9q3SA+Y+S0YGzVk5vM1P0ibL7W9oMzj5NfMlMb/W3cIlXUOvDxuMDJDzM4YKJtfotJSco98ZYn7pLNMN3dO89HKxOh99aaPpZgZu49WoF+nLPd8vFSLgylhDC1hysmqenysGylgt5FpiWyEaOpCHeZXrLsdZubXAFxjctuEEDGknSA/P2cnNh08acrCpPHG6WK8PG+3xzZtDS0A2FvkmXBCC6QiHY6kncu0bZ7mc//j324FAIx9a7lH0gmzM8nN2lIYVjIKl4sTYwJJBArLGkawj3ptSUzWlIoF/Z9rTf4JjH5NmQupxYqyBlHyaZWZ6r6v9cavyY99Cnwhkl1IPVNEdLbuoQ1KT1VkA6yFEHFJuwL//rJ9eN/P/Ipk493DEuqV22hTeJcGSHig0QdQsw1OH+0LA7j703Xo2iYTj17TP2BZJxubgCJenayqx4tzG9ZCyki1JfxQtJNVdbjpXSUNelF5rfuzfLyiLtDTRAKqrFV+Q1blFSPFTqh1ALuPluPcHBlYJISRQu3Xf1l3exbA2QBuMqtRQojYa0oLW2q8g6I/hZiaOdp3KljQdk731h5ltGGJZvp+UwFmby3E9LXBF45tasOFtEx3iZ6EAvDseT13yk+oD7COnEgcdh9z4rSe9PFTV7n3V6kBlsvF7sx/QojohBpM3cnMl6m3kcz8ewByGSsO9P/HHHyaIBnURHzzNUcqNcq1hOJdsdcE7R82m98DFIpgi6ya4bWf9gBQes20dNm1DicOljSe25WMCSgC0WLHRI4hq+ucuOHfy/HuYs/cUfVJECAKBM2uqX12taQUOwrLMOaNZaiqk+GdQkQr1KF6X0HpjfLedk60DSCiKwH8C4AdwH+Y+Tmv/ekAPlaPVQzgV8ycr+57BMCdAJwA7mdm61YetEhVnRMFJyNbeFMIvXofC1t6ZzJLNuv3x2f2wZMhDAM009Bn5uOOi3IwbXm+e1uqnfDo1adj4kU9lF7MJhRNRTusMx4sda8z5Znqf96Oo7FvjIg5bb28txfvxSV922Odmnm1tLo+aFr8xbuLcEHPdkiTJCVC+BTwG0REpwEYAKAVEd2g29USSla/qBCRHcBbAEYCOARgDRHNYGZ9rt47AZxg5t5ENB7A8wB+RUT9AYxX29cZwE9E1JeZm0zuz0XqmijN02X6moheUxzmF6+vOZxkEGbRB1KAElg/8f12zNhUgPUHTiIro+n87sTr58QIy3OLrW6CMIDLR4ZNgu8hybe897P7/gXPLsD2p0a7A6qqOgeOl9ehe7tmYGZsOlSKCR+sBgBM/8MFGNoj/PlWR9We7o4tfZ82OpwuVNY60apZqs/9QsS7YP8b9gMwBkBrAL/QbS8H8DsDjj8UQC4z5wEAEX0JYCwAfTA1FsAT6v2vALxJyhiYsQC+ZOZaAPuIKFetb6UB7Yp7ucfKMXGassBqtawdIQzgcLqQZrehzkcPlYitylqnRxr1eLL+gNKzUSvDw4SIG75WKwj15+Oq15bihrO7YO3+E1i6R+nBfPHGQdh3vBL/1q2pdtO7K3H1wE545KrTsXZ/CarqnLj2zM7YePAkCk5WY0DnVnhvaR4KTlZjSE5bdG2TiapaJ6bM2gEAeGncmTitUxZmbjmCWVuO4MlrB6CsxoFHvt6MyjonJl6Yg6o6B26/IAdj3liGHu2bIyPFhml3DMWa/BJU1DqQarfh4t7t0amVZ2C2q7AcdhuhV3ZzEBGKK2qxtaAMw/pmR/BesiVDrUXiIu8Vsn0WIrqAmQ0PUojoRgBXMvNv1ce3ATiPme/VldmqljmkPt4L4DwoAdYqZv5U3f4+gNnM/FWgY7bvcTqPfeJjFFfUwcWMjFQ7auud6NQqAx2zMnCsvBYr9h7HOae2QWWtE/tLKlFSWYeLe7fHjiPlOFFVh8w0O845tQ36n9ISOwvLcaCkCqd1ykLuMWXdjmapdlTUOtClTSaYgRS7DU51km+KzQani5FiJxAIrP7cOZwMu41gI4KTGXZS9jErY6Gr651wuRh1DhfqnIwvVh9wv6bmaXYM7t4a/Tq2RFWdAwdKqjCgc0vYbTak2Ag2G8FGcNcFNJyk6SetMhoydLmYwcyw22wgUlZOr65zIjvL8weMyPePuDet7mDlSddOrZz3faBxHb6epy/vboeP5/naHqx9+vfKXbfuNfqrM5T3S183g+FSV7K3EYGh/M2cLhdIfXysrAYZqXZ3uu46hws2Alo1U9Jv20gZwkcg9+fOyQwwK581mw0EYMXe49h0sFSCqTigpTFO5h4RIYSIVpfWGTh8ssZjW6ALUc3S7Kiqc2JY32zYbMp6gpW1zkYXElNsBIeLMahrK9hthBQbKed4HbNwarvmKKuph9PFyMpIwY4j5ejdsQXaZKahqKIGVXVOdG2TiQ0HTqKy1oG+HbOQX1yJS/pko97hQouMFBSV17rbk5ZiQ2l1PdJT7GiWbgeBcFT9f71Ns1QwlPOGY2U1aJGRgnono0NWOspq6mEjgosZlbVOZKTa0LpZGnYUlKFnh+aorHGgxuGC08Xo1rYZHE6XO4Ntmt0Gh4uRalPOI+qdDBsBNiLUOpzITEsBQXnscLlgtxEqax3uHkwigKAcW7sPNJy/aP86WalXvw2Ae7tNPWHyPt8L9dzS5T438p9h1tc5Wajnfg9ePXC7q65mQLB2BAymiOivzPwCEb0BHxc5mPn+YAcIePAYBVNE9HsAvwcAe8vsc7rePS2aZgshhBBCCAP4G44ohNUOvf2bo47So52ClQs2zG+H+u/a6Jvk02EA3XSPu6rbfJU5REQpAFpBSUQRynMBAMw8FcBUABg0+GyePelylFTUobymHi0zU9EqMxXMQOfWGSiurEP+8UpkZ6WjtFqJ+veXVGFw19YorqzFgZIqtGmWhl4dWqBTywycqKoDM9A83Y6TVfVonpaC5ul2HK+oa9QNbQQti9Yt/1mFVXnK4nuX9cvGpKtOR79OWahzuFBUUYsurTMNP7bD6UKKXSagxiMjhiWs3leCOz9ag/Iaye4UD+xqL7UQQsSTtBSbe5mA7m2budPtp6fYIhr+G+xXrkvrTBzWJdrKadcMEy7MgYuBntnNsXT3cXywXFkb8Z7LeqFTywx8smo/dh+twHu3D8HWw6U4+9Q22Hq4FF1aZ6K63omR/TviZFU9jlfU4kBxFZyspIrv06EF2jRPQ8eWGaipd+LcnLY4UlqN9BQ7Uu022GxA++bpqK53ItWujNxxuhhl1fVo3SwNqXZCndOF9BQ7ymrqkWa3obiyDql2QnaLdDhd7B5FwgzY3PeV/8O9/230Xnltd7kYNhuhRm2P3UaoqlN6kBxOpUdJhixGjp4/FnytEIQ4zM8sanC0G8AVUAKhNQBuYeZtujL3ABjIzHepCShuYOabiGgAgM+hzJPqDGA+gD7BElAMGTKE1641KzaMrZxJMwEAfx7ZF/dd0cfi1ohEt/7ACdzw7xVWNyOuxfIKqjYcJV5lpaegvLZpBd7a0B8h4k00cyx/fPBSdGvTDAzGsj3HMXtrIZ7/5SCUVNbhT//dgJ/VC7e/Pr877r+8DzqoiSQ8AwPlJL+8ph5F5bXomd3CXf/L6sLXD43qCyJCvdOFPUcr0L9zSwDAitzjWJVXjD9e1hvpKTYQEXYVlsNGQJvmaWjfIh0uF6Pe5UKqzeYOQIKRuU8iWkS0jpmHBC0XZJjf9whw7sDM10bWPI9jXA3gNSip0T9g5ilE9BSAtcw8g4gyAHwC4CwAJQDG6xJWPArgNwAcAB5g5tnBjpdMwRSgBFQPjeyL+yWYElHafOgkrn1zudXNEAA6tcxAYVlN8IIWWD7pcry9KBffbSxoMr2Y8ZoMRAiN3UYRLab9jzH98ZuLewQskzNpJp7/5UBcNfAUtMyQjHui6Qg1mAo2zO8lg9rjFzPPAjDLa9s/dPdrAIzz89wpAKaY2sAEUFIp6yeL6KXYmt4QzlNaZeBIafwFLdlZ6ZYGU38Z1Rfjh3bHFz8fwMwtR/DnUf2Qaidc0icbdhth3Dnd8N3GAsvaF2t2G8GVpGuuPT6mP57+YXvwgiKuhdr/MnZwZ7z2q8FYf+Akfvn2Clx3Vpegz8l/7proGidEkgsYTDHzYu0+EaUBOA1KT9UuZpYz+Djw4R3nok/HLKubIZJAqr3xf8fJfkV+UNdWcRlMtcpMRaeW6Sgsq43536B5uh33Xq70dN93RR+fQ4jtNgo5A2YyUDJOcUJPlB/VvyOeuHYADpRUYfzUVe7taT6+9yL5ZGWkoLxGySxHROjWNhODu7VGq0zpaRIiWiFdiiaiawDsBfA6gDcB5BLRVWY2TIRmeL8OpiSbEE2Pr+QiyRxIAXCP99f8764LLGqJp7X7S1BYpqTOjdXf4If7LgYAZKUHP7myNbF5CNo8qZREDjwI6Nw6E+1bpLs33XZ+d6RKUiFThTi9J2rB5vJpFz+ap9kBAB2yMvDtPRc1+g0UQoQv1F/RlwFcxszDmXkYgMsAvGpes4QQsaatbTSwSyuLWxI73kHBuTltQ3xedMfNSA3801tT70Jmqt39ePy53QKUNkaL9BT8+OClIQWUTekE7KLe7dxzURL5dWst79m+OUb17wgAePq6gSFP5heRsfKCVM/s5gCUYXraWpet1fUHhRDGCTWYKmfmXN3jPADlJrRHCGER7ar742P6I/+5a/D5b8+zuEXms9sIowd0DPt5kZ4faaetWem+R1g/MEIZUjfi9I5IS2n4eW4Zg6E4KXZC345Z6Na2WdCydhvcC44ns+/vvRjjz+3uflxTn7gLWms9EzYb4ZkbBuLUdsrfWVu4vUf75lY1TZikUpdtU+u5GtY326rmCJG0Qg2m1hLRLCKaSEQTAHwPYA0R3UBEN5jYPiFEjGgnW0N7KL0z8ZyWO1raGnDpKTac0dmzJ07rmUlLseH//nihxz5tiFQk84X0822KKnxPOe2kphx+85azPLbre6nMsObREejaJngQpbHbbIk7eciPx645HQDw5LUNi913bp3hEdQCQKKOcNT3kLRvkY7FD18GoKG3zeFM3EBR+KafAqD1rrZpLj1TQhgt1GAqA8BRAMMADAdQBCATwC8AjDGlZUKImPKeDzKoa3jD/W4a0hV3XJRjYIvM41Qzs+lPlJ8eq5xEa0P9hpzaBmd1b+PxvOMVtREfUx973Dy0m/vkXS9DDZrS7Dbol61olmZeMLX44eHIzkoPXlDHTpRssZR7zZsJF+bgoZF9Mf7cbmjXIr1RYpYlD1+GG84OngEt/vj+i2nD/GoiWGzVSC+NO9PS4yebced0xZhBnd2PXew7yZAQInrBUqMDAJj5DrMbIoSwVoesDKx+9IqGxy0zsPufV6HvY0GXb8PmJ0ahZUYqDhRXYdryfBNbaQynj66l2y7I8Xis9Qb9cN/FGPPGMkOPf1Hv9hhxekfM33EMK/OK3du1XgKbjTx6Epr5GRZohI5qb1g4bLbIeudCcV6Ptvh5X4k5lQdwbk5bdwpo/bp93ksGdGvbzN2DmEg6+0lUpA3zq6m3tif6xnO64tH/24Jai4O6RJfTrhnyi6sANJ7b2cLE3xEhmrJQs/n1IKJXiOgbIpqh3cxunBAitjpkeZ4kptoJt57X3U/pBtpCjt3bhT5UzErpao9UncOFPh2z0LqZ55ykB0b0wd3DewHw7L0aM+iUqI899bZzcM3AU5CRascvz+nqsS/Dz3C+ZiYN88vOSvd7zECMTsRwdvfW7vv//UPsMyr265jlN6ud1mOrz4KXaE4/pSUmXXWaz33ay66OcFivEZ+E7+9VMkm6DIzQU2yEVDthxaTLseHxkYbVG+8+/o0y15UIjZKLZMmCu0KYItTLFN8CeB/KXCm5bCREE0FEuOOiHvjs5wN+y0y34OQ3UlcO6ITrz+6CLq0zMeaNZejSuhmuPKMTrjyjk0e5B0b0dd/vqAaYcx+4FG2apeKHzUeiakNGqh2k9gbo13hZ99gIHDxR7X6sT/CQmmJO+uovfhdZkhFlmF90J76nn5KFHUeUPEaXn9YB6w+cjKq+aARKeZ6mRhs92zePapinlTpkpaNZmu//7s/v2Q4TL8zBhyvyY9soVVqKDQPVIcUz778Eo15dEnWdmal2rH70CnfwUKFLxJDstI5UAjUKdFtmSs+UEGYI9ZtVw8yvm9oSIURcSgnQC5GRanMnrEgEDhdj9AAlcNr25OiQemVaNUvFPZf1Qu8OLeBwuZCeYotqKJI+a9qI0ztg5SOX45RWyhCsts3T8I2a9KKmruEYZmWvTk+JrMfLZqOoM9tpgRTQEFReN7izv+KmmHTVaXhu9k5cN9j/HCjtM9Iio+G/y0RLQhEo7G3dLA1PXDsAa/JLsK2gzNC6Q7HtydHu+30NWoB+zgOXePTCxMtcoVgs+qz1GhPBfdFGI8P8hDBHqJc7/0VEk4noAiI6W7uZ2jIhRFxI5LV1vBXpehaap6eE/NoeHn0a7DZCeoody/52ecTHz3/uGtQtwLgAACAASURBVI/U40TkDqS0x2erSS8eHt3Pvd1u0tl7eoQ9XoEC7GkTzw2pjokX5rjvn6yqBwAs31vsp7Q57hrWC/nPXYPfXdrTbxntPTq/Z1t3UGu3mdNTuO/Zq02pl0MYPjfz/ktMOXYg254cbfiiwVec1gGntvNM855q0t8rHmm/FUSe6+hdM/AU3HLeqVY1S4ikFuovzEAAvwPwHJQFfF8G8JJZjRJCxA/9ECi7jfDubee4HyfSujvtmqfh1ZuizxiWnZXuPukNJ8YJZe6Z3l3De7kzKnpfYTZKND1TvvTKbo7LTuuAZ28YCACN0orr3XbBqZhwgXJyp62Bc9OQrn7LG+1f4weHVE7rmbp5aHfkPaskqGhnUnpp77+zlsXx/J7R9f7Ga49Ecx/t6tbGd6KMUPn6zDWlhYkbXit5/D69devZuPbM2Pb8CtFUhBpMjQPQk5mHMfNl6i3yy7NCiIShz2Y28vSOGD2gE248J3YnvUY5q3tr9MxuYUhd2kmv9xpVgTw19oyIj2fWuWCgYCcQf82Z/+fhAJTEHkDgHpE0uw1D1DT0fxjWE49dczr+MkrpjXvFgKA3mLEBhvbpaT1T+iGhl5/WwZQ2AcDbt56N128+C9ueHI3tT12JZ28YiCnXD4yqzoFhLnMQC4sfHu5z+7yHhkVVb8smnmRB34vdhGJIISwV6v+kWwG0DloqDETUlojmEdEe9d82fspNUMvsURcM1rYvIqJdRLRRvZn3v5sQTZg2pOvmod3w6/OVngSr0yj7E/gKvLFnFh/ecS4+/W3oCRyiGS5p1gLKkQZT/pIZaGodSntdPmKpR69W1tey28j92WqWloLfXtLTHaSaPbRUP8QwmBR1GJp+aGO3ts0MH3r5yZ1DAQBXDTwF157Z2d1rc/PQ7ugVxUWAnHbNcNelvQxpo1GW/vWyRkPxNJFkl9QbG+N5d+GIxdpsNv2cKYN/84QQvoXa998awE4iWgNAm3TAzDw2imNPAjCfmZ8joknq47/pCxBRWwCTAQyB8ju0johmMPMJtcitzLw2ijYIIYLQ/nP+53UD3Se58Tq8r12LtJhl7hrer4O7B8YsV51xClqkp6DahOD1X+MHRxy02G2EQV1bYfOhUp/7tffli9+dD6eL0atDcwydMh8AcGHvdgCU4aPpqb6DObOGNWoCzZHy1iI9Bb07tGjUJl9rlUUjLcjcoa1PjsYZk+eGXW9WRmrcDXMzK1ju06EFLuzd3pS6E4U7AQUSL1GKEIkq1MuSkwFcD+AZAK8AWAOgd5THHgvgI/X+RwCu81FmNIB5zFyiBlDzAFwZ5XGFEGFomHTf8D/zE9f2t6g1gQU+dzD+unCgRAxGuHt4L3z+u/NRa0IwdWEv8046rz+7Kx4e3Q9De7TFBb3aoUNWBh4aqaSb14aNpthsaN3M99wjI99WX1WlhnGAtBQbfopy6Fko/PXUaCKf9xSL/pDwtDVtzpn/fZf1yzblmPFGn4DC6OQeQgjfQvqmMfNiAGUAxgD4EMDlAN6J8tgdmVlbsKUQQEcfZboAOKh7fEjdppmmDvF7nMy+lClEE5WZam+U/rxrm2ZY9Jfh+NzHOkXPRDm/I5Hor/jfc5kylCrDq7flnFN9jmAOSzSp2P2JtncgUMdMl9aZuOcyz+ttnVop63VpCU3sNiVzoa+5M2ZlL9SkGHCSeaaB85Dyn7vG/f4YrXcHY9KNG+WH+y6OeiiftwGdWwIAXAG+Jjee083QY8Yr/TpTVw88BZ+FMRRZCBGZgP+jEFFfNSX6TgBvADgAgNQEFG8Eq5yIfiKirT5uHsMDWZmlHO7ls1uZeSCAS9TbbQHa8XsiWktEa4uKisI8jBBNW4rd5nNh3pz2zX32bvTMDnyF3VzWXVO5SB1eNEE3H+cfY/rj498Mxc9/vyKqus0IpqLt/XGFOcytY0s1mFIPrK3946tH5nhlXXSNC8KIYWbf3XuxAS0Jz5+u6BNWeRsBL9w4KOTyd1yUE2aLwmczIVDW5hQGGnoZL2tNmU3fM5WWYnP/LgkhzBNs3MBOAEsBjGHmXAAgogdDrZyZR/jbR0RHiegUZj5CRKcAOOaj2GEAw3WPuwJYpNZ9WP23nIg+BzAUwMd+2jEVwFQAGDJkSPyNeRAiibh8ZR2ImYZjT7wwBx+uyDf9iC/eOAg3nN0VLmac2bUVLu/XAbsKy/HhHUPdZXylgA7H6AGdcLCkCv9bdyja5rpF25kf7pShYX2zseWJUSirUea0BQpoKg2c9+armWYPzzTLgyP74l/z94RcvmPLjLCGek3+xQBMW54fQctCZ8Z8qdsvOBXbC8rwF93abN5SI0y2kmjsNsLnvzsP/U9paXVThGgygv263ADgCICFRPQeEV0B4y79zgCgZeebAOA7H2XmAhhFRG3UbH+jAMwlohQiag8ARJQKZfjhVoPaJYSIgtET88OhP7L3SZtZ8wfGDekGu42Qarfhu3svxnk923kEUkbo1ykLL44zNl14tCe14fZMAUoyBHfPVICFVKtMTiKSEke9FD3ah9eTu/cZcxb2jRWnCRdb7rioB14cd6a799OX0zrF13BHsxARLuzV3u98RCGE8QKeXTDzt8w8HsBpABYCeABAByJ6m4hGRXns5wCMJKI9AEaoj0FEQ4joP+rxSwA8DSXhxRoAT6nb0qEEVZsBbITSg/VelO0RQhjAjJOlkDHw6Z3KHIH7Lvecs9OuhZxc6EUbTkT6V9Y6xAJmmDN7zlSAQC6W/nZlP8x78NKwnhNOEByPwzBqHNYsq3BKq0zMfSC891oIIUIRagKKSmb+nJl/AWWo3QZ4pTEPFzMXM/MVzNyHmUeoQRKYeS0z/1ZX7gNm7q3epunacw4zD2LmAcz8J2aOz4VvhGhiIumxMAw1zAVqlZmKdmrWsLuH98KEC3Ksa1ccijZeMXM4593DzF0XKR5G+fXrmIW7h/c2JBmGP9UmrU8WDSuHAffrlIVNk6O9Dhyfvr678bxWIURshP0rzswnmHkqM0c3o1oIkZTat0i37uAMd5cLEaHOqSRu+NuVp6FPx6YxzCdU0SYCiDRmzgwhk1tmmh0tM6KbZxaIFclfvYfnRdOE79XkFw+MaEhI4Wsh4vKa+sgPYoI/j+wbUnbLqbedY1obQvn8JZrTOmWha5tmVjdDiCYrPsY6CCGSxqCurS07tvf5vbXJMOKXEempXREOIsvKSA1p3o+Vc+/M4D08LzMt8vd/oJqWvW3zNAzq2gqbJo/CKT5Sqw/uFn1afiMNyWkbUiA7akAn09oQD72SZuiQlY7/3D7E6mYI0SSZd+lPCCFizMUM0s0GmnHfxRJQ+dC6WWrUdUQT64Qy7yfQmkGJ6sJe7bBibzGuHtgJT157RlR1jezfESP7d8Tt6vBVX+tUfXVXfA39iofEH8m6JCURYUR/X8t1CiHMJj1TQoikoj9X6pXdQob3+WDECSWb3HNk6dw7k3z+u/MBKAvpZmdFNxz2vduH4JRWme7HYwZ1di9eqwmY5MOP1VGuiRaIGWnRn74uvKA0GXumku+bIkRikWBKCJFU6p1J2KWh+umhYYbUY8T5pNkdfokQTA3uFtqQVu/Mki3SjZ+3Y7cRTjdgbaEOAdKLR8uM9b1uO//UsMonY89U8r0iIRKLBFNCiKTBDFzUqz1WTLrc6qaYoneHFobUY8T5pHcKfKNPlM0K1v41frBhdX17z0UhlfvzqIbFZGfefzEm+EgWYYTSaiXhhJnJO6JhRs+UEEJYTYIpIYThpt1xrmXHttkInVtnBi/YhJEB17K9h/llGXwCb9Z6ZWMHdzGl3lAN6NwK6SnmZJSrqVdSoX9y53nu9dYi8fTYAUY1yUO8rO8lhBBGkl82IYThhvfNtuS4Zs/jEQ28Yx2j3/kp10eXoKEpemncmZh1/yU4s1trXNynfcT1DO3RzsBWNQgnAcW5OeZlIvzHmP6m1S2EaHokmBJCGM6qeQlNIZR6L07SH5s9p+nW88KbC2OVfnGU4KRjywz07xz9vCk26ZvUpllayGU//W3kPWvBJNu0qabwuydEPJNgSgiRNJpCx9RIA9IfG3Ey+eXvz/foPTDjvf/DsJ7GV2qwuQ9eis1PjPLYps3L2vrkaCuaFDWzvketMkNPyR/totKBJFkslXSvR4hEI8GUECJpNDchS1o8+uPwXlY3AT2zW+C+y/vgrO5KRjszhlh2MjizXDgn8+FomZHqkYxiaI+2+MWZndEiPQX7ng2+QHG8aZFufAKL68/qElYCiv9n783jJKuru//Pqarel+llevZ9ZZiRdRgI+y6IgkajuEKCQaOIa1RcHpcH/aF5fomJ5vcYogSMGncDIRhFIsYNBBWQYZthGGbfp2fpvarO749zzu2q27V3VVdX93m/Xv3qrlu37v3epW6f8z3nfE4lHYT5nc0V3LrjONMNd6Ycx5ky/NuNZ1V7CBPCB684oeTP1sci6G4pPN0qF+ev6sEP33EOzl7ejYtOmFWWbaZSbv/spAUzyrvBLMyd0YQvvv5UALUpxb2wqxl3F6hUWChnLu0qav1KRqYuO3E26iZBA+HxsPW2q6o9BMdxFHemHMeZMsxqq1yPnMlGKRLfV588D7/60MWIRcv76P/mX56Fv7/21LJuEyhOsKAQ/vS06ir51RL1sfLeI8X6RpX2QSsRfasW0yG92XEmM+5MOY7j1CAXlxAJ+tPT5qOnraECo6kMjXXlSdt850WSFvmqUxeUZXuZmGpKkuWWpi9Wjr/SEb2oy7Q7jlMmqvY0IaIuIrqfiDbp74w6qET0X0TUS0T3hpYvJaKHiWgzEX2biMqTt+I4Tk1y7orSpaBrkVKMzboyR6QqTbmcqQ9cvhp/+PhlZdnWdKHsao0l+EY3XbSivGNIodxNph3Hmb5U8z/rhwE8wMwrATygrzPxNwDenGH55wD8HTOvAHAYwA0VGaXjOJMeospKKU9GSjEFa82AbCqTM0VE6CxTndh0IT6OyNRdf7FhzLJS7rzZ7ZWLohYjhjHZqcGyPMeZUlTTmboGwF36910AXplpJWZ+AMCx1GUkU7IXA/hevs87juNMRUop0C93rVSlOWtZcaIF1aS9QkqB1WI8aX4XrOrBt248C3f++RnBsu7W4p3ZSiZOVrIpsOM404tq/medzcy79e89AIppntINoJeZ4/p6B4CslcVEdCMRPUpEj+7fv7+00TqOUxSXl6EfUqEsm9kyYfuaLJQyG72ip7X8A6kgbY2146As72nF//fG06o9jLIxXuXDs5Z148LVUtf3rotX4KLVxdf4VbIM7W9fewr++/0XVG4HE8gUK9dznJqjos4UEf2UiJ7M8HNN6noslbsVexww8+3MvJ6Z1/f09FRqN47jpHD7W9bjU1evLft233vpqrTXl66ZjbtvOrfs+5lqXH3yPMxorh3nxKgfZzRtIlMb2xqnjkJcQyyKV5w8ryzb6myuL6nGL5+ox7O3XlHqkBCJUM5Uv/kdTSVv23Gc6UVFnSlmvpSZ12X4uRvAXiKaCwD6e18Rmz4IoIOI7D/XAgA7yzt6x3HGy3VnLyn7Nq86aU5oH4unlMxxoUyXOonf3HLxuD5fbonvXCzraUVz/dRpHF12EYoyU6xCYJiZrQ1lbwztOM70o5ppfvcAuE7/vg7A3YV+UCNZPwPwmlI+7zhO7dLRnF57MV6DqlbJddznrRyrbFir9fadzeMTjmiYQGdqfkcTnvp06dGSyUayTPLopTr+l6zJnSo83gmFloYYHvrIJRnfK9SRnMj7y3GcyUk1nwK3AbiMiDYBuFRfg4jWE9FXbCUi+gWA7wK4hIh2ENFL9a0PAXgfEW2G1FB9dUJH7zhOQZwwp63gdU8uoU6DK1qmPnkpxjlqb4zh4y8/sXKDqSDjNZgnMjI11bjlyjVl2c68ElPmFnY144NXrM743r3vOrfsUv9XvWQuAOBLbyi8AfVQPFnWMZTCdH0GOs5koWr/ZZj5IDNfwswrNR3wkC5/lJnfmrLeeczcw8xNzLyAmX+sy7cw8wZmXsHMf8bMQ9U6FsdxsjOcKMzYeO+lqwqqfZrkmUcTRq4alPA5Wr+kC92ttdOsN5XxNm99T6jGzimcRd3NGaOcmVg5S8RNPvuql6Qtf/rTV+Cla+dk+si4mFEB9cT3XS73ykWrZxX8nPnoy8rjcDqOU7v4lJ3jOBUlnijMKnn3pSvTXv/9tadkXfeH7zh7XGOaCpiL8eU3nYatt12FN5y5KHgvPFNdoxl+ZeH1GxblX8nJykevyu8sPPqxS/Gjd5+H5269Mu0+BICmcdaQZYtsV6JmcH5HE646aS4a66IFR3v+8vxlRe2jmEh9mFzPRMdxqoc7U47jVJThEtNgzlrWnXE5g3Hqok785paL8YHLV+G0RdOzX4wZk5efKLP+NpN+/qqeMbPqH6vRFD+n+pwwpx0vmS/pt1s++7KM68xsbUAsGqlISuXFJ8zGzAw9qsYbsUzl9x+/DJs/cyUa66L4xzechmiE8PKT5uHiE4qXc8/Hf73n/Jzvr5qdvX3BGUtqp++a40wn3JlyHKeifPX69UWtb8p8WWWL1VGYO6MJN128Ei3TUMkPEGPyDWcuCpyqC1f3YM3cdnztLzakOVNnLOnE0mnYh8spH1+5bj3uu/k8RDJ8J7tbxicQUgiZUu7KKajS1VI/pqH1x19+Iu64/owsnxCKlY63VMhcrJnbXtQ2HcepPtPTCnEcZ8JYO28GOprr0Ns/UtD6v7nlYtRFI+gbiudfeZqTWp/y0rVzgtqUyS5p7dQWs9sbMVslxE9e2IHHt/cG7/37O8+p+P4z3c2RSdAb4JWnFOZM/dnpC7BkZkvG5uKrZ7dh77HBgp+PmfCvu+NUF49MOY5TcRJZ6qaW97Tgk684EY//r8uDZW2NdWismzq9eqpB6tmertLxTmW4O8V5umLtHMydUZ0+TZPAlypYBKOlIYZ3XrQCV6paYCp/srwbq2aXXkflOE71cWfKcZyKc/6qnjHL5rQ34oH3X4jrz1mKGc1jjZJw2o2RaV0nnbCi2nTlrecurfYQpjTvuWxl1u9pOfmnN58+Ztl4+4+Nl9997FKsD9UwvfuSlRnXLcbxy9WA3CZJbrpoReEbdByn4rgz5ThOxfnHN542Zlm+WqoZTXV4+COX4OaL0w2HhphHrfKxYlYretpqUwrdqR0mKup5xpIuPJ8ifnHPTeeUvcdUNr7/V5mVQ1NbDfzrDRsAAO+9LLMMf96UxJRQciHRrg+8NHPvLcdxqoM7U47jVIVFXc1515nd3ohrXdq6JH794YsBAA110/cxPxlSwaYycyYwxc8Eaf78nCU4aUHHhO23EBLJ3EVLhcqh33LlCXhZhlRAQJQUM93Os9sb8Kmr1xa0fcdxKoMLUDiOM6mpVk1GrVMXjeDH7zkf3RlkpWuN1bPb8OzeY0V/rpzy2U463/+rsyvSODcX9918HhZ355+EqTQnLZiR9jqfAMSfrV+Y9b22xlEz7G0XLMfWA30Z14tECHNnNOLrN5yZtvy16xfi7BWFNVZ2HKcyTN8pS8dxagI3iEtn9Zw2zGyt/XS/1kaf95tMvHb9AqweR/PZUjlxXvuEt0LIVcNk5FLPPGtZ7t5QN128Iq1B8Oz2xqxy80SEc1e64+Q4kw13phzHqQqu5utUGnfDK8PnX3NyQU7GVGD1nDY88tFLM4roGLnqOL9145/k3H5DLIr1S7owS2scm+qj+M7bc38mFb/HHaf6TI+noeM4k46oR5ycAmFvpONUkXxiLues6MZP33f+mOWFNvX90BUn4ENXnBC8Lup29+eo41Qdj0w5jjPh3HfzeROeruPULqW6Um+/YHlZx+E4mSAirJhVzrRHnzxwnFqias4UEXUR0f1EtEl/d2ZZ77+IqJeI7g0tv5OIXiCix/TnlIkZueM4pdCeUvfSlaUmIB9tXjszLfnYVWtK+lxnifeZ44RJjf+smNVa0GeaS2w+7oFYx6ktqhmZ+jCAB5h5JYAH9HUm/gbAm7O899fMfIr+PFaJQTqOUx7yyQfnYs3cdgDAJ17hEsDTkdMXd2HTZ66s9jAcBwDwuVeflPW977xttN7p4684MeM6/3HTuTm3b0/KJQUoF3qSn+NUn2o6U9cAuEv/vgvAKzOtxMwPACheE9dxnElFfBzO1L+/82w8e+sVeM3pC8o4IqeWqItG8JY/WVztYThOzobBG5aOqvdlE+nI28NXH5UvXTen6LE5jjPxVNOZms3Mu/XvPQBml7CNzxDRE0T0d0RU+/q/jjOFySUfnI+GWDSnYpYzPfj0NeuqPQTHyctNF60Y1+cDqXRP93OcmqCiBQhE9FMAmaZWPpr6gpmZiIp9bNwCccLqAdwO4EMAPp1lHDcCuBEAFi1aVORuHMcpByMJtwwcx6lNLlrdg58/t7+gdd92wTKcvaI76/uFRqbyTUB9+U2n4axl2ffjOM7EUNHIFDNfyszrMvzcDWAvEc0FAP29r8ht72ZhCMC/ANiQY93bmXk9M6/v6cneK8JxnMrxxdefGvzd3erCAI7j1A7Xn7O04HXbGutw9vLszXUpT6XTqDOVez9XrJuLjmZ/ljpOtalmmt89AK7Tv68DcHcxH05xxAhSb/VkWUfnOE5ZSe25kqvmwHEcZyqTNzKl+X3jEe1xHGfiqKZFcxuAy4hoE4BL9TWIaD0RfcVWIqJfAPgugEuIaAcRvVTf+gYR/RHAHwHMBHDrhI7ecRzHmbR8+U2nV3sIjpORfM5UNCIreLNqx6kNqta0hZkPArgkw/JHAbw15fV5WT5/ceVG5zhOpehorqv2EJwa5guvOwXv+Xb+ThjzOhonYDTOdOPmS1aOexuW5nfqoo6M76+e3YYfvuNs/OD3O8e9L8dxKo/n2jiOM6F8/YYzqz0Ep4ZprndVR6d6tJTh/rPI1HdTelKlv084dVEnEh6ZcpyawJ0px3EmlMY6f+w4lSdbjx/HqTYWnY/lqR31ND/HqQ3cqnEcx3FqhkLMy1MXdWBZT2vFx+JMP9bMbR/3Nma1NWLrbVflXS+ZHPeuHMeZAHzqznGcCeOMJZ2YO6Op2sNwaphCJuu7W7yHu1N+CnGAyomn+TlObeDOlOM4E8Z33352tYfg1Dz5Dcz6WB65NMepAfI17XUcZ3LgaX6O4zjOlOLcFd6c3al93JdynNrAnSnHcRynZiik4fMbzlw0ASNxnMriTXsdpzZwZ8pxHMepGZpcGt2ZJnian+PUBu5MOY7jODVDc72X+jrTA/elHKc2cGfKcRzHqRnaG3M7U196w6kTNBLHqSye5uc4tYE7U47jOE7NkK9/VCzi/9acqYGn+TlObeD/dRzHcZyaIhbJLn1OroruTBFWz2mr9hAcxykAd6Ycx3GcmiLXfH1PmzfsdaYG7710Fc5dMbPaw3AcJw9Vc6aIqIuI7ieiTfq7M8M6pxDRb4hoIxE9QUSvS3lvKRE9TESbiejbRFQ/sUfgOI7jVAPW9KfLTpw95r3TFo35V+I4NUkkQuACmlQ7jlNdqhmZ+jCAB5h5JYAH9HWYfgBvYea1AK4A8AUi6tD3Pgfg75h5BYDDAG6YgDE7juM4VebLbzodX37Tafjnt6yv9lAcp6J8/OUnuqiK40xyqulMXQPgLv37LgCvDK/AzM8x8yb9exeAfQB6iIgAXAzge7k+7ziO40w9Ll87B1esmxu8fuUp86o4GsepHCfMacfLT/L723EmM9V0pmYz8279ew+AsfkaKRDRBgD1AJ4H0A2gl5nj+vYOAPMrNVDHcRxncvK5V78Et77qJdUehuM4jjNNqWj3QyL6KYA5Gd76aOoLZmYiypoYTERzAfwrgOuYOUlFyjUR0Y0AbgSARYsWFfVZx3EcZ/LyujMWYXAkAQD4/l+dXeXROI7jONONijpTzHxptveIaC8RzWXm3eos7cuyXjuA/wTwUWZ+SBcfBNBBRDGNTi0AsDPHOG4HcDsArF+/3qs5HcdxphANsQjedsEynL7YxSccx3GciaWaaX73ALhO/74OwN3hFVSh74cAvsbMVh8FFimnnwF4Ta7PO47jOFMfIsItV66p9jAcx3GcaUg1nanbAFxGRJsAXKqvQUTriegrus5rAZwP4Hoiekx/TtH3PgTgfUS0GVJD9dWJHb7jOI7jOI7jONMZsn4d04X169fzo48+Wu1hOI7jOI7jOI4zSSGi3zFz3h4c1YxMOY7jOI7jOI7j1CzuTDmO4ziO4ziO45SAO1OO4ziO4ziO4zgl4M6U4ziO4ziO4zhOCbgz5TiO4ziO4ziOUwLTTs2PiI4BeLba45jmzARwoNqDcPw6TAL8GkwO/DpUH78GkwO/DpMDvw7VZyaAFmbuybdibAIGM9l4thCZQ6dyENGjfg2qj1+H6uPXYHLg16H6+DWYHPh1mBz4dag+eg2WFLKup/k5juM4juM4juOUgDtTjuM4juM4juM4JTAdnanbqz0Ax6/BJMGvQ/XxazA58OtQffwaTA78OkwO/DpUn4KvwbQToHAcx3Ecx3EcxykH0zEy5TiO4ziO4ziOM26mjTNFRFcQ0bNEtJmIPlzt8UwH8p1zIrqeiPYT0WP689ZqjHO6QUR3ENE+Inqy2mOZDuQ730R0IREdSfke/K+JHuN0hIgWEtHPiOgpItpIRO+u9pimOoWcc/8+VAciaiSi3xLR43ptPlXtMU1lCjnfbiNVFyKKEtEfiOjefOtOC2l0IooC+EcAlwHYAeARIrqHmZ+q7simLkWc828z800TPsDpzZ0AvgTga1Uex3ThTuQ/379g5pdPzHAcJQ7g/cz8eyJqA/A7Irrf/y9UlELPuX8fJp4hABcz83EiqgPwSyL6ETM/VO2BTVEKPd9uI1WPdwN4GkB7vhWnS2RqA4DNzLyFmYcBfAvANVUe01THz/kkhZn/B8Chao9juuDn+BfaKwAAIABJREFUe3LCzLuZ+ff69zHIP8351R3V1MbP+eSFheP6sk5/vKi+Qvj5ntwQ0QIAVwH4SiHrTxdnaj6A7Smvd8Af4JWm0HP+aiJ6goi+R0QLJ2ZojjPp+BNN9/gREa2t9mCmG0S0BMCpAB6u7kimD3nOuX8fqoCmNT0GYB+A+5nZvw8VpMDz7TZSdfgCgA8CSBay8nRxppzJyX8AWMLMJwG4H8BdVR6P41SD3wNYzMwnA/gigH+v8nimFUTUCuD7AN7DzEerPZ7pQJ5z7t+HKsHMCWY+BcACABuIaF21xzSVKeB8u41UBYjo5QD2MfPvCv3MdHGmdgJI9egX6DKncuQ958x8kJmH9OVXAJw+QWNznEkDMx+1dA9mvg9AHRHNrPKwpgVaq/B9AN9g5h9UezzTgXzn3L8P1YeZewH8DMAV1R7LdCDb+XYbqWqcA+BqItoKKVG5mIi+nusD08WZegTASiJaSkT1AK4FcE+VxzTVyXvOiWhuysurIfnzjjOtIKI5RET69wbIc/lgdUc19dFz/lUATzPz31Z7PNOBQs65fx+qAxH1EFGH/t0EEY96prqjmroUcr7dRqoOzHwLMy9g5iUQ2/W/mflNuT4zLdT8mDlORDcB+DGAKIA7mHljlYc1pcl2zono0wAeZeZ7ANxMRFdDFJ4OAbi+agOeRhDRvwG4EMBMItoB4BPM/NXqjmrqkul8Q4qNwcxfBvAaAH9FRHEAAwCuZe+mPhGcA+DNAP6odQsA8BGNhjiVIeM5B7AI8O9DlZkL4C5V4o0A+A4z55WEdkom4/l2G6k2IX9GOY7jOI7jOI7jFM90SfNzHMdxHMdxHMcpK+5MOY7jOI7jOI7jlIA7U47jOI7jOI7jOCXgzpTjOI7jOI7jOE4JuDPlOI7jOI7jOI5TAtNCGt1xHMeZPhBRN4AH9OUcAAkA+/V1PzOfXZWBOY7jOFMOl0Z3HMdxpixE9EkAx5n5/1R7LI7jOM7Uw9P8HMdxahAiWk1EjxHRMSK6uYD1P0lEX5+IsU1miOi4/r6QiH5ORHcT0RYiuo2I3khEvyWiPxLRcl2vh4i+T0SP6M851T0Cx3EcZzLhzpTjOGWHiM4lol8T0REiOkREvyKiMyq8z61EdGkl9zHJ+CCAnzFzGzP/Qzk3TER3EtGtJXzun4joxpTXFxIRE9GHKr3vArd9EYBGIjoC4FsATgbwdgBrALwZwBkA+gCsBvCI3k9/D+DvmPkMAK8G8GMiuly3914i2kNER4noDiJqSNnXz4hov773OBFdk2dsS/Qz/UT0TOq9TETriOjHRHSAiApKJ8kztq1ENEBEx/XnJ3m2dQoR/U7H9jsiOiX1nOq4jxDR1gLGRUT0OSI6qD+fIyJKef92InqWiJJEdH0B28s1tr8moid1wuEFIvrrPNvKeSy5rpHjONMXd6YcxykrRNQO4F4AXwTQBWA+gE8BGKryuMpaI1ru7ZXAYgAbqzyGMFcCuC/l9XUADgF4y0QNgIiiOd7uAxAHYEb1I8y8m5mHADwP4FIAfwBwNYBNAL4H4DIAXyKixyD3dROAR4nopQA+DOASyLVYBrnPjXcDmMvM7QBuBPB1IpqbY2z/pvvuBvBRAN8joh59bwTAdwDckP8MAAWMDQBewcyt+nN5jm3VA7gbwNcBdAK4C8DduhyQc3oHRs9pPm4E8EqII3sSgFcAeFvK+48DeAeA3+fbUAFjI8i91wngCgA3EdG1OTaZ71hyXSPHcaYrzOw//uM//lO2HwDrAfTmeP96AL8C8CUARwA8A+CSlPdnAPgqgN0AdgK4FUA05f2/BPA0gGMAngJwGoB/BZAEMADgOCRqswQAQwzQbQD+Rz9/NcQJ6QXwIIA1Kds+DWIsHQPwXQDfBnCrvnchgB0APgRgj+6zE2Jg7wdwWP9ekLK9B3X8v9Zx/QfEEPsGgKMAHgGwJMe5yjhWAP8NEVUY1O2uyvDZpQB+rsdyv57vr6e8/109jiMA/gfAWl1+I8R4H7Yx6/IPQxwOO++vCu3vJABPpLxu0XWv1W2tD61/rp6XXgDb9b7Itu81evy9ej6uTtnOnQD+L8SJ6wNwaWg/nwTwgZTXxyFO0x4A96Ysf1j326bX+l4Av9D1G1Ouxz369zcBfDbl85cA2JPlOm7Qa7Uhy/urIJMNbSnLfgHg7aH1VgDgAr6DOccGYGv4POXY1uWQ7yGlLNsG4IrQepcC2FrA9n4N4MaU1zcAeCjDer8EcH05xpby3j8A+GIBYxxzLIVeI11+EYA/pry+H+K4p37ulbm+VwAa9H5fl/K5HsgzblYh185//Md/JubHI1OO45Sb5wAkiOguIrqSiDozrHMmxICYCeATAH5ARF363p2Q6MEKAKdCDKa3AgAR/RnEOH4LgHaIcXuQmd8MMaJstv3zKfu6AGKMv5SIVkFml98DMUzuA/AfRFSvs9k/1P136XqvCo17jr63GGL4RwD8i75eBDF0vhT6zLWQFLL5AJYD+I1+pgviFH4i00nMNVZmvhhikN2kx/tchk18E8DvIOf4f0OiRKn8CMBKALMgUYBvAAAz365/f163/Qpd/3kA50Gc3U9hbKTlZQD+M+X1n0Icke8C+HHq/olose7/i3pspwB4LNO+iagO4oT+RMf6LgDfIKLVKft6A4DPQByhX2Y4F4XQAmAnMx9LWfY4xFh/V8oxPq5/r03529adTaIkaMd5LxENQhy1BwE8mmXfawFsybDvtaUdSv6xQc7hfiL6CRGdnGdbTzBzanrhE2Ue23i2VdDYNJXwPJQezS3mGj0EYCURzdT79yQA84iojYiaIBNOv9B1M36vWKKlPwDw+pTtvhbAz5l5X4nH4DhOBXBnynGcssLMRyFRBwbwzwD2E9E9RDQ7ZbV9AL7AzCPM/G0AzwK4Std5GYD3MHOfGg1/B3FIAHGqPs/Mj7CwmZlfzDOkT+q2BgC8DsB/MvP9zDwC4P9A0rbOBnAWpF3EP+i4fgDgt6FtJQF8gpmHmHmAmQ8y8/eZuV+NrM9AnLdU/oWZn2fmIxAH4nlm/ikzxyGOxqlZxp1rrDkhokWQ+p+P61j/B+KQBDDzHcx8TI22TwI4mYhmZNsmM3+XmXcxc1Kv2SZIxMW4CmNT/L7NzAmIY3etGpaAOD8/ZeZ/03N9kJkfy7LrswC0AriNmYeZ+b8hUaNUI/NuZv6Vjm0w17nJQRTi/KVyBOJorieiJyBRlCX6Xqu+n7ouIA4dAICZX66vXwbgJ8yczLLv8LZse20Z1i2EfGN7I+Q4FgP4GaQOrKOKY2tNrZsax7Zyje2TGJ38KIWC96XPmkcAnA/gdIjT9SsA50Du503MfFDXzfW9+iZGn32AfG++WeL4HcepEO5MOY5Tdpj5aWa+npkXAFgHYB6AL6SssjM0m/yirrMYQB2A3UTUS0S9AP4JEpEAgIWQmdxi2J7y9zzdl40zqe/P1/fC40r9LADsTzXWiaiZRHThRSI6CkmX6wjV7exN+Xsgw+vWLOPONdZ8zANwmJn7UpYF2yKiKIl63fM67q361sxsGySit5CoB9p1WWfrqyF+AiSFC0S0EJLq9A39+N0AGiEOF1DcdZwHYHvIEXkR6echfJ0CmPmTnCKLzsx2vgfV2TE+AnGowMwP6nvtAA4w8+sgDsgzGgUFxPFqT/m8/Z0auYA6iz8CcDkRXQ0ARLQxRfzhvAzbsu0dQx5IFAhtWz8qZGzqeA7oJMD/A0knO0+3dzzlZ9E4x/aRlG19OcfYjoe+d9m2V9LYiOgmSDT7Kp08yDa2XBR7Hn4OSRc9X/9+EDLRcoG+trFl/V5BHN1mIjqTiJZAIrg/LGCsjuNMIO5MOY5TUZj5GUjq3LqUxfNDM9GLAOyCGMVDAGYyc4f+tDOzpdJsh6TKZdxVAct3QRw2AEHqz0JIKtfuDONamGcf74cov53JIjRwvm06y1iKIddY87EbQCcRtaQsW5Ty9xsAXAOpDZmB0WiLjTvtODUt758B3ASgm5k7ADyZsv5LAfy3RqEASWuMQNIS9wDYAnGmLNWvmOu4C8BCIkr9f7UI6eehHA0TNwJYRkSpkYaTMZoW9jKkR9426vup6+61iEMGYtBjZua1PCr+8IsC9p0VZv5GyrauLHFsDL2WKdtqZeZtuq2TQt+Lkwoc22dTtvX2HGMrKPWulLER0V9AxTiYeUeeseWi2GsUdqZ+jpAzle97pd+n70CisK+H1PjldWIdx5lY3JlyHKesENEJRPR+IlqgrxdCDIGHUlabBeBmIqrTOqg1AO5j5t2Q2pj/l4jaiShCRMuJyFLnvgLgA0R0Ogkr1CABJOKzLM/wvgNJJ7xEU87eD3Hefg2pZUpAFL9iJFLWG7JvCoCk+AwA6NWar4z1TyWSa6w50dTHRwF8SuvBzoWopqWOewjAQQDNAD4b2kT4XLZADO79AEBEf4505zhcL3UdpP7jlJSfVwN4mdbtfAPApUT0Wj3X3TQqaR3e98MA+gF8UO+XC/VYvpXvPITR+6kREv0kImokVX5jqTt7DMAndPmrIIb597Mc49cA3EBEJ2pk7mOQSQP7DlxJRE065jdh1KgeQ759673eCKBeXzdSitR5BnKNbRERnaP3RSOJXPhMSBpaJh6EfC9uJqIGjfIAIoKS85zmGNv7iGg+Ec2D3Nd32ps2LohDUafby2ar5BvbGyH39mXMvCXHmGzf47k/wvwaMtGyAcBvmXkjZHLkTEgEG8j/vQIkrc8io57i5ziTEZ4EKhj+4z/+M3V+IOlX34FEDvr09z8BaNf3r0e6mt9zAC5P+fwMiDrbDn3/DwCuTXn/7ZAaq+OQWdxTdfk1EBGKXgAfwKiaXyw0vldBVLOOQIzbtSnvrYcYTCac8ANI3RGgan6hbc2DGHTH9TjelrpPfe+tKevfCuDOlNeXAtic41zmGmvatjN8dhlG1ejS1PwgqYV3Q1KUXoSkQDGAFfr+Sj0PvQD+XZd9BiJzfgDA3+p43goxevdAFcYgNSGDAHoyjGkjRDQDkLSyhyGqhtsBXJdj32t1f0cQUhKEGOK3FnhvXqjHmfrzYMr7S/S8DkDusUt1eQfE4A3fS++DOH9HIbU4Dbp8jR7bMT2ORxBSP8wwtoz7TnkvPO6tebaXbWxrISINfRBn+gGElBYzbOtUiJjJAKSG7NRCz2mGbRGAz+u9dEj/TlXjezDD9i4scWwvQNQhj6f8fLnc94e+90YAG0Pb+w2kF5y9/h6Ap0PrZPxehdbZrOvUF3Kf+4//+M/E/hBzObIjHMdxCoOkEedbmfncao8lH0T0MMT4KrVofcpDRBsAfImZ80XxahYiei2A1zDza6s9FsdxHGdy4Wl+juM4ChFdQERzNPXsOkgaz39Ve1w1QDnTGycjvRBVScdxHMdJI1btATiO40wiVkNSFFsgogmvYanjcrLAzGH5+KpCRFabEuZtzPyNDMvzwsw/Gd+oHMdxnKmKp/k5juM4juM4juOUgKf5OY7jOI7jOI7jlIA7U47jOI7jOI7jOCUw7Wqm6qmBG9GSf0XHcRzHcRzHcaYlg+jDMA9RvvWmnTPViBacSZdUexiO40wXSJ/DXp/qOI7jODXDw/xAQetNO2fKcRynKCg0KUWh7OhkQhY3NAAAeHhYlpvz5E6U4ziO40xZ3JlyHGcUj6KMgaJR+V1fL7/VaUJEzlXi4CEAQHTubAAAHzkm73MSAJDsG0h7zfF4xcdcNfz+caYKfi87jlMg7kzVMv6wd8pNEHURwz/S1ARgNNrCSdbV5N7jhERlgntQ78nAAYnJIyY5NJS+n2LvWdturE4+PjJc3OdLISLHYM5PZNUyeV0vxxTpPS6/58+S5f16jPU6xtldAIBEp5zD2O83y/t2LsPnpBLoMVj0rFLEFsyX3Rw6LL/7+wvbfzjqZ+S4P+yeGuOUVvh5OGa/tj/7zlT4HNcEE/E/qcL3tF3nAH2WjYk4O47jKO5M1TA2Uz4hRpkztVEjKNo5AwCQPHI0bbk5UQFqYCBk0JoTFZ0tDkbiwMH0980Zio/IAjNMCjSQyByVwIlLpm+njES7xRlCRxsAIN7ZDABINMpY65/fLu+3y3IakmNKzOsBAAzOkeV9c+Ux2310kQz1Dxvlc5U0CkNObXB2yrwvqtNnUHOjvD4u1wcDVND+Is1yjqDXMzks55Bi0bwOc7DviXCskfK8te+C3nvBxEJyQoZRXcLOb2gSpaz70G2bc2PnPzkwUL59AWO/h/ad0f+rUb1HE/5/1nGcLLgzVcNEWkWV0B/yzngJIkltrQCAiEWgGsSAMcMm0tUJAIjv2CnL1RAxgzIyo12WJzWy1S6vk71HZL2wM2ST+3U66z8UMr7DM936uUiTGO/JgUF9v/wOiY11cKEcM+kYRtrkmGNrlshYhsShHF4mThTruRjokWMabpfX5lw1d8r2WI3C5GAFxq5OKzVqSqLuq9wGf6RFom7xmXLf1I3IuVDzFAlzysPOrl1Xc6L0GWbOVa4JorGRoTIa8rmwe9rOqb7mROikZnM4apGwo5HNeSqjUxVMAOi9EaTXhiJGkcZGXc/SZ0MTNNkIHZNdzyCKblFVPZYxUXXHcZwQFXOmiOgOAC8HsI+Z1+myLgDfBrAEwFYAr2XmwymfOQPAbwBcy8zf02XXAfiYrnIrM9+ly08HcCeAJgD3AXg3cy3/1yoeUmcKWrPhOCVjqUpmDJnT06pRl0FxWhI9HQCAaJ8aHJb61Ncn65mBo+vb63C9ULRdjO/kcfkckqEIlRGObERknGZwBe9XIMqTPCq1T8m6eQCA+sMSAelfIcbXsQUSsYoOyNjjLXLu2l+UY0yozV1/xN6XsSeXyPbo2Rfkd7a0tXFA0UjatpOJCqWg6fbjrXK/RDrkukbVqSK9vmPSQfV3Uu8Tu36RDomMJvbuGxX0CBuzdq3NM7R7t8KhIXve8lB6JIz0nrQImaXGBkZ5DRM4NuEIMNn3UKNyue7dIp3LIJVY923nMexMBZGqY8dybi9MVCd8gjGPaDS0Xb7P0P0F13HQnSnHcXJTycjUnQC+BOBrKcs+DOABZr6NiD6srz8EAEQUBfA5AD+xldX5+gSA9ZBMld8R0T3qgP1fAH8J4GGIM3UFgB9V8HgmHawGr+OMG42mJHfvBQDw2uUAAHpum7zd1aHr6frmbPVoKtyLYhSzRipYHRFWpyswXPR3YPaGUmoCg0mNNTalPHMKzLBhibSYwV2qYZURS5FbJE5PwwFNK3pSap7iZ54OABhR26t7h4zxeL0cy0C3Rq7UyWrolaMd6tCTF5PfkTmSChnfuj1tv+WIZNj5pko5UUpyyVwAQP1+OUcRS3XcszdtvXC0wQzVSE+3rqDHHpf3oz0zkTiQZZLI0utCwiC27UqlPQfGttaFsUamLKpqqY3UIk6XnXtWx3JMSmokWjN1VuEayMDpPdwrK4Sua5ojGVa/zBZFDk2IMGu0286nRQRnyjOH1KmNNWt0dN+B3Nu34ahTbNH0xM7d8kY0fZx2HVFOp7jY77jXRTtOTVAxZ4qZ/4eIloQWXwPgQv37LgAPQp0pAO8C8H0AZ6Ss/1IA9zPzIQAgovsBXEFEDwJoZ+aHdPnXALwS08yZQiyafx3HKQAyB2L5YgBAokEeDXVmNPXI7+hBdZK61bmKmsGjtS/9GmlQw4ShDr/WwsRmSypcUo2wIEXKarMC41+dKKuL0RSesLFmhmpE0xNRBl/KjL/jK/XY62RsMzaJMTfjBdnngZfIOTq8QmuiNsoY+2fJ65Fm+Vz/bHm98NsvyvbmijFo6YBBupEab0mN8pXjGAKnqkL1lSPtck4atonjk5ip0bqlUh+WeF6O2VKpWJ3hiNajJWbJfZRoViNd0zyjm3Zkr4WyY7N7pcIOo8Hh561F1yzV1MZl92aWc50aYZm0dVaBEa8DDNKA5fpym9yrEY3q8KDWNVkN3ODQaC1ZOC0z367rLLVYo9n67Ih06r3SLs+A6A4RgDEnKnDY8zioll6L2TNlu5aarOML6viyDjDFwSnV2XGnynGmFBNdMzWbmXUaCHsAzAYAIpoP4FUALkK6MzUfwPaU1zt02Xz9O7x8WmGqYo5TbmJPSgqaGfwjK0X2mwbVMNq8Vd5ft0J+92ukSJ2qYFZXI1XRPfvltdY68X51gtRwSap9Y7PPyb702WBzoqyOKQKtrbHZf0sXTE0BK9XwCCII6Yv7LjhBfs/RfVgwRW2v3efK9zFq4gv6+YEFcqy7rhFHteN5MQ6b+kLROEthDDmQpRwHhZyXoCatQkbZyFwxdAd7ZOzRTtl/82GtlbPIohqyiT37ZHm3GLKxI3Idh2bKdcahw4hqbVnisGaCm7HbZKmj6sxYWpalmOYbbKnnQCNRVgcWsTREizxZFFWN+tgScSiTauwH49TjQjweHJuNPajPyVZjZpTbqM6TJhuoeaqjH1HHkk0colXvYXPeo9GUiRHbSO4x23mz65s4Kuc5umIpAGB4vtxj9VvkWZJYIBMzEZ3Y4U0v5Nx+sB9LPT4k9+bIqoWyXCd2opbxcVDvO0tB1eWpNVSBAzeV2x04jpOXqlnjzMxEZE/XLwD4EDMnqQLFxER0I4AbAaAReWadagiORPKv5DgFYOWGETUweJakX5mRzHqrxVXmO/qSlfJbI1VQJ4pV+S7ZKEZ1okUMkLrDYhgld+2Rzy1Mn/uIBIZLusEcRFb0NVm9w35RCYyEpNeDCMhIvHSVN1MRM3GvYXldf1Scm16NRI20qSBFp65YL8ZY/S455pGOdKdsSIN5icb0Z1yQMqW1jxZFGg+BcIhFDoJUs/Ia4YlGuTGGZ+h1iGmEs0GjEiobjz6N3mj2X1RTtfafIsfesUmcrPpeuY5MEZAqS6K3N22fQZRtOHR9owVG6ks9B+oYxuZJamNSr5fdc+YsJVeKcY4nNun+5D6ILVwgr+2axEfTVCMz5fuWNGGXLGMOnC6rNTPG6WxFAmGY9Hq0wPHT75L1TIvvlu9xbI5MsgTpfqlKh8WG3SySZdfVxG0G5XX9VnFKuV1r1/SQIzssTS+kXJmFwVVzAAB1R+QcJhvU+T2m35FD6ccStbRASy/UFObEoZT7MlzHl8UZLtr58kiU49QEE+1M7SWiucy8m4jmAtiny9cD+JY6UjMBvIyI4gB2YjQtEAAWQFIDd+rfqcuz/BcCmPl2ALcDQDt1TZmnE43orHyVx+HUPjaJwSoMYepsIzrj3LxJDJnBJZqe1SRGYONRVaTrFGMwulPWs/SfkVNkVpk0LSiY+daIidVUkdY9mFFm44lqag/r9pImQ66GbZBOqJGpqNYhJffuB48UfRrSSNZrml6P7OPYAn1c6hcu3q6GU0QWxPaHahgTakDpanUabBtSNcA2dTCDVMew4VSMIRUypk0kwepDkiGJ+nIxoqIaVh/GalM2vyjXI6nporGDWt+ikvlBmqcOO6qG7fAsGW/9upXAMWt2rI6ESVQfDjSLAJQg4FFiZMpS2FgnCnA4vfYtuWWrjK9V3q9bJpEpUgfE5ON5+2gtWOAYagS38MGEjiHbsRR6rHV677I6Mia2aRGoIavzku3FlkqUFeqkBw4QjQrERHViJWHOcFjxLzSmIPpl27Capv36TLFUXn1mxGzMlqZ3VNL+stY46X5tAqB+nxxk/XH5HpKmE9r+eUCjcDrZkWzT6PgxfdZ0dSAZNOjO87DRYx3TYiJ8LvK9dhxnUjLRztQ9AK4DcJv+vhsAmHmprUBEdwK4l5n/XQUoPktEOj2GywHcwsyHiOgoEZ0FEaB4C4AvTtxhTA5oaGL6qzjTADVMjp0oTlHLNjFMWnZqLYzWTCUbxNDo07qgpmeH9H0xdEgb1ZqjbwT1Qea0WbqXOkGRpRKpipjRcUwNI3WyoCIQlqYW6VADSutVYgtFLGK0mHwc9YQ6yzzQJcfavlUMpW1XqNEelTF2PCnvHz5dj3WhjLHxETG6h2eLodmwWz+n0b1IXNPTZsljbUSjfXUPaaqkiWmo4RVE2AowrKJa02J1PBahClLmTKq8TMIHLTtkP72rrAeXLG/dKmMd7pIF0ReG08ZDi2UurGWfnKM9F8p9M/Px0R5C8Rek3iqQqA6l81l0JtojtS9ZBSvClGqo6j1MA3rPW/2X1QNq42LerwqGjRrtUYcyclwjISdK8+fo/iMYWCmOWMPDz8m2wyme2RoCh3owZXUkCzy2wBmytFm996zfnAm/xPS6JVS1MbJNvm/haGGktR00QwU71JkKxhpEr8xjs2i0ipJ0mtiNOjXqvA4vkOV1h/QeiWtNVZ2m4eX7fxhEnFVdU793JqpTZ9dN0zJ5jYjwDLfrd+ihp+TzlmY6uwew51Q2Rcks91jWBtClOk3Z0jRLnThoaPD+lY5TBJWURv83SFRpJhHtgKjy3QbgO0R0A4AXAbw21zbUafrfAB7RRZ82MQoA78CoNPqPMJ3EJyxlIF4bSlDO5CcwctXQGe5Ug3W2Ogbt8s96sEPuvfpjut4iMWRjx7Q2Z5cYIiMnitEV69PZ3l2S32W1VBaNCdKL1CBCvxVPqRFg6WkLJDXHej2xpRWZ06SRq0hbaDa8BGxG3DAnymqhRrrle3f4ZFXra9co2yYxMI8tN2EEWX9InaqO52Ssw206Q96i59yMQovA6Aw82Ux9ARE2azBsEamgrkgNfVNfLLfiQd0ueRx3D8h+hmZpDZwqG9r9xPOlvgXH5fr2r9DeXXqq2nbIOTq8WsY98w/DwbUMKzQGHTCC1Kr0qEmhFJtyxdaPSEVWTHQlaHBtfZFm2PVTifynNd1PI1sRq19rqEes3wRCQlFNa58WTlW1aIwZuiYMYccSqt8y8jU45iBNNtTawMZlKprWa0uvY0KVDc0RCq5NNAIOojYhRyLc5NicHJs4CaLk2kdRvycmToItUi7NizVV+LmtOrQ893aEHmAMAAAgAElEQVQoMtX0G3Fg42tlLjfRro7/PK0P7ddzommG0Akb6PWjY/1BHz1L0R11qkKtAELHPqYVRTZnp0AnaMw5LTXCZbZFfX3xzpRH0ZxpTCXV/F6f5a1L8nzu+tDrOwDckWG9RwGsK3V8tYw15AwMzQr02HGmGWaM2T9lle8eaTWDFenv6+KoClIEKadaoD6i6mzNO3tTPx4YgRaZspqR6AGdAbd6EmvE2aBF300qPLFNMoOtP5U1rrbXqVLppc6s2qxxw1GdnW+WY2vcJ2NINMnBR+dKpKS9RQzP/fPE6Gt6vkHXU4dztqUPaR+qbXLO6naJIZrUWf7AiFQHaExdTA4jxY47aTPlIQlrS6srN4PLJbJyeJVG01T5sOtpGWvjTjWoD+ixavPm4xeJczykznlMM7PMST+6sg2dO9VZUWcqUHkL9yE6mu5sFZr2V3R6oBnreo/a69HG0XrPdmhd4XG5/6JaD2UiLdgrAgq8eB6ij4vcflD/GtRTWWQq3UA1YZbAebJIkIlhBAeX/rls2wtWD/VwGlXXDMm/W1Rpr0yaWNpmfO++tI9z/0BwT46p5wpLpRu6L5PVj6gzhUclIhQ1cRsz+DVNFppmyZb6G/7eBIPSGkdNTR1ar3Wf+gyz72eiU5UKn3xefpvy5D4V0TlRRHewZVsQkQvXzY3BzmcQlcsiLlOgQxKO8mW7h4P1EulRwGzbDyKMmXprlcnxc5ypiMvB1SL6TzvZJTO3ZP+c3ZlySsT+6Q7N0DqQEa0DGpB7bbjNZlL1l/4TN0lr+11/SGZqKfR/NWxkRNUIQ6iZaxCd0b5WSe3BZAbp0NqFOj5NC3zKUsHGSoGXnKaihuqMJ2W2ee8GMabM4A9qpoblmI/2aRQoKSfH1PtiR2Q79XvFCeufk+5MmRMV2Sv7SapBndSaoDGGkJFqjFpPHnWiAuEOc0at6bLJrQd9usrzrEg06XlXifwR9QubnhGBgqRGLuJnrAYA1O1TiX0dRkOvGrgqI1/XJ+MeaYkgMV+inqT1XkGfoVD/Jru3oibkYbUzeSi2xzsdV4EJc1j1egURquOyPEhxtQiKjdeu46BGdw4dQ9zSMSNhYztLGp9db6RH5QLHu0Shg0BtcTjdyLdJjzG1PiorDj0nGeufrA+XRY+zpd5aGqfVPc4XgQ9orVnMXodIqhJkZI/WA4YdwmxYsMYEJvo0BVW3Y05T/NxTAAD122V5dJZEV9miciPxMWmRWR2O4HWW+shshBzRcL82I1BFDSKIoXEVSji1OBV3lhwnK+5M1TDJZp0VsyL8cRbcO9MYNQy7NopBeHiNWMXmAFg6lokpRLUgfWCm3IONhzSaogZRbEAN3Tb5Jx+kodnMuho+CY1URFQ9MCgyVyEMkz1OtOjMr6rFxY7oDL4Ze/rPP7pS6lHoWN+4G/gmWmWfXU/KPo8sl2Nu3i3naiAh7w9LVhAix9Twjan6X68KWCyTscabNVWyW85Z2wHtR6QOT0RTLS09ys5loAYQpOxkGKseayAhv0AMUKvXIUtdUuOdh8rjTNn1GNYStjod8rBGrGI24WN1YpvF+e2ytg7qcPRfuAbAaMPjeFOKkIPdO+rEBI65qb2ZI2DnK18qYxABLK7mlLvEWSONHpmaW9TuVav52a6TW9YE1lLnVOrbnIrkwUMpY82cXRA2mrPV2gQRBROEMCM6Ek4DzHzM5qiSbtca5gaYca6RYvSqop1+f8NOBDU0jLY50IhRpMHk8dMjR5ZpYSmFyU65ZyJH9fuh0U7sU6fanhGKpbYG/aPy0LpL678Oa6NprWVLLJLvSEQbkcfUibJG0sH3T4+dolGQXWN7z5yrUmvYxkQM09NzAxEWvZfsdUT790GbricHdczhdM+8NXYp351sysoFpgq68+VMJ9yZqkXsH2M0S7qE4xSL/uM7tlRlgNUYi2vEYMHPxPA4uEYMw45fS8QoMHCXS8TIDJrYQU3js/5SKiscyEmrSlhiw4kAgJE6uZcbTNnODCctYrci/+HFYqQ3PSlpRjAjQg1bk1E29b+SUMeyb6EYKkeXavpPk4ytQYNhCZX/HuxR47xL9t3ypJyjuAasaFC2ZzVX7Y9J1MYcS56jaWCbta5srkbtsjmDqfLLIYMnmJnuUCNrUJ1OK+Yv0oHIR+tTch0OnSBpe837ZGx1u1WpUA3kuudFqCBQrdN6lOQJSwCMys4fXaQplr1J1G3cBgCgdq2dsmscrv+p0xS3YiORRRp7NnkFqwVSQ9VEPQLD15wCFcTgEXUmrF7QVONGhgNnZ0z0MdsYLboTijiYExX0EwudC87jYFrvpYie28T+/XpM6cY36X5MUXE0fWxsrVDSIoTWf8ua4Yai1EEKogl8aA1hUjMuEidJWl1khqop/m4jACBmTZRVjKbQyZPhNk3XtWeORYS1zi+mCqV9J4pzVX9YlSg375L11JGhutioYx+KCAYUWasUrnGycxO1lhB2nS2FUmGLmtp1z5L6n8+ZSlserrcKX2PHcQLcmTIq3RSxnFihs6XyeMNAZ7yE0u1iOnncqL7Q/pPFCJ73jWcAAAOnStF24zY1cIMicE0T2fgsACDapYp1qvZXF5N0r6GelrTdW9QmMkcM56hGhRJqwFqqzbDWO4wsFeM9dkSdtsH0WqyE1U+UgNVktG0Wo2n/KdostFf2PSi+DwbnyjlrflrG2r9AXnc+J9/H7ZfLeovvlXNycJ0c4+EzZOztP/i97E+dqeAahAyyMSlbqc8m/TuqhfDmeLCdFzPcj44vSpeNQ2dqBEptyhnPyDnrX6mz+31yTHXa5JmaTEEtfUbfIpwWdWvsTYzWgVkacxaHI5D1L7B2NGzwFvr8jPSro25RHJ3MstQ4G19S2wBENGJl96I5OGlRpXBfonz/h+zZb8dgdVr2vQv1aCq4jtaie4cPhHYfMu7VQRqrQpfurKVdK4uOWZpmlhS4oG5rizjRWCny6yZyYjVVSRUmiW/bkbaZoG4s2/XUsVrT7fatMsbIAXtWSOQx3iXXb6hD1ms4oOdYnbVA5CP1GIPzpLLu4YbOIeXCMZ/LYm9YRN9qDQ2LSAXovRXuURdEoEM1cFnJ5PzliIgXvS3HmaK4M2Vk+2c2CQnnQbsz5YwX1vqGjkckgtC/WozkVv3f27RXIwnLpFapYZ/KCO+WwvOIOk0RU6sy485mi60uolH7Dh2xGVT5VXdIrPG+ZVoHof2thk0AI6JpgCprPNwhRkOsNz1tMJiRTyZK/mduBulQjxgsMY0oNRyW7fSpiBhrf6mhbvndsl3Guv8k3VCTjKXlD9ICb+8GSUE0Nb+I9SE6oj2Z9GOBWpylt2nkY4wBixTjyaIhWqNkzV9jiyViaFECS0XLWihfJAPd2rRXm1ccW6GGrkbtOnfqfWJGnBl91pz5RYnG1XfIubDavER9BIOrJVWx8dn0fSat/iuYvS/u+RdEWerq86yZjvWLspTKwPhXh8WU8KxlhSndBftNmjb+qCNkDoDVPOWrdQqW53GWgv5QyXTnK+u5UsfQxpMwx8++T/b9DX2fs8Ej8VEHyyIaedQWg9o3i8JY3ZaJX/RpREjHGlsi90wgoV9kE/vBbvnONMzUWjtVDTy+UK5jw2E5d7GdMpETD85Fyn7G9PvSOrF6VTccSf/OBtc7qE3LHZG0PnFRm4TQ62dtAMxpjS3RzADtdRaMK3Sf5G1knin6lMVhzotHspxphDtTYWphFsVmI/WfyuR3/5xJTzxdFKFxjxqs5rzM1kiSfj/qdolhEzfDcpHIBpsjgIQarGpgWn1Cok2MichI5n+w1uw13qFGh9ZLxJtU4OK43Pv1vWoUHNIZW5WMTqrBG2lsHE15KRIzOJP1mgZ0SI656xntL1RvxpaMqX+ejKl/rqw367eynT3zNBJ1wRIAQOcz+r01LQ8r3jdVOBMRUCM8aBIbMoAtnYzjI6OCE6ZmGBhfKm2vRldkifY4V1W9rI1Ni8Sa9Q5qZqIJlzT36vXfrZGOsHiEqTRq2mfTRjlXI+0SjWjdcnRULl+x/j5khr457KGoaqEE6WWForUzQc+usPy+pVJu36UDDvUeMscnEkoFA0Ydw0IFA/L1ExrT7yiPo2H7Ncclkh75GlUFLLAvUjIRRE+C6xMZ60wCo/dzIOcfpDLqr06tSTuiKcUrxYmySGEwkTJSmFPd2Kv7NT2QORpJHNFnyxGNOG/RiYmjozVSwGjUKdOERHB+rH4rdM0DdUQTHOHQeQzVwIVl/1kbIUcsndeWmzz/GCc7dB/ki1hmcJiCerxCn6fZem45zhSmKs4UEb0bwF9C/IB/ZuYv6PJ3AXgnpOL6P5n5g7r8FgA36PKbmfnHuvwKAH8Pqd79CjPfNtHHUhVMucxyzKs5FmdKENTvqCT6oXVap6L/exuPqBEwQx2IuTITWn9MnKjY01oHpEZEcqksj+4XZ2dwgWyv6XmthToWiljMVPW+J7UnzwUnAwBaN6mzpFLMg6dJemHfQpmpnaEpdaxF7ZFV2jPmqedKnhgxg2i4TQ9ev2CHThAjqq5P68ma5I3Gfep0qTLd4TXp2zt8gs6kq3/avVHTwlT6OaniGvYwtohGMlS3EhhkKU5AIDhg59HktzVFKlAK1No1U5wrFz2PqKR9van0yTlo+I2kg5I2YOWlEmWLaBSO1Zk2JTwzEtt/L5HRoaUzUf8HkaZOmGhGlh5KxRJEpGxSqtA+U2pUm4CCNUg2MYCkGdCW6mWGbjwsbanRooaG0YhUKEqWV5k1i7Mz+vlwTVWeiIT1TjIjPq+zVmANEEYjvUFvuLDIho4tEU9XEoxafZAqByYXq4jKRr0vrIlzWMkuG7rdeKOMrVkbRidViXJYn20t29VJsrTNcC0WpaSoZonQjXE6LTIUitaFBSbsc9a/ymoOg0kQE1nRsSVUDMOidLD05rDDbtGhfPdV6nW1581wyGnN931xVWFnGjLhzhQRrYM4UhsADAP4LyK6F8BCANcAOJmZh4holq5/IoBrAawFMA/AT4lolW7uHwFcBmAHgEeI6B5mfmpCD6gKBDNkcXswe26yMz6CJrrPS3pYdKXUNsX0FqvTiNCxBfLIaN0l/1Cj/Wbgao8YFQlIniDO1sBLpD6ocb8YjUktIk/OEmPBei3xfjH6o6slFc4EKSySFU2KMT7QLfvvfEKNi26JEvA2GTftFKcOFCk9vUSNiP5ZmsKmSnUdz8sx7j9VU57q5HXLDqulkuX1as8ML1KHYUjrUdQu6putIguHVP1tML0WKjBarP5Fv++BGlrfaE8tEzMwKXmLUEX26XlVNURrdkymflim1ODhHjmGuJVCDau0+Qa5f+qfkroWUiEMaArcyBIxkCMtSwAAsd16PXWc9buOjva6sTqhUGPSovtEKWa8F5vmF6jQ6TgSWYzsQCo9nBIXbjacHDXGg35gvQXW+oVT6ML3epEGbaDSp5HMsSsU+b+FedQI1/s3kKzP9//KonTWJsEmXja/IO+rA2LtFRL7dYIm3Lg229BsElKj7rHhzB8IIsfZenblOoZgI5mb+FLU0vB0zBrRNceQmjWybM3UVe2U9BwGDr2mRIadtjGiEYXW0Fl9W0pKpqWnZo2auv3hOFWJTK0B8DAz9wMAEf0cwJ8CWA/gNmYeAgBmti6A1wD4li5/gYg2QxwxANjMzFt0O9/Sdae8MxWoHuUrJnWcArFUHCsSt1S0hqOyfLBLla4G1QDpl+X1W1UcQGfYLVUn9rw6NcvFmepbINZ2vaZ/NRzQtL8dEonAyTI/Qk9KE9PoTEntie3U2gCdhW44Is5B/xKtrRpShT3dDmntFh3vKznLxI4hrpmN9WoTd/5CCuP3nimzwNbM19T8Yv3y+/gyNViOy+N1pE1TI49pyqIqJEaPyjmLdzan7RfWx8iMN5uhtxQgdSIoGgXqQ6lwJp08T40vNRiTanBG6i1FsDzO1PG5sj3rLxXVgvfYIZ1BNxGG57QBqkZz6varQ6ipW8PLVDlNhUaSW7ePlZkO1YEU3UNHGXXCikvzs/UDKe9QHZKd22RI/n9sw1SLJtGoAWqpi/kiSHYMYRGNcf4rMGcqogImCMvMl2Ao23kxcZSgBiqLQx80wNVU1SBarsqcVm9EyyXqavWXpA5ooWl+rTu10XGoPUDDQb2+wxrt7U+PNIYdopyEnZvwctum3cMWrTTZd11uqY0WOTR5fmiUz445Yf349FwbYxz+AuEkF37t3YlynKo4U08C+AwRdQMYAPAyAI8CWAXgPCL6DIBBAB9g5kcAzAfwUMrnd+gyANgeWn5mph0S0Y0AbgSARjRnWqWmsAdopF97+1RzMM7UIGjyqNLWWguTaNB0FLUJWrelNwcdWaQRhmGtJ9ktzo8Z8/FWkyHWpqxH1ZBRBa3B814CAGh8QdL4ElaT9cctMiztl2RS6lZDZf2NZjytzlyzFnxbHWEsVrLDYPLSdWqHtO6SY+s9R5yohkM6U3vYxBfUoTuks8wasYppTVW8RWej1ebostop7bVkTUMTuzRV0ozC0CxxUFNly5PJUQU5NTyt51HQo0lT5YKifjsng+m9fkolNmSCIPJ7z1nyfO35gzYsVqESqzMKegHt10hUW7qqI1vvps6OIEoTVjG0Wf1Sr2/JjmSoFiTcqHVUVMDeD/UgCs/gR6OB0WypgsWSVVK9SMwxgfYFw85w3VcJ+wlFmMj6qAXpkKGIjzmUofMZ0Q7PEW3cPdylwjCqWIkia3oaN6oKoD4z+tZIe4Xm32p026JCocha3tTLQgiai4+kvQ7uIbv/tZXE0GpJl67foXWUViMaUu2LLZaaSHuGICxZH45Y5ah1AyzqXd42Co4zlZlwZ4qZnyaizwH4CYA+AI9BaqFiALoAnAXgDADfIaJlZdrn7QBuB4B26qr9aRR74O3PkpLhOCUytFbS89o2SoTg8OniLNX1aXH2Lvlnf/QUiSS0/3qrfNAEBtTpiRxWCeWexrTt2wRAfJ7W0Ji8f6Oms5jhYk7UAetno2mE6tzN2Kh1RSqbHTStHFCDrK4umO0veuZUx9CkksgjGkka6pB9L/ipOAiDs+WY967XNCY9VHOirGlv/RGryZD3Gw7rDPhWMd6CVD2dlbZUybD8dYA5vnEaNehtHZ29D9IvNVqSUKEHq/MpWjo7C42HNNJ4SPsT6W3QP0ejN0kxfOsiWu8SNxEObXystXT1h7RxqjUjXTQPfDBdDa9okYZshOtJCj0HwYRDlvfV4QiEF6xWKLy+HcdIvGRD3ZyosBy4nZvReq0C68Es6tkfUqwbT8jLHAd1noJIXXDPhhrUatqlTRqYOmLgbLWlO1HJJ6Quz6Kd+cejDotOPGB2l25ff5n0uabRBucu3DuqEMLPnGyRqpCTapHJpKbnmuop2XPN+rTZMVikuT49WmqOYFh4JJ+qY1r/qjFpqV4L5TjZqIoABTN/FcBXAYCIPguJKp0A4Acs01i/JaIkgJkAdkLqqYwFugw5lk9t7J+xpSF4mN0pExZhGpovlv9Iizaa3awGzB7Jvm17RmdGbbY5ZnV86b2SYgOa9qVpgYGanxrVdVZT06q1AppmlNCZ8uGVOjO7TSJXzbs0Na5dDK06ncENaj6aNBVoPH2V1HgYmCmGyJDYNWjeK9+zfeslmtI/3yTRtXmvtotqPKA1NWoLtuzTdMCZGq3ZJbPLpNGihKq/xWakp+hkNWRTnQqT5VaD0lKlojs0Ytcp1zGmhqmJKBRaX5KPvafL/hrU74lqGmiDKqKZMZhQkY26vXLs/RoNsPqV6CFxvmmupIUyM5LhqEsgflAdo25M2p6R5fkbjlyN7a+UGCsXnm3dLAIQYwz+uBrdKM4BsO9jwuqSylAHQ6FjC8aaR0ku2mGzDukKkHRYpdEtHVabIFOQOlfYmBMnLQcAxDT63Twsjj40fTDx9Oa0cVI+JcRCyFMfNsax1JYTvEQmlUz1ktdJA+Oopfjr85YPpac6jpFgL3QiIjw54zhOQVRLzW8WM+8jokWQeqmzINlqFwH4mQpM1AM4AOAeAN8kor+FCFCsBPBbAARgJREthThR1wJ4w4QfTDWwGb986kWOUyTRh6XksG6GGudLtJZJZYMjavDHtamu/VMf0Wa75hwle9Qg0v/NsV8+IX+cKlJ3kU1SfxSo0ZnMsEYsIr1aUzOsBpUKF9RvVrW3NZLpOzJfnKno42IAWb+rxNBQ6YZgUKOjv8wmVvvC6saSMVUds+y7EfnAgvslsrTl1XIOrNGwfX7feVI43/0voqEemycORFLrICzNMGhGm6G/VIAtU4MzvlPOj6X7mTCIRQ7LnboTb9U0NZ0wX3JP5r5iJoBhkcT4aWLAtmzT+iKr/VggThY9tWXUoCtQsKDQ6x1pzC5tXRRZ9heo+hUwnoJTDrOkCgaOXSA/XkIUJXX7Rhl6BAU1U9mk5EPYRIDVPQZy33Yvadqn9fGytL5koZFKPaZ4i6bxWoNrmwDSL2gQEbY6pYlMd9NjtUbPlu5HmuKYtMhub3rvOVooThdpdM3aQgSRqEApPff1DO6n1PU8IuU4ealWn6nva83UCIB3MnMvEd0B4A4iehKi8nedRqk2EtF3IMIScV0/AQBEdBOAH0Ok0e9g5o3VOJgJJ5BR9dkjp7xEVR1vZLn8c+56UiIGAwtkFrjpKXFajp+r0tsJTb3pk3+4dXpvmjNU90eJuliUIXpUhSdMtczUzKyZrEl3axpLbL6MI2EpX6eISpylJdXt0e2YYWSG7HjQsTYclmNp2659pHrEMOl6SvYxpMqErE6VOUv7zxAnqq5PU6fMkaiX3yPatDe6UmTczTAKZuADAyg9yodwPyVOBKlQZsBH1RANZqLNIO2QmgoTGEn2lqdmigI7VPZ3dLk4cTM2iuE8YpL422UcCU2hsqa+Q906/noxFgfmyPha40sQ3Sr3Tj4jvGjDP1nac3NMP6uwc1uobHjOnYwzyyCs8lfoxyxCuEqiNsktL6ZtblxYSmKehtF2D0dMNdEmWkzgQx2KQOymORTN3rM3bf1sNG6XZ0YweTGiES6NeEUWy0RN0vqFVTLzIxyRCqXhmXpf8P4OOcbEYXkeBqmQ5nBmaiwMjPamyydw4o6T45REtdL8zsuwbBjAm7Ks/xkAn8mw/D4A95V9gDVCtFtmrRIHDlZ5JE7NY8a3ptvFm+SfejSWLvjQf4X0f7LojKn+Nf78SdmMGTy62chcTaFpU0NKnbEAczT602WIA2U7k0fW1B8e0LSVNq3RmaECBtt2pK0XaW2R6FQJ2Fi6fylZw9teJ9nETZrm1z9XUwnV0JzxvBgoZqRxoxouGmXbe7aMaeEDYizGG7VBrUXzAtny9LqhfNLf1NCQInqgESJNB4otFWfXomykzYytZ1O5aJUAY1APxur3HTtBFljkaURFA+qXLQEAtL8g4xlpl+s4NFPTRdWoH+lsRMM2dUbz1XnkqzsK1XxwiSqoYwzSbEZ2thqTTBLpKQX/QIYoyJjUwCyvTZQk7Ijn6UcVJqjNKZOwBZD63c7j4FnGhbVZsO+B1VKZgp3e8ybiEGsJNQfOh6bQ2bPC6jwthdnSbwtuUltGgntcr1siJFVvSocRTXEMauWeDQnNaNZK4FxxkaIrRHnvFcdxRqlWZGryUwu9E8qRy+04KSS2iHUc0z5QsV4xegd6xKBp/604LcfWS6QjOqipMSoYYVEWCow8TXHbpU1jwwZPllqQoKcPdPa4NV31LaZCFvS0Sm4vnJ+2/3Jw4Hw5xrj6dcMzZKxNh2SMjYdMJl4MlYMbJEVtWCNPcx+UOq8hrXO3c9j6gvaK0b5RI7O151ZIcGFMzU3whjpfREETUHO8ggamaoQFMtON1oy1zM8zHdqIagAkDsqCtq1y38T2iYPZd6I61Qslcmbnomm/KqbF9T4xvRICEBYsyIY5CtmcmFB4hVTxkYtTRs//uWy9frL8D6G6GFjluQMnKlz0H462ZbsXAsEJGVy0Qwr9LIKRD2vWnezU9NDt5f+/N0aKPnQsQf9EVdkzIqZQqc2sRxXwImnL8zndQUaHOdPaNJu08a09qwru9TWRhO5hc/SC1EidfApH/KlIpcPRHWS4/rVgEzlOlXBnKhuT+IERdE0vsCeJ4+RFDROLdpIKPgycIPU8FmqyQuhknURr6o5pRGSmWtNdYvhEntgky0+VtLzok1t0O6G0lmzpJxZFGLbeLzobXadqgU9IhCuoDdD6BkRDctQlYMZYUjcZU7+OzVbWKN3MX0nKze7L5RzVH9U0PtWR6FsuBm1ED+3YfBl7231S5B8z9b7FqnRXp4pcFqUwAyjsJKRKR4cnVKwHXUN6ZG/02Ir0IPKQqNceW332WoehNXaWqmVCJAltxjzULr9NrCPeqoIl/fK5xo07kJyjih77Q5H3LHVDgTGNUDQmlAZYsjS6Xp+sKpFjHKHcETAeiQdRlzHXpcj8umwKecViKpzJMhrOWZ3hULpk8AywWuDAOU0/tkhz+r0djmrnI1DzmyFOW1TFG2ihiN0ktSfaGMGRibQJUnuRYfSeDTvH9qxIWDpv+N4rY4RxMttEjlNt3Jkqlmx58hM5a2N9Z6yxouOMF/vnqwZ7siuz3LA5R+ZYxI6LARTXtLv6g1qzpLO8sYMqkZ5tt3mMezNkzIiI2gz8Mun5FNWUoOSmrbJbkw4uQwQmOizbaNums//aANdS2XpPn5W2/lCnjK15j6zX/KIYOANah9Z0QI7lwOskVXLWj8TBpD88KxvQYnOLLgVpimHDOqV3TGCMm6SyPhNokUYKX5BUxUisMo/6pPoX3U/JdTw+VyNkWjMX135F9c3pEvnHF4gD2T9HvS+9XM07NR1x4SwkGtRxToZS1kJO5Zg6EzvWaHo0joNa0xL7j6lyJY7lloymbMIF4f8NyQTIpK1HChSACP+/Caf32TGWmKLGJZaieUcAACAASURBVDZ5zYVFzSim9XrhHmcWXdPrFtfap8BZDmS+9bs/nP7MGJPylufY+cx1srnwxM4RVbq0yUpTIyxTg+uCCNkXgSOq1zloDK3n0CL4gXpf6NyWM13TcZzsuDNVwwQh/GrMnDlTEouOHF+mqn2NYtR1PC7RgWSrGMXWXyi6RUUC1kmNDm9UVT1NO7Fanaz/1AudjDBDSmeVuUmjODqTbilYSd1fEKkaB23bxCg7cLI4aM37tJZDNx00EK6zMcqvhqOyXu861VTXQxrs1FopTQMMRDXUAE6G1MsCxpyjUecqHNEL6kAG1eC0ZsYj5Y1IhTm4Vk6CRaj6V0lUqUkdEDqmvXtUAKP+uByDpTwOd8s4h7rk/abHtoGXSsQvMJYtOhk4U6GoXEj9MDAwLXIx3udjl1zPaKg+bQxFPI/D0tVjap6yEZaJt/vdHJCRIh0A3Vx8zRIZx0NPFPf5XJu2yGEeh94cB4uOJ9W5MecoSGHV6xmkuNn/wXxOj56b4U6V8z+kTpc6JKznMDLDxGwG0/Y/IROm2WrgdNKJs0U/TaTGU/Ecpyq4M1Us2R5SVXh4mUx10tIiqtR/xZk6JGdJFMUayzYOyz/r46tkedvvJNLRt1DqiXDSEgCjESpTwuIdItGd3LsvfQfZHIXw+7Y8NOtv9Q7RfVJLFTfFLft4GZyoALXVrXeSpbCZgp1F5+IaDJv3S3HkDq7THlgqxGWNbJsOpjceDupb1HiEGtaJfBFnm8mvqx81VPW4reFv1AxLjVxVKiXYHEk7B0377FxpPUu7OjStavCq09u8UwxV6y9Vp8tj+8Wh7Fu/GJEhOV8NQU+ldMcjSAXl0D1jTlW2dLxiDU7bXrP1SJPnLul1Chvb+RyhtPSxkDDEmHQ9E2QJN+cNOWxBvZE6nskihUYiw9YDSjdb1KfzYOl4+aJlIccgqFGLp0cUzXkKos+W2psvGh0J9b7bJ/daXK+jSeZbzVbOlgSVJpnZSUZIujy4l0JCNAHuVDnOhFCtPlPvBfBWyDP7jwD+HMA5AP4GYsIcB3A9M28mogYAXwNwOoCDAF7HzFt1O7cAuAFAAsDNzPzjCgxWfk+ih1LwAA1SmtyJcsaJGWVquMR+r6p7y8RparlfaqAGz9I+UZoCZ01+o706+19vYRrBmskGOf2hlJ5Rg2U0dS0jIYMmYf2UVGAhiD6osTGub6saXX2q2me0vSjGYJ02++w/W3pw9c2XY953unwfF9wtDufxtZLK1lcv24s3yTE0aG1V1Brtmqy7Rm9wNCSiEX4GpUSootqUNzCy2vS8qjFtZ63oSEWBmIOZaEiXh2/bKDV31j/KzkX9ETH66lTYpH+ViHYktZaK58o5HG6NoG1HyJgNR6I4HKEKOSZlSs8yR2Vopoyt3qKveu8lQuIRds8nwylzFm3IFKGxCIRdJ0vrCvUHy5aFEGzTGt2G5cfz/B+LaMuC5LadOdcriWzCIGFCDsOYhsRhZ0mdL5tACPpDZd2+Ngo/rI6mpchZ6py1FwhSL0P3TzVsgNAxh+/p0fshNNZJaLc4zlRmwp0pIpoP4GYAJzLzgPaQuhbARwBcw8xPE9E7AHwMwPUQZ+kwM68gomsBfA7A64joRP3cWkgz358S0SrrQVU2JuPDyBTSyq3M5Ux76IimzWlKU988EUlILpU6g+YXdRZ3RKzoyK//CABg69GiaWYJmym133kNqTwF90H6kkbALOVHZ7ujc7XxrQlkjKehtY4lOqTfL03LYxWeGHnJMgDA4VVidMWbZL0Gzfo6eLbUK8UbZf3WPWLoHFks68/+bchZ6tdUyL4CayDDDVsxWisV7ZkJICVC1STXkcssiR5gtXMDKsrxS4kUjszWXlvb1anSMY+os4eI9ehK78U12C7vt+weRv3zEtVkvdaw85MlUjAmRa7MWQRDnTK2hrUrAADJp02oIF1EhcLjC6Vnpk4gjIpn6CKrt1JDPpgkCNK6MqfFWjQzok5XUPdTaJ2YNomtSEpbOIqSbSx6jNyfnhps/amsP5iNMUgLNLW/UE+mbMRnaKrpEY1E6fYjmuIcVsSrKuHG1cHy0HUpVI7fcZyKUK00vxiAJiIaAdAMYBdkMll1sDBDlwHANQD+f/beM0iy7DoTO/e9dOV9te9pMz0WmAEGMwMsQQMQoAMNVgowCJLLoA1oJTopVqSEkEKkqMUGGWJghRA3VhqRVOwyFgRJiGaWBAGQQQIUV7BjgXE9M22rurqqy7s0lfmufpzvu5nvZr3OzKos0zPvRHRk56uX793n7jvfOd/5zq/j/58Wkd8x+rb6oIh8ylpbFpHLxpjXRORxEfnSvhzBQRrqHyz6Y7Qd+UsttRbmHPpJdcrzC+qEF4+rw7F6L3ojoeal5xFkqqZU+py0lIC9X0p0fHy6XkJhfbvGxqvednYFojzrnUGkuqROV2UIziAbBkOIIAPNDdZUFW7pGBbeijqgIX0+h67qc1s8quem51l1lAMW6IOiZZiFYLDEFziAU2pyOanBCSaQYN2Vozsya7NHdZUhTndlCE49+n4Vjym4zryq90/vRa25q04MYP1cbDuFWfbgQnPol2Zcc1ZH6/LNqxux1e1lxX2Rjs5pfnoOc2vIhLBeD4Cnfq4pkHB74QlX01UouDFZ0GldHRCFVkBhrIMsb2w8RooluAbPXi1Nwr3kNsNMpq8k2U1r1crDSZdvP0Z3j3tgjHWS7e5/8wiyd5HSa3M4dgYk/NqsfQVVXhbW7zvlgysH5HnOWoGu1FJLbU9s38GUtXbaGPPbInJNRIoi8nlr7eeNMT8nIp8xxhRFZFVE3oWfnBCR6/ht1RizIiJjWP7lhk1PYdkb3lg3EpAWlIKo1HZrlNtmBqNPneFwBf2ChtUBoSAFi7ejHJv7wtlbQ3Q4ijtGiVHpRArb7Z0AX7WqNnMTf0A0u1CQqLSz54JOW4iaClNTADD/sEbAcwBR2U39HP3CFd31hGaBKDxx5D+pwMTSQ/p9/SgyGxCoMPdphkOuadzI9bdxTmeC49twDulEuybHdDiX0eCU4JhOdZeVyQoLeg7Gn1cvf/kBPVeFRVC1oNpXPK4gKbOpy3PLCiJCNGEOVnScg1ABlHzOZXgi11/IvzfYY8vLwtS6C9z5e6dgefG6fkfAIFrHPY/rFrWQtHfrlUp1x51BBwAxVyMFEMRzYRMyuK7PGDLD1RlVxDPiCRkkgSnWYvlAsBvmhEG8mreE+p7wBJQoV0GTZC3halyghdfd0S3b7Kk18KpuN1gHCGNWnRkuBih8YLnduNsF5u2u5wuLtOhd5rKhLmCQZqZSS+0g7CBofiOiWaWzoh05/8QY889E5D8XkQ9Ya79ijPkVEfm4aF1VN/b5ERH5iIhIQXq7sckDtXqUcm8VulJ785gDECNo9onltRF9XioDcMo8X654VB0RG2jtS/CfntPPfvSbQs0H6xF8I4WnSXHNj8S2UvljcbpXqL8bo7qXPH9Rh/TgI7qcwX/0WFp7XGXaKUyRKcIBLqM3DFT/hi+pU1YahRNIhbswfqykHQkzVOVkB9gdr+cEO2d8yxMs6LIFOM01gOz+aR3H6hndf/6vX9TPZ3W96FvfJiL1zFVuWc9x7uIV/TvrViYnxHj1QknOd91JB/2Z0fpqmxTTVobrQgDI3lmUSg/zcfU5UwBA2vDqlnxHWZqzHwRXzoGnyEY1DsQcOKIkPvut4b4PQdMlQOc91dTPDVaXVt8DpxtjJuCPkuisfJbRYNoI2jPwfDN7xjkFNWm2Gq9tTDTLIKSe82hIzzVbHhi/abZXv+bOKVUGtyot5yW/GXnH5geZ/PpAt14CTToFUamlti92EDS/94vIZWvtLRERY8yfiopPPGyt/QrW+SMR+Sz+Py0ip0RkyhiTEaUALjQsp53Esiaz1j4hIk+IiAya0Tt/diHFaT/7X6T2prDaMaX3SQj57oJOEb031VlbOa9OWWZeo/E5/D0sgbp091kREYmuTIlIAwXKdwpg1lGlPCpWQsPVJvMpVH7NyA6M2YAamnqWv/MhEalnogZeV2dq/YwCxs1JCBSM0IHC0K062a4v1Xl1+vpv4Lkt41iPa7+qcAPOI7MUcNZ9gYPYWOl0U7Uv8Gk+nTV/7dRGn1UHtDqojvLmMWYwsftv0Z5aAYBl9hWdojPLKp1eRk2egaOdgUKpjSKp3dDsSksg6ImXuN5NrabHDoURAoiz1ODEh6OqcGmQGRFkZev9qLbv2XTb2iFfPMNXCEyiyrF2CuqZ4cRE7Hem1TnkO2UPKOOuz1QrpU2K06xSJRH3/STULpF8djRXBgzapfZi+9UJVBMwqwsRHVKT/evmlBKzHkgPwjodM4lGudPMUMLv6iC6RcY/pf6nltq+2kGAqWsi8i5jTK8oze99IvJ1EflhCEhcFJHvEpGXsP6TIvKTorVQHxKRv7PWWmPMkyLySWPMx0UFKC6IyFf391AOxvwoZGqp7drgpIWgW0UDPbE/R5C6Hriu997m3erg9L6mqguGxd/ZeDF+UwF1U/2Il11tov0ljff2VKFuZGLCy+q9RccAEJmRQs1Mfkmfv7wy6mT+rercbSk+kM3xeDaPNTcRMlqUoScQyc4rMCFVkqAgkQJpTBPdJ7Fmgs5Vl610HDVQA6B/rqDpM4Qlwg3Q1nBf2WEoFwKEB6gVYsPiCFL3dqva9jWsN8nF+U2SRN+lBZvIFJKaxwbJ7EfETIafJfXrjwiIjKkr0JGeCWBgvMwiVSsd1Y2gOeE5iLCeoxG2K0CyB+Db0SQrt2dSEBhEuEcM2isYr3cclUHdOemw0TBl4Fnn6ei1x5SS6guZEKjUHN0Uc+XIUL0XlZ95360cv28J81oijTqBFpjS/lJLbW/sIGqmvmKM+bSIPC0iVRF5RjRrNCUi/48xJhKRJRH5Gfzk90TkDyAwsSiq4CfW2hegBPgitvPzXVfyO6xG2gRelDVfSjm11Do1OGcEUbVeja7nvnlVRERKjyigCNGjpTKoDkdf1XM4bs7GNtukrOa9zFsqsHVKX6H8dDaTSI9raXBEavOqRNd3WbMoS29Vms/qOT1H7K009k04exhqBswtl6ni0KoAHEvIniHTwawepZqdiIZfAH+7LF0rJ2mPMlTFMT3fuQ3dPumgAX25y5qJqj5wRr8joh6gNiq3Bid/GfVp6PETLSzWKaAu87A95bOJBtiuYECH58SsU/5fnw1H0WPmwheBYL2TR8VkAMGEYV2xzu+d5PUPs96xOVprY88qHYR+Z8CtU/GEVpngnZgHBOoArxj/O449Qm8yQzEVglaq7jkp87hASbuiGeG0Pte146Amj0HxEplQ9m90TZkZiOA14XU+Mi72dZ0fM8eh4IlataaMUENvOJHG+S6BxpwEfrx71mXgmf3j9W8KROxthjq11N7sdiBqftbaXxORX/MW/xn++euWROSHE7bzMRH5WNcHeMjNTeandAKXF1IwlVp3zEJ2vzymDk1p8ryIiGQ29OVcnESdCGTDLYq1o3PHRUTEIMqbSHvxnQZfGGGXkVOT1JNmB8a6I2aOKBxBAHHkH9QpW3hMqZH9N/RYS0NoTLug32ffoesX5jFG+jWI1AczGiE3yM4EXmPWupPo10nY7f+/ne1RJJo1U31XNJtGpcPiCVDf4PgGEJqo9aPx7SZAAMU3mDlhXUt/vxN2qAPuhEG0alTabv1dkpk4SKoDGU8Snb2eKPHtL/fGZyPr/k9g4fdKcjLgXk1cEr3LhKSd6XdfqCXJCNbqtLW2ftaZ8ZnMJGWV0eMOPchkWEFOE3X1mNJiA8rHA8C0e1WpEhmUvPoxXicvg0ZA6zJnrPmqRQ4YigPFAHql7TNDddozxFKiNsGrdw87qiO250voG68O020+zUilltqe2EFJo6e2C2OEjk7eIeiGkdobxIIb6tjnBgGa1tXhWIEkenlQ77aJp0HrQ71PrR99p3yKU8WrffLoJ01Oouew1v/g9+7ZvsmvCT1J4V0YHczKMLIG8EN6Z3Xbm+eGY8sJosaf13Mz+7ieM2Zpspt6LkpjOu0WXgFIQo0NgakZQG+vOYAsP/twiCxA8X5lVOekLWQs8/PIwhzV6L+5qdLoxXdrhjPTj1q7o3qO8i9pBqtyQUF5eHFaBGCqpQJku7ZTR5LRfrSiCAB6q1en4uPhPemp+fn1T7FNe9c28Rr72biE9Zr21eYx+3TDbjU8FpEmpUGX8fGNwBLZngDPwdb9KvCSfema/n0A6ntXZmJjbn9AnDtwbmb1OfMbizvjeqydQwsDe3XK7dspCbp7wRcMic93LWvgaK7JebxWyqkvUmbfl3P3a7lSEJVaantqKZi6Ay2YUNqRbECe+gDHktoby6LTWjeQnVNHtjqsL2nWwmwcRTQ+o07A1qj+PSjGaUe0uiSzX0PggSFGXp0iW4sGn3t511NZDYCw95o6WQuPaI3T8EV1WNbuUgARbumxbR7Vsd/4NgUIVPVjtoZCFBlm9fqhJrapkXJSJMMR3U8367/2zJzYBgQQoFy4eVwd3kGAcQthEyogFubgDOI+Kj6kWkLVXv1efdtp6YECIGvIXD2R19i2ZdF/UhF+hw5m5YSCgfzVxdh2fUDUNu06qokEnkCLb0k1cF3ORNazatjfZvK6nVrT/ZtwPRiACU4poKbaXrVXH5zsmD4X4ZwGHdikN0RPvCZF0CQbR63iuIK1LLbD2iw/o+gahbP9AK2nUBfJ4JwBFVMnl+9noBLumSbz+00x81WAIqJXF8hz58Rr2gVrqaWWWlcsBVN3oEWIpJnF9PKl1iVjfcc3XhUREQshiZVH3yIideGJY/+ojn95XF/qvZehvjCnmQdzVMFY9Ua871OTUxglOAfsi4Psq4H8vxNdaVEf4dbrNFq9nbHgvQ9SzNjkFrJ2Q6+qw3Tt+7TGIs+AOw61OAkHCz5/aVQdm0wJqmJjGuEO/QwHqEIEVS5ifgiVudaP60nhsQVgSPXMx2vgzAaoVVsKNFfP6vUdmNLrRZBOafXc7IZEyGA01Qc1CTrsT1E9QZTdiNey+YDfXTf0+vLpgI3jbZkB6tYxtVJ3gzPOOkFHFwu2P8Z2zA+scNvumfcoiK7Oq4xnPoe+bF/4hv4efw8GIGKC81mbX8AO26PM1V69pNu5rNuveoEeB0y4nOcCYK4GYQy7vtE0z1CuPaknmjvWdq+79cCXyzxSxATHhHutmTp5+OaM1FJ7I1rqjd+B5qL9J1EzlURPSC21ds3j1ofHlMqUX9UFi/epgzFyUd/eva8rrWXzvDoYvai1qr3yum7AA1FNDiUtoFNARwg1AaS+AUwRRLl7v5Vz2MWIrIWSIaXRe19QZ+rmBzSbEsK3P/6k0pBmv0eXn/mtZ0RE5OqvaH8q9rMhABl4Bc4knuNgRmWto0V1jEiLaqWIeJDGbFthib2Y1NnbGoSjOgAxAQiaZIqgOo4g4o5jIohiFiJfq0nkRBhwL/jKj4mD6rKSGqw2it5pbCbry1azpgaCCU19sJLGtx/WCogDNIWTSsukxHowCGreLt4xvrhMYi8rXKfqdQ0uZArx1gAOnHFOYN0Qr2+H9V4EZZxrqjhmRz325qTqlWux49DxhvFlSdZKHKXN85oo1NOp0EhqqaXWVUvB1B1ojL5b1Kmkllq3jI5fDZml6uPq6Fs4KrUedTAWIbpQWNSXO+l+GWaO/ML4nNejxSu89xUqI1C7SK1xEsS+ylklLipABTiRbYBbh8bs2PoJAAL4MUvvPikiIpXBuANz44Na21FBuyhz10kMRD/GXtRjWLgftY6gFUWDoEqCvlujIpgv8e2K0A9PtLnvpp7/1dM6tmPXNGtTGdLrk1nTY9ga0XOZ3QDY6kfm87zeLwPXdXm1oOd0a7JfsnMK1N21d815E8BRQl1dvQ7Pl+Hfvu6uyQjwX9FaHtdXyu+Z5upTWozzMBqzf73xpvaugTRbH3Rw7yU6/gniMAy4hKhJYw1hCHU9J1LC6wmhCDYaj5Y0CNEq68PMk2sKPaqA0fD37rmrxdYXjzoX9PXUgXObfZ0Sg0otrGXtU7fvsYa2C6mlllprOxAwZYz5b0Tk50TdjG+IyE+LyDER+ZSIjInIUyLyE9baijEmLyL/XkTeIdqs90estVewnY+KyM+KSE1Efsla+7l9PpQDMUbi3FSXTnqp7dL4sg7H1JGp3X1CRESqPXqvHfuCUnSWH4Kjg3uw96Iuj0bQfJXF5h59r67WlqC8BsfF0fQ8ilCzmpnXg4nm1Px2X1MVjSMqjzogC58qt67bLszrvtfO6N9HX1Qn7tbbdOyv/aRG+UMc+vxbSG1DvRCVvZCds5SApvS21xvIUa7sDpz0PXLsmW0jvS9cUYDYi1qo1XvUER5+CoprBapB6v3Rj3NRHtbrxsyVRA3nwcv0NFkSqKJjG3rZg057bhH4g8Llmrv6YMwDGol1f40g7JDM3a4HVIR7MOtlhglg+IN2KKcJx9ayBpDUUAA59+wTVHOsTEG5QE17VMRwQgNBpGuaYpwa7Ebt1U76tXC2krmtuEhseYK0edt2CCm+qaWWWt32HUwZY06IyC+JyAPW2iJ6RX1YRD4gIv/aWvspY8z/IQqS/i0+l6y1dxtjPiwivyUiP2KMeQC/e1C0ae/founvG37WYWSUTSRTAYrUdmtObn8EAKJHp4bBq+poLL9VQVRlQNcbfg0Zh6O6foCeSc5x9el7fuF1guPjpKAhLmDKcSeFUWpHO/KcFTpeu6qZojOH2g2CJzamzeJ73w3U+xxX53r5vB7b0S/r8un3IOtyDTVSqF+PAM5Yk2XWFYBQ5SwcRUaG/ZWoCuc7oYcgerw5gXoSDG1rAgpsgwC7vD5wgEvnNPs2eE2vb++XLoqISPGHHhARkbBcv5505NvtH5RkTVmATiXScQzh+TP6Hb3VEh1c73o13fNOoS3TVdW8XRmCDxRxYBbPAXzeq04ts41aqsSGsdu/sZyiIa67IGNkr6BWzVNJdFb2FPJamO1DL71pleWnAqmTp8+SUqzH6gI8WO568hWLzbL7LTJUO1VbbGl3UhY0tdTegHZQNL+MiPQYY7ZEpFdEZkTkO0Xkx/D3fycivy4Kpj6I/4uIfFpEfsdoauaDIvIpa21ZRC6jqe/jIvKltkZwB08+pECFt9DT4iAHk9obwpiZMui9stUH6Wr0SyksweGAU5W9pU5XDQ022UeIWQTn2HhORUuHp8nhUueEAMP1c0G0OPIcbRfFzu2CAssxLCrNqHcGqntW0RCpjtWanoueWzh3OLSZb9GxZTbcqPR3oLBtTOoxDf0jenQhQh6yrw6vRRiv2bDVLsxVXZ73qOLHHlu0whwyVFdxX4wpCCb9L7cCut/D50REZPQ5pVixWXRmYV1Mlg1JO+sTlSiv37Rim+eCEvknoSb3hadvO666aIOnxugD/8MCpKSB3sceSqxRJG2Xkt4OGLWuSWy6Dq3qhjBXMIhgHGj1awbZawkZKSrqtbqOrN9cj6v+uaAFlfNcU+V4s2XOObbW8MZtUpK8/RBSSy21N6btO5iy1k4bY35bRK6JSFFEPi9K61u21vLtMiUiJ/D/EyJyHb+tGmNWRKmAJ0Tkyw2bbvxN+3YHgipG6GqLSwc8ktTeMAYHpQZqG2tbMst6r5WOoSYKct/BmjpdwQp6AQ3AGXtAm/wGl7VvUA3gqt7MEtS1Fs+d74hFyESxaLxpO+44sL3dyIlzG3zOkKUrjqmzNfacHnPxmEa4S2M6hqHLqB9CmcnkMzqGmX9C0Qzd7vBF7IciGyeVDijoIWOm5+Ljccpdu5ir9qKmQkRqeXxC8rw0qQ7n4LMKjraO6P20BvW+jWN6LP1Tuv7gn6tIx8b3PSwiIr1TDdQr1LTUG5AmZEN8kOKDF09IYKc1aMEWmsqe0lq46tT0tus1BQz2893Sqp4saSxDoOmOK6A3tzQbxJ5nNSpOJgq+dHBvJqnu8XowQ3VNz68hrTLhme8YlHrCJgGYHhaZqagSVxB1x0RwbxsynU3zjxfaTDovTdm6Xd4jraT17yD/JrXU7kQ7CJrfiGhW6ayILIvIn4jI9+7xPj8iIh8RESkIJuZWUbLkjcV/fxDGmqld0l9SS823qFcdBoOo+taoZmM2J3WqYI+l1XdoL5j+S1pHUjqiz1VhGj1b4AAFdCxB+zNes0lnrE/wm0/yXqcDBACS9Nw6ik4um1wA38q4bfSv2ZzMxv5ss+r0rZyFYl2fbn/jiB4jJdKZgcovgyYGX3D4VdD6RkFZLECsgVRJOHOuMWc3Gm/u0bxFNb/Vu/Q/k0/rnLT+gDZz7pnVYx24qge/DkqkwTGt/tO3i4hIphQHOtHCYp2yidoZZvCctXJUnSGTsdOGtNhP5hZU/LZaqPPt57vBz47t1Ajs+RwOQkUFdUqk+bE/wHYy77419Zar/+G2Q2H2i017SR326ZKu91LYOkumG0DmaRCqjJsQv+E8AbAUAlxRct3Vj7GH09Y2YCrJn+hyP7COLQVRqaW2L3YQNL/3i8hla+0tERFjzJ+KyLtFZNgYk0F26qSIMOw3LSKnRGTKGJMRkSFRIQoupzX+JmbW2idE5AkRkUEzar0/djb6bkeUdmB0OFmIu1vVstRSc2p4JShkTauwRPEtGoVn3VC1FzQtSGCbqyoTLkc0IxW9qH2qguNHdTnFFaja5wQidH+ZE1ALXHecOPyMtVZwvBitpgPE9Uj3Q9SaCl0ml61Tljo175lmk1025zXIIEXAdb0zcQdq8wRoYVA2z5BVhIxV7jU9Z+V7FZDmptEjZnY+PoztaqS2GV9b1u15i4pmxBXYXEQZeWQ2y2MKxgOoLpISSXXICDh14Cs3Y+Or1WrNAgR+VqQV3Y81LknOe7tF/QR4fVCWvKjy/60bS3fBWjjnjlIYtVAmbPN6R998Wf8DARlHaXPUxQ5k3ncsY1MWJwAAIABJREFUtoB7BM96cu2ZV6fZykgPpDJhL2qnCJqo8pf1gic+cNyuLuowBFm7aW+U40gttX2ygwBT10TkXcaYXlGa3/tE5Osi8vci8iFRRb+fFJG/wPpP4vuX8Pe/s9ZaY8yTIvJJY8zHRQUoLojIV/ftKA5wsmHUnjUWtaUUTKW2S2ORPUBUbUEppD0vqeOw+oG79PM0aFxX1ZEI71M58AxpgaehAgiKTgbZHXENL7Xom0ISdJRr92pchJHxzGu6XrSsdUV04giymGXw6X7ROiTVKWe8G1tSamEtpzS88hDofF9awFg1el/DrgqLAKR4HPvAjFq/S5cPvqbft85oY2MbYszDGgk30wooTB++OwVE9gCLSzXbcrlzJ67L81aEN8jQZR1bz2W9b2yPApnKGc0C5Bb1pOTX9Af9n9VGrPbes7qdm0ptrD56n4iImKPDEkJW3b7wiu6kw9qpRCn0Ts8ZszXXEDjwmvJ21ZKUBgkEnMqeJ7rgUxc7VX+j4AsBKACFAa5wzWj30ihSg3YIEYMhzE43URdxPTNtujGuJgqZLa++0yYEXwI8jz6N1JZrb1jQYbK5pjYWqaWWWrIdRM3UV4wxnxaRp0WkKiLPiGaN/kpEPmWM+ZdY9nv4ye+JyB9AYGJRVMFPrLUvQAnwRWzn598MSn4iUo+Uru8w8p5aaglGhyU8oZml8lkFQxNfVceRUteDz6HBJaL1BhktS3EUqAIyukwHiY1oqVznivbx3bz9fv3sBx0XcsSZI0obY7E51f6cBHspLiMeKxLfodXmFViGZRVJyMGfvPn9CizHXtAxrN6l0+jK3fr37Lo6f0f/XwVd14ZVwW6LrCWIdWRnFShSEdGARkQAGrCODU18jZfVE5GDc3QwthDAce2kjq1vCtF+UBcDZPMys3oMITJVW+9U0BQW9RyGRxSwGhxO8WhB+koA6CcVoEe4R1xvMpoHIFwGw8/stako2XysuEdBfauyfqgb5oMfX1zB623k1PTYyor3BCmMO6V+IwMc3K33ttnU5ymavRVfrxsZmFb1PW3uyymQtn0dcW5JYcQcYZzCHsCZF7Rgdp2BmnBcn8/aLe/cdNMOOtMVmJ3TYlNL7U1oB6LmZ639NRH5NW/xJVE1Pn/dkoj8cMJ2PiYiH+v6AA+7eXUkqaW2a6Ozxt4+yBSsvgeaLnepYzH+JXUgto6hUJ10vavIJJ1XWiBV2bIXwbylMteo/i5gzxjKDlN97wWlUNmTx2LLCaIMqDkWWQG7tb2zEfQUpLZL+mvmDLJumzr2ChrNVnuhyndUnY3cmo0t3zymTtryWzWDMXQJ38/rOZ5/u4Kn8adx7pZBZ0KdmQV4IrXKOdoBQMBhoPUyoIPMRXZdvxePgsuIy0JVv9q4gnD2k8reAIhCXyqLmp3sJc3O2cyx+r5cvU6LjFSb/aM6njc535JiulNQtk19jWs+XY5nmBxdlfLwPN+gdjtKGuuJ2AsJQYZmlbkWwAQNpCt363nPXoTSJMFZp7XFOzEvc9TKmWdNFps6twQg2H5tBK1FVuPZtgC1VE7shsIUDNxQ8ZDP5SFoTbBXZreqO6dpppbam9AOSho9td2Yr06VWmrdMhbX33NGRERya6iVgqz3+v1o6ovamMym/j2L+hY6NFuDmFruUzCWnUf/GjRzDSY0W0PaX4SsDIu/zRolmhGhp/iAq5/wIvdwHpmparuO4jZmsW9S18ojaMIL/5IgahPCE+PPK8iZmtDfbcH36lkABW4etD7gxlq/OsDh86/jGJCJSqAbHargCWubWDcGMJXZ0DEWcQ76Z/TcrTyu90E/enNlvqbUPXtBMyE8F/aIgq7McknMBpxkSl+zlsXLQvrzoJOQb1ugooVh/dqsBhhI+4p8J77V9h3NEB/ZTF0Gn1Q11qIh6FC9plmwECqWBEsMMjj5fD4XdPSzDVTQdg4R2b4QvQtrc7fiY95J09gk1b5WY6HwCBtzN2Ws4mNyNXVtXtdwYQ2/A1Dlc+U9X7y+Tdk/1+Mu6PjY2raDBmlRbX8AdGqpvUEsBVOppZaasyodxnHNqhQW0bj2+SsiIhKd1sh1gIa2xdOaZYkm0YPnpjrPeTh14QZoeVDAC5Yhpb7hCVJU1elzDTI9x8ZF6lFrxb8bq1MYwRi31xUKLChO9i4VioCQmYw/p8Bu6V5kkuBzbB5R568A0DQwpce+dEEd38ISqFTMpjELcQpZuCKOfcGThWffHScCcAhoNxh7bgViG4MEV3qsPYt6fUr3aH1Ydl2/Z5aRkXwQEvobemxBGXUsT70gIiLFDzwqva/oug7EgCIqfvlOkgx4ly0E1dRlb6dRQ2XidXxNmUMTzzBS3l9qNYnKcdXKcGwo9t31NsI1Z60hnwc2uGVtYTCmwY7IZTe9oEKC88/nKlzU55N3mDsmP3DXhrNfF8douaoaM35eXVhTrZzL1HYYMPFq7fznKNqI00cdSGPghnPMmyWIedCALrXU7iBLwdSdaP5LJy0UTW23RgfBFXWDEpNXh6V6jwpEbJ7QzE8eTXx7Xl/A7+A49WmGqjyh6/VsgpZ0Rel+VTh9rIMJRyCiAsELRtID1FjVoLwVnjijf6fqIH7n6H9sKlrxRAd2YW5bOLbcBrJwNyGKcb+CqaGrei6Wz+l0OgF58KV70dAY4Cm3qr/vnQKgBMDcmtBMR+51BYD1iDiyFHCcXa1QoxO5k4xBFy0LzFoejmeqcqgbyy/oucmDyhiB/hnh/jKXrun3t9+rv3/vIyIiEpYikXmtkWoSWWiTztXtc0PBAjPg0S9pQQKIcw1uUaPD8eeykhmNt0assUYJzwkzVgTUgde4lgDAyZAP6L0UYr3q3Hxs/cRjIzjLxzNkBDTGE3loC9AnNfZt1QuraTNcHg8y1MFaZ+89J3HOgIyjEm+fxUuk1TaOt5U4ykHXQKWWWmp7aimYugON/Hg6otWbs/hDhz0uUkvNM9LsIjj6Pf8fldT03qrc84CI1HsprT6s1LeB1zRdYKbVGcwvoJ8Qo7nHNKpPJ7GGe5aRdNKaarcUnNVApSG9yaDmyqLGpHZMf2devKTbJT2qh5LOtV3XFpkzWv8lRd1OCfU+PZeuiIjI8GkdQ2kcymd43JbugWMK/+rok9dFROTGD2oNlqnpOe6ZUec8swDQBieRtRq1JQWYJkmZ8BBEyDeP6n1hMJTMJgGPfmSvL8TWD0t6LkNSrKD+SDGOyn16P/VcW3P3TAhn2TUpZ0Yvvz2VzTnZtrsOLLM0br51f2hRw+oFv/gsRcWSBFyGZrlBj95zhkCegisINlDhLhxEJgkqmRHqf+yMZvEi0HRD1lwBoLv+bb4RWPBUerTZpp5n7VjS/dkKBPu0Te6T4NV4IMoFglpcb7+hN3+fBIJ9cRB/+w37cfdczfut/3cndtHmvZmCsNRSuyMsBVN3oLnIZpIkbDrxptapeYplrCvY+DbNGFCyfKsfGYfnLouISOk7L4iISK1HAUVmUgFGZm41vnnnuIDud/6MiIhErBuaQyQ+693Tk6ituq61VSwCr5xShb0snMQgRyUE/b1JcpA6MNbxRDkdcz9oe6s/+i4REan2gJpV0WMbuqSO0sKDOoaeOV0+937N6vXPqKdV60FWBv2q7DU9NsvnGRkplw3wnfQ2pcH3wwiiqqgPo8JhsIX6r3GlrQUVOOOQgzc3AL5xvSJkoYJzer1tISPRUwrkXRbTp3D6UvGstaGYiZOw7lJzc1JXAWSYQWzqQ5RgZBDYLb1Xg56CU4QLAJICtgwACDIUQWBrANYENoogiIg5rnRKCsLYG8hwjYP29+rl247NrCvIIijjc9qUgeog2+c/861EMfjMJvaT8rI/dYDSmcR9ffseo6Mpu9R+sMKNNbGJchgbgz+mlgAwtdRSO9SWgqk70JyiU1MhdjrxprY7Y8YoeuxBEalT1DYn4FwheLz8/nt0/TwczGfU8Y0gNxye0jojqv5lkHmgAxQNwCmswflbY1E4HVPsaEFrP1zfKAIN+j8FLtfxMXsRjo/vOqrLfeSukioFpy9S2fjVM6AHYT9rp3Q6DfFY9k+D/ne3Os/jX9NzsHFeHWY26TVHVGo5uqIZLEdjIo3Xk8c+DBkpWm5Zz8noyzrm4pheh4GrAA7PaA2U3K+gOxpQGmhwXDNQEa5bUECt1Utah7T26EnpX9O6KtdfiFROL+PI7KUDo2z4vNXd2jJS6kJK12O5U41sJflNRT5kh0wm2wQECWYMG7Oz1cCkni+h6AWOlVmyoB+6+6i/s1DjdM2vW1htCc/ZALaDMVpJAgdtGEEP6664iQTQ6fdR80FYgHYJFMtoaubr00GbdoDzj+x4kyCIn13aiXBJQhar6Rk+YHpuaqml1l3bdzBljLlXRP6oYdE5EfmfROSEiPygiFRE5HUR+Wlr7TJ+81ER+VkRqYnIL1lrP4fl3ysinxAN+/yutfY39+s4DtJIZXIvhdRS65IFZzSLEiyoE1cZ1sj28Mvq5FHyfP4hdYp75tVDWvv+h/V3AEf9Lyq9y7Df07Jmqqrf9pCIiGT+8Zu6/hCK8QEcWGBPp4NZCBeZh6NVeEFVziyU1VzPFzpgwe5liymOUD2mVKqlB9TRzJTQiwsZqZW7daw5stAwqy7dpyAqLOp6Sw8rsBx6Hc40HFcLwOgc61ZUqsbjOmAaUGEZDYWDeJYuQq1d5mH0DVsFvexl7VwcHIf0uZeJ3DoDal/ZSu0VrItsDLM0LmPHTBUd/4pH6+zyOWENm+t3xaCWL5jgm5f5aMyauubTHDu2GYwiK4rggMmq8+1oekWoaZ5WWqBT/SOABM2v9s2Luj3I7rNXkn9uKP8drQDMJfXq6uR+c2Al3izZgasEWmS9nxoag6NJshyHAMg86itZw8ZzyEyhA1XbZ3ApcpM5CyVJZL3r+xdvOzu4j5KA2JukFWZqqb3Z7CCa9r4iIm8TETHGhCIyLSJ/JiL3ishHrbVVY8xvichHReS/M8Y8INqo90EROS4if2uMuQeb+zci8l0iMiUiXzPGPGmtfXFfD+ggjNGuDgtvU0st0ViHgJqL0reqE8xsixh1xspD9DT0IwtpdGaoAq/vE5u3soLAgJLDGik6j2LhzMFBIg3Qle4TVNEpoUM9CgcbzX1dHUS5vHOgQad3TR3X9beAughQVBzTUVUgvJaBf7pFkbZ8vG7oyNfVgdrq1d+Fr6rjWzur2TtmZcycAtCAEXf2nULdWbSdZPpBZaNxbjeO6LkKcd2pWJilah9q72wvmjZTQh+0zM171UHOLVMpTbeTXalIiHo6d/xw9F1GYrsmxg3LW4okdHh/1MFTnErK/kSuEXXiBkA7bMjQMEjAMXNbDmRSlt1lU+KqfxbNddlIls12+WmRtYuQ+U06VtJk2ey6SZxhy6Pc0W53Dnm8/O6/tzzpdNczC73kBM88n33DtgrZOKWX9ZXtCpTwHmS7BYLgelsFtmPogiJoaqml9qawg6b5vU9EXrfWXhWRqw3LvywiH8L/Pygin7LWlkXksjHmNak3933NWntJRMQY8yms+8YHU3zx4gUYlRIKZFNLrU1zjszp47HlURb9pY7pVFGa0O9j34Sa37Q6HKVj6vj3vgaHEtLMWdYywTJPa6ScvZR8cQXnaDELQErUvVojZVH7wZoSR+XC7+iM2srW7p8DjGFzAtRCZN3GXlJHdeq9OvY8MlI8VybSzyz81+IoVPv64Ai/Rylv/X/5rP4OjmuILIOr9YGz19Q4tdFpPDAwBccW4Jiy8f1XAIbRr0imlYZmz0FYgVl10P1CNKtdOa/3z+jTECAZKEh0RrNXrKerXlcQykwQs5Su3xNsz4JMBBLMWBC0cf+tFN08M5msy3YRxDiaqp8Z8uuOAOxqCCKEE6ABZiCScVUpo5Rzb1dOn4IWbJHgzKevuYPwekk1Ci94wIuS8L6aXn11Rmjic4ajC2557RJIbSSYSqrN8swpJHrgl2A5KLRHjUwttdRSox00mPqwiPzhNst/RupUwBOi4Io2hWUiIte95e/cbifGmI+IyEdERArSu4vhHg7jy4CR62gOjmXKw05tpwbHsHxcaXb5RTg8oTquvWg8WxnSe48CAwHU2Xovgn6U1/VLj5zV7Q3r+sM+lY1RfooFwEhhJUhirUhlRJ3v3FE4h5Bgj17XGAwj/MwOhONjIus7DC7AeSverfvObujvqxjajW/V/xRQSsUMVQB/tdyr649/A/LVGSghQlKb4KzncVVGzE3FnTrr1fq4DAzlqlk439g09ICUPHtB81w+p2OcfVzvnwHUi/Xl1TGmQAlV/AwUEnM3IExxEjVUfbg/sqEY3GN0vpmp4jVmU+UA90Jt1aN3dbm4n7VZDkR5tEIqYRLgJFqj+h/G6oQncKxsmsssCkWHGDgjwGY2hZRv1tE65UAPaLY0Pn/MInVKnWwAkqTnmWEcG6i+ps+j8EbNvxWp10OakwqqKasf4PlYf1Czcf3Ietrpm7pei4ySO3c4535G0QmZZONzU9qCJLXUUkuyAwNTxpiciPyQKJ2vcfn/INoz8D90a1/W2idE5AkRkUEzeufPhGioahGFFD+KmFpqHRqdtfxV1IOMaNSXam1rxwHg4a8u362ORn5RHZlqXxafFKoAgID6X+l+jX8ULqmTSKoUazksi8v7UB8DZ7t2FM2AkemI0Edn84w6Qr0osA9u6bgdLWltrTlqXj9YLL/9VMCsC+uAKDRhgHW2+uPrMxMlga6fKerJWzmr5+bkp6+IiMiNf3omtv/aGBQUb6lDzGyco7mR4nU7EQCf4pR4UO1F79u1agH9peCD908DHODcEURZUrSgLrd5bjS2Xt8sBCu+rrV0lQ88Jn1X9V6p3aVKdeE00CuPEdfeoG6OTrZT7/N6Je3amGVFFonXiQqTrj+YJypxu/oZyrczI+WAs9dPzWVRCMSwbQfCCEwgzmAAwmprfofjBMO5tKve+q2Ag5+xYsayv1cMAiu8vwMoBjr6X23731rWdUXI1g3HA6BF3Dshahcjzhn+2Hy1QAQhA6gxyhDmuJU4+GVrAmYLXauCW/PxcaegKrXUUoMdZGbq+0TkaWuta9phjPkpEfkBEXmfdcURMi0ipxp+dxLL5DbL39Bm6DRk4i/elOaX2o4N1BrbC6nym+rcZdfU4WA/ocoQgMIG6H93qaOTXY8LEWTX9R7Nok5o7TSjvJqByA3CAU24Z9lXau2sOjJDn39J1z+vdDE64QEyXk33fthAN/KtZW8XHXP+sjrz8w/pNDNwXceUh7859yiceYCr3DKyBzk4eaD9lVE/T3EF1l4FFThlVDREg2I3DNfjB72avN41YqPm406UecbyLoEoOv2lUT0H1T4cA3abWwQY7tFXTH5Wj23r+AiW6+8Kl/Vkrtyn6b3Kh5RcYAPjnOooB/U81hOxsS0NTrfrhUQ1xKTWEe4gOuz149H6XO3NfWf0+wooqWUFhtXpGWx/exq2yWSax0owwlongJuIyq0eWHYUR79Brl/zlATseIikXwJYNMmTtzL3DtKPYHRYtk6gD9ukzin9F5HtJlAkTZPZNMjmu0bd51UggiI2W8PICM8CxK6gpmoGCqRek+2mIVI2/tgYBolzjQxaxL5upCMiiEFKsS9/HuSz9ety2CztOZlaavtqBwmmflQaKH5Q5vtVEfkOa21jZ8EnReSTxpiPiwpQXBCRr4pO2xeMMWdFQdSHReTHdjyaO2jyqeHlEY6OHPBIUnujWWVcwUthQZ2qLBz/KId6nxKK7uFXDL6gEfMqhCBshtkb/V3vnDpxxQlSdBBthjR6lIMS3jOv6+9ZAA8gUQMG2/wW1ZypwgnvnUGBPZxERvapbiaZTF2IYId9mWrjiGDjZ4v36/ZOP6nHvHxenUUCiY1TBBT4PglxhiKO4Wgex8DaKjjVcHxdk16qw6FmqkkFDtTLbfsncV0nwtCBYEAnRvW+MjJQEN1YvUuvT2lE74fRl3SM5SMKhPIvKDPbjJzR5RMKqjeOwbGFP5xbs1J69G5dlw2BfeEJL0NAemRTZijJOjwH9qg64cEsskPIpkaU6wfllRks0tQ4LmbIHE07k3EOvqvjoXPOa81j9hUD2QeKlDVk5wgQqNpnMl79UYIRdAXnFMBEl67ebvVkY9apr0eq/chW5wH0TmiGUa5Ox/YpOGZ3LijwUcSxcdsAU9UBgLBRBbN50PzMa1d0OwliGbxv1i4ocC8s6s2Wn/daEITxc5gZ1qw6M5BOlbCQd2NPaiC9Y9vtc9pupjq11FLrirUEU8aYnxCRP7fWrjUs+wFr7V/udKfGmD5RFb7/omHx74hIXkT+BpSjL1tr/7m19gVjzB+LCktUReTnrdVQnzHmF0Tkc6JiYb9vrX1hp2NKnHwOYbYnQA+faGom/odDNMbU7jCDI5G/BjoRov0UFgjhI/Td0OWbk+pwbNytgL7nsyqmYN+uTX4zMwoMqohOD1yCE/jsy/r5MNZbhoofevgEZ5FshkNVQK1W4Zb+Pcrr8uIRdaAGbyrgCfmc1m5DhWvzWaYzR0efdD722Lr8w3pMdPLzi6iFOq7bHXoZPYDITsJuN45BHABiZSyoD9Zw7KcUCFpkBxzdj2pxjNj3A4jWavVouSc7XT8Yj+qYRH3coRUW0VespNvtm0F9GRsaAzyv3qVjzs3rucst6/1Q7dv+FZRfrY8vf5OpQKgdQk7fbuKe2NiM/5hCBt2aD3HOan0AHKwrWtPMSEiKHEVRWM9HGqDLMOIaIaMVra/XZb1LcREL64mOUK7bz2BZgBdfhINAxWWYWlEd/VqpdjNSnhH0mY2i5G8SBun9WwVdz7yE88IaNBrAj5NpZ++rrGYmS6Nohj2PTBFbNuUysd819beqxsEsqanMojtqJMEd6zWhkEhRD86J7lgHB0SWNHvF2s7ajNZt7ZgKmNT0txU9N2luS32C1FLbF2snM/W/i8i/MMb8qLX2JSz7DRHZMZiy1m6IyJi37O7brP8xEfnYNss/IyKf2ek4YradUtYhNXarN+N6CqOpNwW7MbV9sOqkgpO1MxpFpmhCdtXGvg9dhgJdGaDrUZVSz6wgDQPH0kCtLZxXp6P8rdpnavMIaq4ApnoiUHogRz71If1+7He+KiIiN/8rFfDMbOo4Jr+o2dmVR3Scgy/CEVpSIGLXN+oOZNKznUR5ggO6cVQ/N0+BsrgMxxc0vgDOce9FyHmv6fdMCQDijHp7WwP693N/qmDo5rvViSwdRRbwFVUodLSjwQF3DCIi1lA2HFm9Rplsv96khdPcqt9Qu+boY6BmVQdBxULN3PG/RvPdtyq1cfCqOvvVIQUS1V5dLz+v98so3iyFaWRUypW6vDca17p+Uqueo+83SG2Xythu/RjOe2YF42HtDwEH6vWY0eA4nGAGsqaOFsh6p3zeUcpq8/Pbj8UHN47q6VEHvd/ZShTbV6t73gGLmxC+oLBFubz97/yeUQQsABHRrQUxABrl+1RoJSxiLsAx14EhgDcAiasPw/NQvXJNREQyb8GcNKi/67sMSiJosuaI/r5KGqhPfYT1oj4vdwtCFZk4GKvemIkdG0U9CHhdFjCK6tlHJ9/uqTB2GoyNvEwkM5O8PkmxohQ0pZbagVo7YOqyaMPcTxtjft1a+yeyTa3nHWtNdQgelcQt3v4l12T7kclCYS+Vnw5j9iy1O8v8+5uZp4EpOEdwminvvQL1tpN/oeInlspbq2yyC8oVnasxBWm5aY02r5+YjO2PUWv2jQrgA5a+6+36HX2Mcmv6ufhO/X0eTWPLR9VBy0I9zi8q14VtTlsYc9+MOl1L67rN3hn9ffGorla4hXNxXj8HL0NwAk18KyPI2hSRuTqpx0hVwOIE6onuP49jhsPMLF0hLhtPypYDTI3Pe5uqfm7O2OVcQUlvimzk5yidD9rfqGYjCrfitKewCJBdhRjAGgDKZFxkIBrqlZC0ObaCGFZ6VgRwtWtK1e0EPbYxlwFBg2hmVigC4XpDUbYc96ADUcycwDGOymUJblfbt+0gEsRUfHDD7FybwJJ1XobnmIDdP8fe/WU9GiKVFe3JYw5oM4MUlDEnUA7eAT2mmACKPIXPzAllYhCM5ecAXGY9aXPWexF4JDQFLo2hpUher1/fomY+mXE0oPMZ0Aejea9/GJ6d6NaCW0SKrvMn3DG1Ceybah+j2O87vFVTSy21fbZ2wJS11j5tjPkOEflDY8w7pd6D8863die7wwRU+OLkp+9kpZZapwbHI/O6RmVz96qDz6astbhfLxFmjs0LSoXpuQ4qFiPo+Iy++apu9wTkjUfVgcltqHfQ85RmZWroSxWeOy0iIgPT6lBVBnX/PQvM/ug4ly/oPT90EVQrZMQsaICmpyAC4EDaXqsifN8KM+q0B1uoTWTJ0ibqxrC5kVd0TDfeizqxKdRc9MH5W9Cxrp0EKCAbDGDN0DmjfLgnI19bBt2JdRlb9TE2CQX42Tff+e3WHAFnkXVhtOwq5iSe4jC+/wBgSr75moiIbH6nZir7XlZQXjmt2Zzs3LqjX7EGiRkqnodakqPf5vVtu7kvM00QPODabIRrTum9LTNQH8T1IiiIcBykjVlm2MrlljLezYNuAZZ3SC9zIBv3R9Oz4u3XnTvsj0DEKRoGdfpqblWBdfGYAq3e5wCgcf1cvRF7zyHzE0Fi3g4ouMn/I1j895zR5QRPVN/zsmNJ2TTOXayFrILZwZooe2Ki8c/1wAyAEjOkImjBICLCe5X+hB+k9cbQPDbU3RGA7lWvtNRSS21PrB0wNSMiYq2dN8Z8j4j8loi8ZU9Htdd2u2aXQfwlkUQV2HabIvsCupxU8jH03Jmb3/N9pvbGNvfyhoMzfEkdns1JdQjLgxAWGI9HmzePoI4BHd/smEo5M0MVntA0zuZJZI6g8pdbYX8hpe5koCZYOaG/zy+r071xnzoK2eHZAAAgAElEQVRp+RVIaD+jlJ+109rEtzSpDloP+16tA1QVS/WobgP4aMfoBG8Nos5nJS7/XSvoWAjwbnxnXMmMinYGdURV9J0yoAWyrii7CkEC1k4x0t4LWWs81y5Y4tVHtTXXeM5w1wrlEf1fPw2Vx2E9/4UFgCxk4XKg5FV7KBqhyzNX9b4JSUfr0XFlvq5Nnc3wkOtFJnlSGHHPJPU+apV5TJDKbrc+yJLG54l8kJoaebU3xqOPMcDgeqw1CFC02+i3XvOWkKrY4funEeCJbHNOvEyLD1j8mq3g1rJYtDEgDS/kIXrXz3qS9uEAihR5buaX49uGOI5lDy5m/hCQadVXLAfl0Z5rAMNU81sn7Q/BkByuL2oVGZRhIandqogte6DTr3lqU9gqoOw+QWqnIDu11FI7UGsJpqy139/w/0hEfgX/3pjmZapcpMgmRZS2547vqbFoGU0Mm6JhafPe1Dq0ulKc3kO5V26IiMjivQpaKChQAIAgqKJEuc0jgwUqVHYZmSoWc6O2KrOsDmd1GI4Q+kltPqTiC2wWHLyqoKn6yIMiInL0Sc1gLX3HWRERGX1ZnbfysDohm3ep4zbwFVBvegrN0eJ2DY4N1ch6ZvUYb70ToAcgqTxsYt97UHAfUUAtQg0VmgeXJvUcHP0qaGAFUN2WN2L7jSAwQaMTR2e9cQ5yzniSRLpnLqtDB3+nc0UUV/HLL+qxr99FRUO9H8afh1iAF6ivPqLqjPkZvU9Kx0GZO0JhkrITdmADW9LDonICOm7ZUNbP4nTInXLnmEIJrA+ax7jiANUXRHBNatH8NejtdSCm6f2RKChAJ727QiIOGLKnErMxPu3MjSMOHpxSIcF6FImBQEd+ERROKEsGUKFls1zuO0TNE/s5hSeV3lcbQQ1hVgMzwdxKbIwh+i421RX55xBjDUvxY4nO6H6CDQDCYrw5L2vwbDlOaRSRevbULWgXFHt1fn5mObXUUrujLBFMGWP+o9Qz3U1mrf2hPRnRflmronRGHxllxM9civ8ggcuI8toDNDJNoVNquzYTj7rP/kAcRDEzxJhCflG/D15WB6QyhgzRK+j5QiUuPFe5WWQXALaYjdm4R2ldW33oOwQBguhuVfVjD6fyverwZEEPrAwo8CDtr0b5ZdQTysZmQ0Yn7hy1PBUQaeh56oqIiCz++IXY37Pr8fox0vY2j+vY+q/GwVVpAupiyExtHtFxDUCUwTADQ4eWmSqvZuq2GZg2gURdUGCXRRiUc+9HzdSSjr2Mnug8N9mnlOZpH1PwlJ1T8LQ1qQ7y1oQ67yvn9LoNv65zWri0VhcioHn1RU1ZtqQ5OSE70Cnl0aCWjS0pDLKptYV4w926Y+yJQviAo1IHhW3X5DY0/N0Lo6rmbevzGswBGDL/Ce5rNXddoizq6xAgcet4QIwWor1B5bhmqTPLmGMmdI7JXEMGCyqXdloV9JwoSouAJsU2iqeRLV8FuK2wf6OOl732/K01Ctu0FJpoMzPltrNT4YrUUkvtQO12manfxqcRkf9LRH6uWzs1xgyLyO+K0gWtiPyMtfZL+Nu/wL4nQC00IvIJEfmAiGyKyE9Za5/Guj8pIv8jNvsvrbX/ru1BtDlJud4lWe9Uec7IvmSkYGxo6o4gQdEptdTaNVcUflzrOgiimGUZeVmjzCt3K9AYvKoOSPYqivGPqONDIYpgQmsJaqNanG+f0XqH4KH7REQkc0Md5WBE600yZBH1okcPitUHphENRlS7MK+OVWZKM1AbDx2PHUdtQgMN9lqDwmWnDgmep9LDWr9FafTcojp/E89CHn4cTtc1Ut50vbULmAvyul7uBoAfQBhpT5QFD4egDnbxioiIBKjDqHnS2ttah6CoW31wnPPXr8daHkHNB4ZDgOmU60DDrI7pycw8rXQ++4CCdmP1GLf69RxnxwbELFAFD9LinniGU4PzgEgTi6BLbS9Ys2VAw6QQhssclhLObVIT2Vrt0DjLfH/xXNdIeWsBEpgZdcCfrIm1dQc6M/M4TyOYI5ZIx+PNgpYBUOFj3WSAZ96+qlnpXOFCbB9U4TOTkDAnzY8Bz4Rzm1uJN5TOvqpZeAqHGGYek+qWGhU0Iw/8+NZh/Z772T76E6mlltruLRFMWWu/yP8bY9Ybv3fBPiEin7XWfsgYkxORXuznlIh8t4hca1j3+0Qb9V4QkXeKyL8VkXcaY0ZF5NdE5FFRXPGUMeZJa+1Sy71b25oWwwmV1PB2I4e0PYws1aZ08rePqBy1ubKPFMPU3pjGrMg1jfLml+H44B0/947+2OpjX9D1Kme1bi+7CLoSZKNr8+gJROVJNrxkTx7UyPRcUlAVDUFBCw4UG3P2zKqDWhrX7TADNYw+Vr2v6e/X3oLi/kbBg51mXzDG4iSUAYkbUBeW2dAFA1Cy2xpgc17d9/IDABZrEJxARuquP9bnlnLhVCcLIGzAGhAaMxhRQ42NyC6f827NSw7QIOuGxYVbaKo8h79fUFpmgGwbgSSpXoLof++cXn9mGiUIXF8fqqtRYtwNgYqRVH/jPVxjrVy8v9Bue/CwLijwGuoKMlTJSntenZNTwMvE6m8O0ggEg544lbHlOYri59rgmtlyuV6DtKrZSHse2WZ8r28b9D/c704qfQEgDMEFuwqKMJrWs84oQI2VbVHfzCxauKDjyuK5IiimKmMVvaIa6Xwx88YdX9amJQiHOOVHX0TDr8U6JCA8tdRSU2tHgELkNnS/Ts0YMyQi3y4iPyUiYq2tiAjfJP9aRH5VRP6i4ScfFJF/b621IvJlY8ywMeaYiLxHRP7GWruI7f6NiHyviPxhy0E0Ku34ksIuigmHiEpgCcpRvqpRq5qFbliAgtlyv0722XZFMlJLLcFc89BzmukZ+6pGibcgOT7/oL7kRy7qczD7vRo9zq1DGALbyc6D8nSvOtEGil6W0WYUj2+dVvATPv+6Ll+EQ4pnc/kHtO3cxJ9rk9+t79Namt6bqDeaVLAXbOh4eqcUxGWmFcTZwf56P6ZOjc4uHmnWifXN6oKFtwDYwdeq9qHAvgRnjUzgmn4//g86xlc/olm487/+jP4dNSIWgNM16QWN16md+U5do2PV7jzTZeVP109oS+eeoSu6nJnMsAwwxbohAV36xUv6+9PIKC7qNcovQEUOKcrglavupWOhmudACadq11wVzjb6ANmiJ5JA2yWQ5DmrrYAWRrDLnl2JP4w7wA4MR7Zeq+jbftO8GDxst3bHBwNUAaw2Hw/foZwL2Hy6vgLetWxGf2VKRBoykkf1OTEQewjvPqO/Q0+5COAqqtxeacbJuLNPmKd42QzWWyjXdPPa8N5IUhz1M2ApDTC11A6V3a5marTha2iMGZF6AFIIYnZgZ0Xkloj838aYh0XkKRH5ZRF5v4hMW2ufM/GU+QkRud7wfQrLkpa3tm3ocI5vzcnMVwJLmLwSo8R7mZlCLUF+Wp2uGif9dIJNbZdmswBVlzQ5XLnwNhERKSxBQGJD7/f+GXWAckv6vGRnQLGh075G8QdkF6bV4RHUI2XmIGuMvja1m3MYgK4/dEWBRPkRpYHll/R5zK4CYJR0HLWXtCYnvFvBG7NKksns/HmAU1ZY0M8KghZ9V9Spn31cgdygqnvLwjuQTYMjOXgRzXrRfmjqffp7ClEs/rD2zhp9BsBzVgGguU+P1dXPOyl0ULDYIBTPuwnD9rNUzpHvUNowaXOYJ82GvkKKRyFQgstIULV5XgM/TlgE9M/oGqhVF+4SEZHsLfSOugHHuFh0UtXO+cac7CSsWbc1i15nfmNbX1EtqZ6lzfuDfaWc+QG0Nutj6n+PxFa9dTylwE7r/Vo2n29Vi5XQm6ldI1iXwNRpmPisTWnbhaZ7kO/a62BccAyUnL+B60sBEswVwaA+YMFxFaZgk2AnnpFAe197VGuyGCzpezkX2z/vr0YJ9MbldSrjWlNz3d1mjlr6E27FNGOVWmqHyW6XmXpKNCPFp/jphr9ZETm3i30+IiK/aK39ijHmEyLy66LZqu/e4TZva8aYj4jIR0RECtLr/7HTjeGzu2pKnRjpDS7Clk6gqe3WSIFZVApM9JDWJ/R8Vh/74o8/JiIi5TF16ClpHa4D9JxRJzkDsBMugNqzgXt0QmMz9qZmvISSwhlQ4dDsk45X9pb+buNudZh6r+u4AuzPXtXotXM64YS76HNPz86fC9L8JvQ5K6AxcA3qmcxEbR5FzdRGPDNcUXwotR5IMS9hzsBqg1dAF8PzaycRtwIFztDpxPZcTY4nfpPUlHRb26tACzbXewN1YL26n2qeIh0A3SvMKkG0Y1CBSfX5V0REJHNMJfLNGJTepor140uIyjtAR3pfgux7ohx8hwCF+0uso3Xrt/lu2G7/ro4os/06CUJJTSp/skPnercsB2a4ylWJ2IQX5ykY1SAEwW99nzi/UFcMoSgoyHJTbc+8pFns8Ohk7Hc1gKCWtF5SU3mqeG7mEMxgHypfoc/fDCXwM5l6YIPB2C7VJPrmaqo8yijruhIzzmmANbXU9sVuVzN1do/2OSUiU9bar+D7p0XB1FkRYVbqpIg8bYx5XESmReRUw+9PYtm0KNWvcfkXttuhtfYJEXlCRGTQqNyUqz/AZJQ4CSbx4FtFPffSgrhjklpq3TI7o45OWIUIwluVXpdf1fu9NIL6oAoU615CvUE/hCegMCkUSWH/mQICAKQ1TajT7HruMNrLWqtlpfiUhnS9vit4TkkZQobLoi7DNT9lvYWvhNeJAeBlURMVVHTfmVWAoLLuuzymf++9wb40GAKmhgqGUMApIS1w7bT+YfRldcqiMciCr6DuDBmQYFxBVnQVTUUhREGn09Yk2WFPoC3v2Mn2zNW3QP59HTM0HdSeef3sndF5dasfYhvzkMMGzS+D6xRBhIM00GBosF5z46n0ubm6iQoV/x4i60mFut0qsIYTqMtDgMBlQGjtKu218c5wsupt1vY21fHstJfWLjNTjftxQIOgkzVnbMrLZxZjDXC9HFBALZMESvNztYMM0GDOCKDqV/PVHxMs2NL95WfxvPUxA+pdT1++nDV4rNXL5xt6hyXQZrvkH7h98np6WdHEracgKrXU9sXarZnqmllrbxpjrhtj7rXWviIi7xORp6217+M6xpgrIvIo1PyeFJFfMMZ8SlSAYsVaO2OM+ZyI/CvQD0U0q/XRtgbRAEJcZNsNsE1no9XLag8nscQXXhqFSm2nxgjnSaXMbI2og7F+WjNGhUW9v1fO6vPSj0zE5gO6fu5vtA5IUBvFmqjMFoq8mT3A87J+QaPUlX4IUgBkjT6DnjJwnNgc2FxRQEEgweixr7jlxAgyu5ja8BxVC+hzNMDnClmyGfwdWZgAjz5rq5bv43b0o28GghWX1Xmcfadux6BWKlgD4GSQhI4TaE2sHWFmqtGZY++bJvPmACdh3a1EOkQXeOwEknlk4Qau6zGF5XhWKWDmCT22zDV1gO0oRAR6oVyYz4ohEKegBFT6/LnWZSMZvOe1Z0aKtXN+vYnbQJvzJUA2QRQZAqwT6ooAkNccd+fb4fXGuemGeMkO9i8iYigQgfPmnlG/iTIb18LYEDdCICZ4uz5Y0fNK7XV9xyoJNPeELF5lAG0Y/kFVAoViKLxHWQvn9w3je5egvPE9nLTPLr+LE9/9qZJvaqkdqO07mIL9ooj8Byj5XRKRn77Nup8RlUV/TVQa/adFRKy1i8aY/0VEvob1fqOTOq76pNShSp9fM5Ukn7qH5rrU+4XPB0g9TO0QWBfAdG1AnVnWQG3dq6Cqf10dlhHWAwEElcZQD/GD7xARkYGvXBURkQwpOGi4GhzVTNfm48oOJv0rwK1aAft27T6NTg9+UYUKehYhLnBa6yfYDDZ4Xcsl6fBY0A6do7YbJ4ZZNTxOY3+pIhiVhzVZP6LMNLn1NnXyxp9Xp59Kg8UJHQN7c/FYVy6oU9mzANrgMdD7ntUNhpB4rt6EWlk/FBQTHKjEaLhIc1Q96q5z55xznKPahN4fpz+v2984pg5pdl3PUe8VdaQtAQnq0MJ7tWbKNTC+pJQt09vjrnUTAGBdHnsA+sCZPbUole1npHZK1WYGhdk0NtxNAu4+Bc/bjgRhsxPcqQJlqxqoDtkLTY1vd2omEF+9MIJASODJgNOo0hdCAVJGNOiQAfV4a1KfhwBUtmBQn59A9Do4UOVEpeLX1x0bFD/NGa2dqr16RbeD540gTUoMcmyf0bSR7Dl4ajIfbKcB1NRSOxR2IGDKWvusqKR50t/PNPzfisjPJ6z3+yLy+x0PoHGi9znirV6s/gvyICJCjttdii9Po1NvbuvCC9U8p/1/BDUsBDvL9yja6ZtBfyng+JWzOoX0ziIDBdAUzGpcI7znvK4IaewKZMSHX1TnujKqma/sBqh1a8iAvVd/l1/U7ZYnlRqU2QStBpQc58jyOUYmTBqj3J32E4IT1TejTtuNn9AWBLlV/X1lULc39qKO5fr71bkuzBuMUbdTHsJziqEMXtXfD76G+i9SIkFTqt7QWik6dRHoTHUHd5vxJ4or7HFgBWPKLQNU9+hneUSXV5DNG/6sAkUKjZC6lXVCIQDH11FHg9q62qWrWve2nXm0K8cucDQsT7Shqb9Uh9kf7o+qi+wn5deuNWW8APCT6lkaEUuXJev9723T9wh0dpvBalCadG0Ser165STK4jKebTwXrJ0yyJbzmTeQMnd1mb41UfRZv4flVIM8rnNdhD5XNdRlJtbaHYTtso9VaqmltrfWFpgyxoQicqRxfWvtteRfHHJrnGRb1Rz4dghUc1wxauQ5C+nEmtoOzZJqw9ol1LDUWBqDW27jKLIxT2q2ZuWcAo3iuC6v5dBnCOBpa1QdoNwljTrnVqHe14MaKtzDhVvxZrxzj2jGYuhZzS6sPKxZmwDqZ/kTkNZmBuzWvH53hdq7qCeEI5mbU9BjapqtI5Cs5XXsy+d1Otwa4JyAXaOOKOPVsRfR5LeWUyexd1b308M6L64IZzEkjcyju7neRNWt29CL4qkFV6uW7ZKDCCBx5Ot6Tq7+ZyzuR00dhrz5LfeIiEjPDWQXzuI6lqDOiOttR/W+MJC7DsZG601yvToR42WsnDBHu9d8p2kXKlNSUAHOtmtw628fzjtBFJ1zR1vcjibWLcP1qVMR4/U+idYtpoW1daU7Hj+bHSe0LHBCIgwWUlQGGSc28nagLPKy0bynE96HzDix8TeBfAQBC9ZOUc1TEkGy3f7/e2nt1uOlllpqB2ItwZQx5hdFm+POSl2114rIQ3s4rv2zpKLkbnHX98KasmkpiEqtO1Z9TAUnallmNvTD4DOD/kELP6j1C2zqW8sRQECu+gXNSGSZmYLj0ntVHakIgCR7Dep+bPaJaDRrcaoTnhw1/RqsL15gwVAJrFbbdZDBycTDVyuOU2ENh7Sp/8mukzamHwXiOpyrag9rrPA7+t58jNFbyUXY2aMLDZSdipynjnb7wW9PRzamu3PF8jmk3YyOMbeiF640BBpfSa/T5sl40+fcFmrfRkCtuqZZORlBs2hQvkTEZah4fpKK8Nues3d4PxiqzbHGBrVssuY3oaV5gBbj9mtx9sRc0/nOgCMBh+sXtYt3i2tES0l5gksCOu/5DPDsVqH2F/J3WWS48shIUd0Pza6Fz0MraiPmis3jyHga/eyHmh99AfZ5qy2x1s5733LznfR522tLA6qppXag1k5m6pdF5F5r7cJeD2Y/zBgjQaHQHKlLmICpPOSKw8n/pnxqEoeZ1ji5dXnCcy++7rSOSe3NbKDHBUVkZa6rg7h5VAUmeud0+cy71EkevEzKm/48txzfXPiggjKZU7pfdAT0v03UTUwpUIig6hYBfIXD6kAd/4w617e+XfdPYLJ+gjVR+rs8BQyYtYAwgh0blgAZHVdj6FOdEp5DOqCVMXW2Jr+uz/rKeXWetwZI50NtDvBcpqjL+2b19yvnUF82oOsNXML2sX7va5B+vqL1X+EkmvhOqzNphiFUQTDF46HSm7XJdTlNB8WmrLsthlEzAMcEiKao32cfhUDJlO4n/4wedO4EpM+hFll8TEF27jLofaT0UbHt9AmJIH/v14ZaF6X31fzic3CTXPVOe/Jge1vHFOhl5pExg0CCo/El9Bpihsap1+2HefQ+k1Cn5Fu97qjDdxT7Yzmhk/qz5kDk0lJsXf+edcIezPiRyovvmWVIkiN76YIPzPi1ykxiTKVh3f/4lxHIIT0UL1IKw7gMaJd6SKWWWmpvXGsHTF0Xke3z8newNTlWXvTJvRSqcV6+A1GeFG1bakm7nYQ9hSYnJcsX4GHMoqV2Z1i23mxTRGT9Qe3lQmqaWDhEOWRjiqQy6XORKenycBMqfGjKaijnDYEB2cAzwKg+1fpI8QHYoqNkAwVTA9fQ9BX0QYNPu6gOGhXv7CqyBIWcqyl0FLd2a6YAXrKr+nnr7Sx8x98x5v4bOob1u1DvBZ9/cyKIfS8exbmp6DhWz+ln+aQ+v1k0SI5wLMyu1W7cjB2bbHhqYkHoHDyf+uasSWwhqv9WZMdzhkVfMJ6TzLpuP7+kx7pyQb8Pn9c+6qUJXT83qI5veQjX+0EFxYUrcLRZ/F+tuWwja8gsa5USqGi+EIQDnW7BzoAkwdJWv35WexVU9bwS723WtH3O136T2v3MInQKonf6DnGZMH63EiD7zPpFvxmuz1gLUQPF+jpZwD3B84sMUrSJlgJ4F4eTGqiR+Xm3720Nc1w/6LpsKN2HptB8/nifGTbJ3rgD+jke5rGlltqbwNoBU5dE5AvGmL8SEcdPsNZ+fM9GtYdmrZWostUcdfLXc/UJNv6ZUODrbB9elHQOjd9LJ031p7ZDoyMaFBGdRbFUdk3vpeE/+rqIiGz+8uMiIlIaAWAAdhn9smaSqkdQ+5LQj83CEardpZmKIig3hf4Hdf+IPlsosWWKuv/ca7r9jbdpQ6Oead0xezKJ19DWrG82O3htmhM2YHQfuKM4qsfQO6PLmYXJLevy8ed0erzxbXruKsO6//5req5cLyZq14BK6dTDmMlAbQkzazXWmATbZBd8tT5ak0w0PphF8R38To21OBhS4RbqvpBBtIF+zj+s12fkNT2WzWMKDDOg/5E6Wbik38unFKgULjcTIXzQwoyP38C0bZpfm/Oluz6wsAw1xptzsf37gDUgPZGZRZ+WuA+WCLJ92yW43u6YnIDIUJyq6zKt/phYY8VecgzEIKPnhCfGVKTEOHZIm9cR9yzrPodfXo/9jsFJp0CaASvlMAYp03d9aqkdKmsHTF3Dvxz+7drQR2pNVJe8aq19FMt/UVS5ryYif2Wt/VUs/6iI/CyW/5K19nNY/r0i8gnR2u3ftdb+Zhv71qJcRKkM++CQXoKJ3MkOs1Fk84ZiXxMl0o3p/oRH7nkBlyPyItZpkWpqHRqpLaUjVM3Teyi/il4ujz8YW58Zidyy3tub9yhFreeaOv6ORguKVUi1NgQAisfU0aJgRfEonOxBHUfuJe0lQ9EHPkO5ZVCr/Eg7M8MAa2ZocNfPXRXy3VTxCxFKWmUZ2CYAInzoxQdAT+qBc4ZM1BbKhUiFJADJLYLyCOVECi5QVYyRd+dEgrbWnB2Xth2+JkW5HZrN6ZgoskG6J4FidhUiAshkhsjyVc7qdZ74omYuixf0vtm4bwIbwA4qWxKiJ1V1DhmHKN4ziVlUu5UAohIo174wQstjBe0z/w/f1O9kKxAsoW2Ay4BCSoT0NMM+YRSqaBSg2GNnOKk+yTcKVUiIsbZLSfR7RfHc1moi46gtY30jM8UEWaW4Gq1F7VnQD+4oxxQBVEGkJOpFf7ZlvMM3by9h7gz3TWlMx1w6ouPoqakoSnhDAbwLOBS9Zs+HgeaXgqjUUjuU1hJMWWv/5z3a93uttfP8Yox5r4h8UEQettaWjTGTWP6AiHxYRB4UkeMi8rfGmHvws38jIt8lIlMi8jVjzJPW2hfb2jtAlOPfcwJGAQSjiq6XCF/caBzpR/xYQyAJjSVxkFhnhxOhR0WMhnyp2e7UQ6T2JjSAnID9mnCProLCVoIqX11wQj97FnX9wk1Ej+HYRF5m1zJocUwdl8IcQNaafka96sCUJwCqTio9LPiaSrVvfovWYPU+p/VF1TOQbodTHyypI2YhzR6JiExNb3+sLZwu9hEq9UNVjz1BcU7GvqGf7B/FJr1RBpmraThrk7reyCvIZGRB74N8uKEIwyAknwkE6USSDuXEI3yJ74ZATYtjqgeJuuMQWohmrDzKPl9QKgS1iyArh8zm+jlFlJSLX35U6ZvMcI6+qD8oj9fjdRZOdbAGZxrAnIIGbo4lOPGnv8QeTDsUZXjrBRERCW+CDoaAW0hFSYABV6uFvzu6GL6zJmjfGuiKSCupfKeIx/qjNsFU03uQWaVsxglDRBcvxdYJj0x6G4m/MxlUcP3CWEt1BEqQbHI9j3pJgusW19XVU7LMGc9jjeAM/eWCUc2OUh2Qb103vnYzoN20xBYI2/sjqaWW2v5aIpgyxvxv1tr/2hjzH2WbxIy19oe6PJb/UkR+01pbxvYRypYPisinsPyyMeY1EXkcf3vNWnsJ4/0U1r0tmCLNL2kiZLQyQE2AFP2aA0yoHj2wTgu8TZH7Lh2Yeh0XJJrZ+DKNVqW2W4PAyuYRvafKw3pPZVHj5DIQZNUd1b/3oE02nevaBPoJXVPxAIoqOIeX1LavIMoPJyAzrtSdzKw6PJVz+rvsi3DWM3GHK5yH41oEGEODz+qwOt4U0tCVbi8b7hszH+VhjBWPdFjR36+d0jFvgQVU7YUoDcaYKbGxsa4/95iuN/KCYD1sb0ZjSeX7FThma6AvsTYITqQbFx3Vxr5FvjPFdb2az5hohciuaV2sWesZAH1vTk9GHtm3MvxR1tLxnOXQyHjtNJr3woefe0yBU34RYh2ZUAycWzMI8NR/JDaGYB3NWqMU0r8AACAASURBVKkESbEFr69TLFsi7Wdrmo65gnNJRsBmXADBUOiENFFmS5GRcU2Ytw6fYpBrjdCpM+4H+HDvBrmsWMwpAWqhmJkzFHPyzn94QhtzO/qkkybH+qiZ4vl0gU4AQYLUyMt41ceKZwWbHfySNhi3A3rv2uMK1sxlDcKYgf7Y/qPlZW8/DYqhtH1+B7ta03ZqtlNLLbU9s9tlpv4An7+9B/u1IvJ5ozq9/6e19gkRuUdEvs0Y8zERKYnIf2ut/ZqInBCRLzf8dgrLRFQco3H5O1vu2aij4WjuCZOQk5RNanro8+7bUfPrkjlnAZ3cXRZtO/pPaqm1YTZkZiHucBz5e3VsbC8obI8pWAq2QGFDs9aN0+p4sOluDveoE0cZgxLatDpENS8wwKLv2k0t6q9d0Oh1cEspb6Z6l35SKIMZL9ZTwIHKzevfo/ERiZrEF9qsWWFNIqaAwdd1H04qPaOAbeMIGtZqkqVO+3NsLziJR/W53JzXc9RzC4DiXXpMAWhqeYADwblgds4yQ8XC+EYVzyRFQr8HHeYnqpPuVlnOFBWoFNf1fgiH9PvYC3rSbj4GAIPdU+p+/RQUD6d1fMUj+r0wr9/7b+h2SucmpHBJr73rQbWM7CMFCJDpodCIL3DgMlikS7rmxziIdgVJ6Oyv4jqAhWBP6YWPntX4Hc8twVQAmXfe08zIsImtBOH+ZTfablDcWdau+b2IbGtlSwyelwDPrMvIRd4+mJlCRtbcd0638dxL8b8TjJ1S0ZKgT59D9qzLvKbUUddvyn9He891+T7dTmYVWfIl3X4N9w8FMRzln4d4EH2maAlBEKfCSEsDrKmltq+WCKastU/h84t7sN9vtdZOg8r3N8aYlzGWURF5l4g8JiJ/bIw5142dGWM+IiIfEREpSJwa5/j3dLgw4UZ+V/Wkl5HvqPmqWXtgjLg6p81rXngoOrandmcZXroj39BsyPID6ohSEODWw+oIkbbF2hZmFthLaeAFpCbOnNTPeaVE1cZ1e8E3IPtNOhGcABfMwDgK13Q75pRuZ6uG/YIyVa8rgiNNMRY2K11Zr3f56dBh9XvzLN+nIIgZpZ5F3V4vlJUrI3RwMATGZWoAnCU09z2K2psl9J3K61zRt4SMBpxFRt7NCaA00Md4rNuOuU1BCUfn2i2YggKarGo03wJc33xcj2nyaR1PtSeeuagVQB+9W78TSPI+Wjmn/8luWNka1OPv/6LWzwl6kFFCm+CI9T7BEc1mGqqy1eIZq52ak/amgiFB73VVWwwnsF+OA0IGtkfvyXBcqacWgJ90TXuIhA0ctbRT84OIzHBlQqn1YZsn9fwElwF2PPl1gmB7E8/0g2dj2ySoYc3T1nGAa1BWowKyM74gk2/M4uD5LI3p+PqQxY6YEaNyL4Rf/MCDA1f7CYbdzuNzU1Jrl0Ta326FRlJLLbVtrR0Biq6btXYan3PGmD8Tpe1NicifWg37fNUYE4nIuIhMi8iphp+fxDK5zXJ/f0+IyBMiIoNm1NpazU0qjhJAJyxE1sefbJKKUJMmpcao2B51t2dmik0gXeQvjUql1qEZZDLKk+owlkbVCa6inqA0gTqhQTg4eGwMAENhBY7rNX0EnWw/GmBSMIJUNSrUhSNapE4Hmd8FogNbD5wRkXozYDpiARqnGg9osHjdbhabI9PtPg9wvtmImAp1rO/pu4nvJ0D/QQYqA8GJ8jCoalf07yOv6PM682440XhuB//8ad0+6E0R+hbRecus6WeVdD+fouf/X5rpfb45EYRdzhF0NC0aqoYbyGwCLG3167gK83q91k7CkeVlnNTxFWZ0vl25oL/LrqGOpSDSe1PvlX7MubVxdaqDEQXm5hL6UBEsIWNFZ9huxHsBOkoU68fYX6iVEAXZCXlQE7PIeF1RSfsAqnNyGoQJ1s/O6j1s8QzIyjo213Ad98qp7fT68p2yQ5DtAnnMyvUUJEIAJFzQZ9SB4LwHekjTZA3aIsbgMkMUhwKdr6znLHMdc8Rp9Gfrub26rWWgFBgvs6H7raJeM39W3Qn7yuu6Hpsx05qASLT/4hQM1vrlk7zntzzlyCaBENz75RRMpZZaN23fwZQxpk9EAmvtGv7/3SLyGyKyLiLvFZG/h8BETkTmReRJEfmkMebjogIUF0Tkq6LTyQVjzFlREPVhEfmxNgagNDk6HSzIxgQZlb0+LLQkxTz/pZUQqduV+XQl2Z5SmMgVTy21VgaHhXLdR7+kjs/Fn1bq0sBFve9P/JVKlN/4gAKAKuqGKK5QfVTVGDLLkPVGX6HwaW3KGyFbkDmq9S/RpIKiAFQs17jTi5STwhMdQV0RwFltWsdDEFE5qX/PXZptdnTafCbpEBaWUYMDXNI7p+do4UE9pirKKtk/KoOEBQHBwJT+/ua7ACABNDaRcCq/9yEd6+cBqu7VRHw4D0W1Jcr/xUGhc5yiWtO8dFtVUWlwpnYpjU5AkFlFUCoPMIR+U5sTur+Vs2i4inPTO0taH3s2YXuoL9sC7shsGlejVr3/jC57WcFL5eGzWAd0PkhlMxNlmOlYUsDHe6muhoheZh2eg8W3qHM/9pRmvqrveUT/8AW9fnJRnXAnz49zHbimsAAXyFRVZ2b3jo7V4fYM6oao6tnUlN6Xf6eyYtZjQ+DYa6urknnpiv6NYNY7/zx2BgPDu/W6GgQRan6TaowpYK0aMpFBJR44SJL/J1U5u45sKLKmDNSUj2jmMz+Lm9CrN2SQg+BZ37f7BKJcvafXmDrhWLvWAiG11FJryzoCU8aYQET6rbWrLVdOtiMi8megOmRE5JPW2s8aY3Ii8vvGmG+KSEVEfhJZqheMMX8sKixRFZGft1ZnFGPML4jI50S1aH/fWvtCy71be/tIJCM4iB43UURagaUm4BPtfqKlFLoncsH6ljQDldpuzSIrwntq+V4UX+Pe2jipn1d+REEUZcI3j6kzkYWEerilDkv/hr7EK8PqQBW8TEntlNaPRBCuCKCUloE8cfWGgqTMvEbzSY0y63CwGlXDRFwNVbiJZzvTEAzp1LGE851f2oqNsTiO/jSv6vL5h+Gk49DyyxRX8CSy8djWIFRharq891kFB+Vvf1iHyYg7m9X2IuOBnlsULqC0dG2pLkCRWLPpjglRfYg5OGd5h8brUR3XMWUKqJW7rECGDivpnwaXgDLzNWBlZunyi3qOh17X+2n2nVb6rwKkXtJ7QY7rPZOb0ddPBFApw6CBLetyp6LHGhlmTapeJmo7dUSRxPulxsTHZS3VzVVQM+VJrbsG0qSwesIX1tHcuvBu6JIxq1O7gjJkL5tHTjnr0GouW6rXy2WUmdVdXXW0PGaiXJsEZOpqC6peQ5qfsCYONXJU6wvvByeUwh7M4PajZgrZ8wjKnuEUM4/x9zxFU478HQIzQwogtyBak10ByIOaH6msBo+hA4Gs2yyVOs9+7xQ8E6AHnn+B7wSicgsiHU5wxqO67pLymlpqqW1vLcGUMeaTIvLPRdMhXxORQWPMJ6y1/+tOdgj1vYe3WV4RkX+W8JuPicjHtln+GRH5zE7G0Ur9xiY16fUmNesrDrl0fxcjVl5U0NEk6AuktL7UdmtwPJgN4L3F5qsh/BKLGWP9nC7IT6kjM3BDn6P+f0R0fgIZomU4OCe12Jv1QBbR5MwlLc6PzoDqNqGOTEjHcwqONCg4VO+j41yXxUYQ5DnNgMmRSdlp3SIBWnkYNTBV3XZuTffFRrM9c5Bu9mbRgWsAEnDCmH3JQKQhnNMFq//kjC4vIlsHmfjKMdDZAK6ycL6rqBMLAaZcvadsE/RpypiD6lSuxJfv0JgFCrK63zADdb95Xb5xNF4rldkk1QrDgT86fEmv88pZZHFADcsth/XMYJ+eLzrNBo2lQ1A96WS7I0JtVcBmsQuaSXIUR5910EqYBOeysKTHtv49bxERkYEXKCTBrB8Kv6gqyPq+ddSXOVW4ldvvrxvW4TuBoNa+U48t+LqKPwT9CjhqS0ux9TMQgYiQ0ZJpfY4b6WUE/RFAk6tZIhhhgARNqikc4UAMghrlo3o9SR3tmQWlt6TXvYzap95pNPze2r6OiM/Awrt1rhn+lDYiz509ratDPTIawHjmUOMGYZHAk7iP0TTbvZY7vOZ1eh7OESmPuD7syWUgehJh3vQbRe+2fjC11FLb3trJTD1grV01xvy4iPy1iPz3IvKUiOwITB0KC8LWEqKeI+bAF50Sp5aVIDixFyp+YdwJYEQ8BVGp7dpwPxdH4bAswCGkygluMVLVpAppdNRsM4tjT2j2oHhCHaCwBKCALIuhuAPkh91z+LyKDBjWWo3DKZgDgCAIYHTYl7mGBXdrR11789bOn4sM6Vn6+8oAzsktPUYnG4/sS3GStVX6c0d9xLmqDuJcVnQ7/Thng8/A4UFtD1X6DJqdBujZRRU/OnOu0H59w9Wm1ebRss+PlNNYdwR5592ay7YsQUofztz6ST2G4/+gDvGtt+nJGHseUvYA0bce12NcO4nmv5DgH/jMN0REJMo8JANf0B5jrBnLbKkTTGlyqsJVj+g52DgZl07vvan3TPYWMhxwPDl2qv61MidJ791Opbv0Hs1f1dqtqIp6Fdw3xhNVISXMbu2DQ/v/s/fmQZZdd5ng79z79pcv96Uya1ctKkmlxbJk2ZY3ZGywMRgDjd10E9AN7Y4YJmCmo6cnHNEx8EczEx0xwXR3MMPgGYKGpsEwNDSLwWBjvLZtrdYulUpVWZmVVZmV+/Jevu3eM3/8vu+8vOflq1yqSrKkdyIqst5277n3nuW3fL/v24qMSPShw9cBmw3QtxDOElk+jSNHQUYT7JxkuDQcD1vIJfic6BQRrmnIuodG4hXC1AMci2M7OwUSm5MKjwwvKvGHHSHkF9eAvvNKW3BYLl6A8/UnYYfOiUKdplnD/CIFOuC2dKJeD/pxl21lFhTwvZiOJ+UUMsnP98xk2m3d1m37artxptLGmLSI/KiI/Lq1tgFK8zdH60Rl7hd7O6x4B4hgB3jNzSSgcJTIFEjsBDHoZqq6bY/NGQoY7vP3IvuidqKj86bgbHFGDaS1EzDScxrNnfiKHid3FfUsMJ6bffp5GkX4FDj1x2i8BiIK1G64bKwv/kthT69F/RDAvbA7Q3nbhnNuHNR7QAbDej+ybMjexeginSjC+UhIEVbB5gf/cOTL+oPFe/WeLb1bDdbiVb1nmTkYRjD+HUkHamxcQTzujcll3ZrQNte91wwGOZjWysq239t1Q0R+4DlQ44O8MQOo46WPqDPddx7Qx+PqyFAEmnC/lpOu96ryiGZGsstNWfmwCjX3/90r2/cBmafNA0gBkv0NdbCpNWQWCANkdP6a53ju1EIST+jxB7+m8Mx4WB+sIwCCjhSfU0c5jZvZdlrrdxDrdV9Dxte+iHsNGneOGwenZQMEL1jEOCJSYxsIJTNU1TF1TkoXk2OW9y81rrBJ57Axc4UaqsJ5/Izi1iSmQDaTzpRgTsQ1r46onIS2Nh46k3id4f7KbDgzaXSqqGvlOTRbr+VWN2cDRJRHYKYZzIZtBCK3jlW427qt21ptN87Ub4rIpIg8LSJfM8YcFZEbqZl6/VscuSJSFgUnUvd7aX6N1K1gZ3I1UyiwTiUfG4tNHT7aQRS7Kf1u211zUVrsvYT1peFIrB/V13EGBhBY3HrPg/UPJVbrt+l/ilfUQNrg62lo9KA2w2VZHQsVoFowrOKlJKxImJlCIMHRKZPGuEpxX9RgpVL7jyDDMCzMI0oPGB7hfY0iWfn063SiCIEMkLUb/5b2+crDem+vvVeNr+xVUG1TvBf1ZXZajThCd4Kj8FD82hsYhfHGRmvd2kHfjjo0IZypm2X80YmqHUCRPupWmkVkAUAbH4Htz3fKI/hBAezSVCXC70MJkeFhtjN6VjNVqWMK+dw8qbTs2RX9ceYJtbYNanIsovaNOxTGlZ4F1fVe68VI7oElfv0BvejSE8iu0uhmFsc3tm9hcKuNaMBDSrTmWbKuq605oWHotCFY4ZglQRhDaYImmAzZ6KRvvVY6O2vv0sWDzmi0nMyOOurzMBm4dPpgcMbcNU9oX2qH9DmnNxCw6Qd1fbQ9SsQiA9VzhTXHeK7ochb7ZsznxLWIGUx3bdtk+16rAObWeq0tzSFnPFhfN6Dabd322rQdnSlr7X8Qkf+w5a1Lxpjvu3VdusXNYOGhkCDFSolFhjHgw4gIVbDNDgXeWxm2RG7u4uqKSPUlC5wJQ2otoK8Rs1C3vfkaoq+5ZdQFjcAoLsBxSJEBC3CgITXKKhXA9zD00qAbXj+Com44Ig7eF4Cogmx+MKw4plnYTueIwYnmVa3JcNpCPWQfAySHQptlwGF6im0Gx64bySzYd9pW/aT/1tfNvH6QWwKTIOB9jZL+bv6+DL6PyHkN7GFlXENDv9fo1e/lURtEo8/mttf+iSBkHBQK7dFyPzPgsYzaXULbdmxwMBpg4Uv36vNqxKgvAq15TZFYkkH4rTwBwollrF2o1aHOVGVMr7k6GMj4H6tz1DijlOMErtmsfic3Defo/CURETEHQGrCrAnJNjJYm9cANdynHh/nQg59bxxVNrnUBh2PDk7aLrNDu2r+cw2Sr7l/kSCE+xyhoh33JY8908H1KCEC3UXDejTUERlCJwHVC8GsKGHoCB7oRDHA4hw81pg5AW6cA5lXElHQQa+O6fxg7RQzxCHGUIZ6bXAs3XOuJ7M3PV9QKGkwohnf2m2gVqcYMyF16KfLOKJ/2zJm7nfP3aWd4K6luv2YjX2h4jdC6yJouu1N1HZDQPEvOrwvIiLW2l+7yX26xc2ImKAFJfCiXq54tYPCuF+35Bia2grAb+IG6uB7+ocQqZDaO10Bvm67wUYDplFMZhAqB0BfzJXCJoMJzMZEyFRVUXNF58rVHQ3pPMttwOAhzTEFTgnd8fRqCP2JkKlyrH7UoEG/QwYcXoFhTaNuPw3zqXxADczMBhjLqnotWaopQIdq9HHt+/mfwvcX9B7QYagzGZSC0zWg7w/8phb5N84eT56fDuMqCROQbYPjSAM2Wlhsj0izdaiZuZ7w716aY8qjMPGKepikSh99XJ/f8mntX2EOr8+gRgoQSOqVMTO1OYLsTlNcZiAN9j4Lh9ssw+FG9sRp63BMoQifAbFUOSkSu2dGM44tDP3is5pBbI6DAMNBUGGEExrnG/P7MR59MVYvE+X2K78xWMix0sEIZ6OD6urDGDwkLTj2HFfPNKpZQY5NJwbNbHAqJWZRn1P/d7FHorbMOXhw7COf1ht7bEgCjyydYswDEMLk5kA4gbotp2fFPbrDc2bfN0/CGcY+2hxSpyk1Cx0xXovHottCo2yB8N+oGK4n4+DYN/OkEkQwa60DKOiN6JC8Efvcbd3Woe0G5veAiDwoqvckIvLDojpPHYDs3+PNWrHNRkvg1ovYOZY+69HqMvIDuITLAvlaNrdCYdynRQXlMjWBgm6Ep9tutJHBrg+ZgxXC+WDYw64IGjCee3XspTdJza1/NoeTELiV0/q90kWQNQyrIdP/J2pYRacUMhVswOB85aKItAyqGIXuIYw2JyqK13EJWVqQOsgphRTZerOdsXOP8yRVTbL4NVHX0+RaARuwUUouo4T5rR9B5Bw6VI1+1PIgM7X5ztMiIpJ/TBkQI8DSwoPqQDYpgIyMFYknCHsy6UyrhsITNm3LUPkspDdYSuE0g5iprGo/ssjSrd4Gp6ni3Wt0p/+8PpPNIe1X36vqVc09qNc2+EpD7DHNSJkyPC48Nx8m5rInrDE7iAxfL+CSZazddHJw/5gJ2XGt5r2lEz2oxrYjQoCzlNQf2kJ4QT0lvL8Tk2yidSIUYfP1niiaSyIXHsaHf3VozhHEtZhi0jFxmVBk4SxJI5AFjJgVLOYde2L9DiXvTXNu87o9SH1ISnKcO5rR+xvAaS7Ems1mkKF+GIQUYPUjhLjTtZIVcu5DOq4I4818/Tn9wp2gYGcwA9fE1kZAYYx7Lj7TX9uzbaPhJyQ0lfgd51U4rtdKCQg7fQXnSY6x16TM4Fa1bq13t72J2m6cqUMicr+1dl1ExBjzKyLyeWvttjTmu23GmFBEHheRGWvtx4wxHxRlCAxEBXx/1lp73hiTFZHfFZG3i8iiiHzSWjuJY3xGRH5OlLb9F621f7OLE4vJZFq0tatepMfh35HiJ/zIUZKi3oFRUNK/epE/s0Vjo70odG+tZQDBOMOmQ0OXjXUkriaguyh1224bxsrY76lhceXn7hYRkc0jakgOPKHjeU3J8sSsAY6FWpmeiyA4YEkG9vY6yiEK86yp0TG78FNvExGRsIaofqCGZwyWt9G/U2eLVN7le2AAPT6p79NwevIFPcGJYyIiEhXVGEk1onaDZpebNjM/fX+pcKCVj+u9yK6qNV0Z02vdPKzHn0UUf+BpElXgOHCqBs6pgbOxzpoQ/bNwj/5urKp9T1PoGLAlmYQBS2ptQrlgpAaFgkSk+yaMr5NAMTLkQY8+kI4R7l02px2U0fMVJtTIrgSI7qNG6sjf6LqYuabX0HtBDeBGAc4wbsnyaV1nc0vIcA6FEjR0bc2SaQ5U6M3LM4lrDPuxHh4DA92kGp6s2WleVaM87EU288wx/f1jz+7qWpnN65kB5LuCWpqjMO7X4bhcA1W6q3EDKQAJKljntzVTtVtdIjSX/SJEjnsD9ydmLxFsaM7O4Ye73Avw++bctcTbhO+lQIYSgabfEVOkkkLFMjwoG9+vBA+bQ9qX0XkNHpjLc8lz0tEH42cMXTVXBzY8mLiG8h1636OcHrf3UdCye/tsJ6eVbJwRA0ifVPHloc+rrILTByOLJuCjrAtzFPv3nhbzsmbCnQYcM0qlZHbLHIJS96ySn7h6MMKV0VcGChzk8Mpcog/NS6oD5p6/ryP1RmpdAq1uexO13ThTY6Iiumx1vHej7ZdE5EURgbklvyEiH7fWvmiM+e9E5F+LyM+KOkvL1tqTxphPici/FZFPGmPuFJFPichdIjIhIl8yxpymoG/HZq3Yel0snR3WOrnaKCxSWBwddpzNm+jOifLrlVjwexNoVP2FkvCW7DVEB31R3+4i1G17bajTie6+TURECnOofTqu86OsNf8y9piOreXbWT9EinR9f+i7mh2Ye6camGS0I/wvu6LHza7p3/wctJcgtksBzfX7lAa756vQjTqtRpyd0MxWbUyNkHDkPn2fDG4Q3jSVaudNeaf5AUN0/h/eIyIiI3+oDmZ0j3qSY0+AUTCtxn6zqMcLMP1yC4BIjun5l0+DhKHAWizU3iySFZBRZUB8uJR4hjTrVLgmRWtrW9hGkxHqNl2arBe1v8HmtIHSqEPJ6XmiBTx3yoGdQi0etIBYM8VAEJ1psvoNP6aZjY1TfRLlYWTTuEXNE6PzhIsxWxJMq9PkWA+ZRSEbG5yi8LI6As3dGm1Y21NVvXeNCb1Gg5q34Ko6HnSaXFYV/XCEQbFn+Fq7s+HY4X0eIwgBmeP7JHJh1m2XMDRC5Syye211QqRGpyOPzJeB0U8HiOMi7i+6cTz4ArJXa4D1bXjBRd4PcM64vRgOQ+2gnquJLFm9pGO8MIu9mfVePQrb81n73DUye4RbwTXIjcEhSBJwfl1Wp7x5QJ11GksBHNgoMGJOYGF8VZ0cBzVlVot9w3Nu3KWZ89TTmo0muYqA9TR0YwWBk5I+B+vdM59IhIyfFEJ+Q9kAe12fu63bvgfbbpyp3xWRR40xf4rXPyoiv3MjJzXGHBKRHxIV4mVNlpWWY9UnIhSj+LiI/Ar+/8ci8utGCyc+LiKfs9bWROSiMea8iLxDRL61YwesbTlJxFezqDRmJT02aie4mIwAuubhqH2191vRXAaKEWxGpetdGtRu219jBih9USOh4bhu+sUZnR+1fp0fKyfUkDn6Z7ppX32/Ro1jEFSsn1Qjom9SjYPypi4x5Qn9Xa1P/47/oTpJZForH1GjofBnKqRZ/fEHRERk86FT2j8YMM2Szq/Uus5fUq+v8bwvwcjIZ/e9KRNa0yjpOWd/WjNTxWs6z0jvTWp0NtaXNUp63h4ErVdv199lUUtFR6M4C1r5LLI0z7yk1wZyDtaFkdjAZWZmQN0chFtqOJOZAWanfSHZbYvn99GYGWQhUSpIOoIk7agO4p6ANKA+RGMe9wLOdvFqcv3NLtQlQEbKUVXjs2AMhAHLIKBApoeGpFsfkakIB/S+UXjWZYZ22+Cg1vuQfYXxXXxJnSjrkaC0YJgI2DHrsF02cK9j1CTX/Li2/Zofe+Ku1qtLausG647AlEf2TFdzNQ8NJhr7OL5lLJFQR8ILrZXe7yJjhHosxwDoQ9LaAgHI7oD6PgUIcJxRJ7owx7lPohaMcTi1HbM1HD94/AzskA0wLsJJ7wUrIGvyIBLNgBMd1fDCFWkSpoz5xvnlpBsoNj6rDnzlrK6XBUGKH3u4wd6dXkHdF+Y6CbLiSc3Upw5pht4SUcNMIJE0DBzsl3zntWzdjFS3vYnabtj8ftUY89ci8l689U+stU/d4Hn/nYj8KxHZCkr+eRH5K2PMpij1+jvx/kERmUZfmsaYVREZwvvf3vL7y3jvus2EgYQ9vc5QcZARfs4aKRojvvAfN4IOhcF0yhhFjsvlvWHkd9O4wIKlyvWkuyh1234bxmbjpEKlWCdUvKJjqXwIDsKUjr3LH1ajoA4nqwTHYXMQNVIvqaFb60PNUzWZiTAsQocxQW0g+9BZnJ+sgPq9nivav9UTpD9G/UyamQ49f5yFARuQgEH2XcfYM6N9qPcguwY2P19XinVkhDTaQPu2eho1V8vJ2pCN43otfRdgSKGgPnVYDTNHjgO2sbDfEyYmm2epx9UJOdkEFqx79N+tbMjNWYMsDM8gDQr0JrYSLD0NMBvSq7KOdU7/9Ezpf5qgma8O4R6O6ZZQnsi4Or3SU6gLYp3WPOB0HepFdELfdwAAIABJREFUnBNDJwfXTqeK2QADg3SnmjoeL72mx1k+rf3YOKhzZfiJpDaa7dPAgFnCswHKwemFrSJjFQa7Z2HrNIbxO1dLwyyex0i3Y61UlGTU47gKTik5CjMmHJskjHE1QnTW4WTHubSU71PHrPRNrZVKTWi2OUaGkYFKQuVJekFnlPVX5mmlxM+f0ABP/MqkiIg0H9a1wl7UrNBO95J6VZR9IDtn8WXNqjHjGENeIX0csFGM3XhG47spPPfmzBUJJ9SxDw5CUBp1jw4KmENwg45+I9m3sIIsHIJCLDsIwJrYHNVFJR1NJK+NGS/WERKWuZUcY2t7PW2B3fZlt33s2jfd9j3YdpOZEhEpiMiatfa3jTEjxpjj1tqL+zmhMeZjInLNWvuEMeYDWz76H0Xko9ba7xhj/icR+TVRB+uGmzHm0yLyaRGRXNijhahYIENEgCwgIK6WinAGRoexyLWEc71zsDichbvZLcQV3ND260z5mjHYjEmtzE9fi6xYt705G8dMlMfmDydn/bCO9z61Z2T9OKBqjM6DoIu1L8xMbB5Vo7g4C8psGN9DzyLaW6dQLQzLURgPJdBeX9b3K6M6Pwvf1A5s/vCd2k84UTxfZgMOyTVkK3oLLZjcHtkWCCsrzOGepFFHAmps6tSsHdGLrkzQaUIxOggnSDSRhl2VBayvCruINPL5C2po0YAVQIcMREeZgXEQKxjlIi0nqsVoR5KDdOJ9NhfkIavfPgvWLeiqAwgUl6sonGdAHH5MdVT7l0ERXW5O71lhUdfCxVFkAfv0OLVBGNSROF2n6iMKtyy+oDC+5pQOOhrhIXSlIt4namo5AxewP9SaMlOy63XZkFQD14hbWu/FHnIVdTA4TjShgYbQYu+A8R8io8aaN7sXY9Afw55B6Y7VaazvVCcIY1582DvGYHRA52GcUZhtagEC04QuorbHVDD+vvmqbP6zd4mISB4BmtQ5DVwaB30jeQocP2bFqhjL3tg1eD9+h64BhP2FnZwonxzKY+JlMKR6XJ9Xeg39wL5aG4K8A7LgjR/QbHkZjKc9F/rFbKhT2Rxj0AgZO8IwG6xlxHo5rc+eenw9k5jTVdRcgYmSNVOpa2p31I5oHzPPq+MoFKJGnZ55213692U1yxzc0wVRXseaqht1nm7W77qt225h2w01+i+LMvrdLiK/LSJpEfk9EXl4n+d8WER+xBjzURHJiUivMebzInLGWvsdfOcPReQL+P+MiBwWkcvGmJQoBHBxy/tsh/BeW7PWflZEPisi0pcetbYZtVL22Hgd7h4bnqMoRQSdG7O/kRNOQ2x5SOamLXoujkb+JkVUuMmEYKniMunOc0NH77a3YuOmm31aN+PFj94uIi1NpXKvjqpehfrLwCs69hbOwkl6AU5TSY2A9KrOq/Syzo/sCKA7LNgm0cuaGhNpOAUZzMvmpBoNhYNKVEFNGhJZNEFgwEivkwmAMWOK+fZMrd92mI8pEEJUHkDkHKeo92rfS1P6xjpIwNLrSXHXCDpUKdRIEQYYbMKIDHHARYWfkbVP5tS5cpF5F8CBwYtMSXNyymUemP12xDgkO/BY/RxBQPnGjKtmEetiSp/z5jU9Xy+6mFlDBjICTHRQXw9e0L8koKCzFdaS9WVH/+OrUr1LM3URaso2T2lGKY012BnlMJqDTNJJsrxvyKIIMlLM6Ltsy04ZDdxLOtNDz+n3y+NwWD0x9dScZjoiwDHDMdTF0EHh3rHsCVNve/LdQaEcRbr/vo+o6GRUkwIdGZSQcD2sC4ZOATItG2fUuCdENbhb901qs4WnDzgmxyZr31jP0+qc/mmSWCWZFWMmUcb12DUEXMoTuhbklkiq0pPoa1sdM0+HvZ5rBinWa/16TdSpMoCXFp5XJ3ntQR2HNTCYUibCnuyRvqd1jUhNaWaofkodx/Sw9t2gTsy+XZ2dcFafeXwaRC3z6ixtntJrzF3EWIJTSq0uEriYImoV4eTGR/R8EbTq0pgDvAdt+pdvhNbNPHXbG7DtJjP1CRF5m4g8KSJirb1ijCld/yedm7X2MyLyGRERZKb+pWgd1iwIJM6JyIdEySlElJL9Z0RroX5CRL5srbXGmD8Xkd83xvyaKAHFKVHK9uufv9mUaH6+BfkgYw82TFcEziwPiSjWk4xajoKWNLvE7XvsWmJMi9nPi/rtuflGIeu+Wppf+ztut3WbV/BMQ4PwvALKVvJLOj9WTur86L+AyDWMqtw1nU8Uzy3fpkZZapO1iFhyMH/K9ykyN/93YFbrIbGEZl9c1ubQaKK7QZ2OCrSE1hG1hhFTHy1K+pxHE77bhnnUGIQT5XSl8DHs0sWzMMqRFSMJB9n8XMYYv6+NwdCEc7VxABpMyKw0L2hNSQqBm+AoqMEZqYchFV9qBXScE8V6HWakSOfNGhcY0x2FZffYSJqRzehzrOX02tZO6+v8DK4NtVAj0BqK8vq75VMgJAFiLwu28xrs56ufuE2Kc6zDIqGHPoDhUTU8m8h4pGdgpHPNxf00cMwJ6ZYFZC3zml1hDVrsCxn7MD+gDmiE1wb02kqXkIYbxgNfTtZE2Qc0gyKTqB1ylOBwqkulFmyu056wW73CnYzlHT43mzXXJxERexii2p6GU3pTx2JtENk31GxRn65AYd5aJHmMkdxTyJYQ9cH77UHSyCAYog+kMm8M0JlFoKYCZ+ec1iHFxzFPpnSRCuIki2Kbg4lbSueosACn7DzS7JBjmPsBrecc/UuQRbxXIY8pCpMfTkk/xhgdQGN17laO6pgrTCJze1TX1V7cx54pHTvlM7quEea8flbHNh220nm1O5ojui42ijq28195XkREoiM6ltMvQGqC2W3aBK+lD3WjTpAP2309s2nd1m17bLtxpupwXqyIiDGmuNMP9tpQC/XPROS/GGNiUV6ff4qPf0tE/hMIJpZEGfzEWvu8MeaPROQFEWmKyC/syOQnalyEgyMOhidkfiLxBB0UYpEhFsrCTlLExsBGbz2uiDjdjS0X59jBbrj4uw3GwPothsK9gt6uc9Vtu2w0GJujulmzZsnA8shBd2rhbuL59HVuGfTEX1LyhOoDmqap9+n86vmu1hk4wgJkEcrv0++tnATN+JBmoPpeRa3iN78rIiIpGFSVI2CygyGaW1Kjbu0oanca6kSUJvH72LoC9mhhMXHuNuZNv6H4fu2I9rk0rfNq6XYyEurXmmDnS69rn+gI0DHNAvbH+iFSpQ89C2cNtViV02oQ5fr1i80n1FAKT2uRejwM5wDRaNIkR0MlCZAFIfkBoWSOMMAkC9SdTMMNrhFk42s0cU96AG+6qkYjoXDVEf3e5iicPPp2WKqO/oWurwtvVwO2gRqqKGekVtpS9yYiEZbs2R/T+5IHbLJvAU7zPBwCOJ+k72aNmQsUgDlSguQ96FTbGqMGisQF64B39r6g97KBjEka97Q+Snp4BOJ4j+HkWZARSKMhnWpwWyePrtu3tkaacQQtuG/tRIXv9i1m80IyUCKjvIl7iIxJCpnN/AXMLew9lTPqhOW+8aLkosOJPjnIvFfP18aoCyY8OprpKR3LIWvRSEgCZ9hpzvksgR2c4jq09EpTHiTygM7Dq9+HLBsCNhvvOqbXtIBs+2NKnrPxqXvcOZxQ9BO6DkYfUW0ti/qrPCDD5bv0/hTO6X1r9GnQiFnO4lU9xwayb5uHdE3YBBvq8F/quSvv10xXdpHZc/RxFjTuZLZESYD117xboYe527Vkh/q/Nifqe6n+q9u6rUPbjTP1R8aY3xSRfjg8/1RE/p+bcXJr7VdE5Cv4/5+KyJ9u852qiPyDDr//VVFGwD2cNBap1ZxR5iK3/LgEywc4+5AbAOsV0p5SPDboqFNRtMhN131y0UOIejo2P+4NnTbmbntztxswkMnaVZ7Q7EeNULZL0FYa1fE88U21KFmEXx7V7zV/6A4REel/ATVQCE5U7tJILYVpN96rTlQBtQM9T2skdfnhQziunj91VPln+v/ieZxfj9N7Uc/fRG0XNWMKczBqIOAZVurOiXLF+busJaTWi6vHAvFAuowoPYys3Lyee+1kMuOUx/tpZKyivL6moC2dgnRZPy88ekGv6XY1PkMSJ9DIRzYgOqf3MDyj9zBcWJPmFQibwmFg9kpG9Dv2OWirE4rmi/rusxGyvLmE59UDxyGrfR56FjVRd+l6CU4OaWJZ3ESW7sJPqhFaRCkIs3/95yNZPaH3e/wbOlYWz6pjnUJio3QB0Cc4v0KCCojqOoa1cTUw6yP6+8yzCjW1HnSujf0N70dgkKxMMEurv1u5Vw3hXmQPzKr+TdEBmVSj3x4AdByZR0e00DckEXWgdhBdtTsEyhyDIbM+KGJsy7p1MGRZa0eHJlwCOcfTINW9XSUTNu5WvaT8laTjUj+GbB+ydxsfPuuyLalB7Vv25SvJvjrHHix+HhrE7bkUxoWjV374dOJcuRnUEANO2bw6t/21Us4knbwlxUn9/epZkuro+5lVOF3PaMZs/R7ATPEsRv/kJZn6eV33xh5DrViE9Q4ZerKdjv+9Zk+b4xhLkHpg+nrwKQ0qzD2s3yd9O7NxDDKU36XzemMC7/fovYyyWGOW6UwTAou6PoilR/NJfTDHALyXPaMjbDoZ/OgYtPJZHDv93gUSvPrPG2UB3I2+W7d12x7bbtj8/ndjzIdEGfZuF5H/xVr7xVves1vUbBRLtLYmrhSVUS3WGsBBIcTA32gdPh4bosPjs8aKbIBb6Xdv8sR1NLQ0uphN8zaNbnuLtv04VQgqZJcBD0MAfOOgzpSBc/p+5suaMRquKV340hk14vtfQoaXEBrAUlKbeqDNB9QY2xyAk/aYGg/Ng2pUFK/C0QGr2MI9Ov8236PCn6y/KI/r/CL7GxuhP+Gy9qMxPiCpEWRp9qi9QscyDWji2hEyD6KL1EiCU9X/EgwdEEsQ7sd6M9LGFxH7GHgRLGagdqa+TfqCOkbiqL9BesMsOo3B83AGGnXnKHLdocZOPIhrgOBpm3jrDUZ7yf6WWkH9FvSmJgC0XroTdNhYRoef02tdADQyN48MCHcgZDqrIzCgYpE06q4Y+MqsI+O3AljWNKjJB1HfQ5Y8iPYKnJjqQQ14kZ49Q6g2a2va2ACTDiezC5wTHAf9T6phakHJbVG/EoBKm04UCU1i1vSsqIOTGuh3aAWXncHt6NSXVnbVc4Y8R7CNeMQJziYRFa6xNgrjiOKwHCcccz3r2vfq7epUkT2TwQ1CMo21kp1HFmta7xNrANlcto19xx/HfIe6rfionosadE2I9RYXk0FKMtpR5N4RTkTJsR5QFcUJhuvxKmP6/Z7LrPXS7zXG1bvKz+r1rP2wZp16/+JpScEfJOx56Dl9g0Q++UXQsWMuFy9DO2tQv59BbenGKb3W3ksYOykPCjzHtUhf98xC8wyBmr7z+lyICAjjZNaNgshsbfIAe9kzOn7HJ0nZHq7XKctqQHrUgsNiTkTeXNiB5n/H1rWPuu0WtOs6U8aYUES+ZK39PhF5wzpQiWaMmHTG1Ta1tECS4SpHUYoomnOS1pk2T0JDnL6DJ9x40+jQtzQuhF1VqW4Tkc6Rur00S+NYDQYaR0Vs2gv3AIYyrIxWzNqMfhu0wgNqeWS+q9mT+nF1gnoA26sA+sT6BDpR4RLY/UZAATylhlfusNYrkGiCxearJ1BgjZUrt5QkNFh61wTeb0pqRJ0UBk4cjXinrAxJGlAHWTqn36+8G8cBEqqJevfiFZ6bsCF9f+2Evj70JTVwGD3OQCR05YweILes15RZ1v6kUAtloE1jAVOLFpPGA7NQUsy3tKiQGXf1PU2m1UAUAXhym2PZwTjfqbFWJr1Gch1dH4vTes21Pl6zfj/KwCjP6HlHnwBjGnTH8hgXaychBp0RGfuGOtxL96O2Cc+8cC1J+FC+TY3dTL+ekwxqJJqgYUpoIrMwAeryYjoOaG3GGp0v3KqxrynsrHYYYq5wXAkfZCaR9PysRwpHNDvAbKI0mhKCAtuxMpa9eiKbvNaO+wkNTo8O3hmiIQ3b7Q1Jnj/EPXS1eNjvHGQWYzLrRIGRfUIAIAZxTO7EUUcuw2tiH0jf7hqDgIQoYv6RsCNY1d9nMKYz89h74TTTiXXEIyTjiOrJa+bx8HaMcRHO6xpWmGO9qH6eQr0oCTTWjmq/NkeRBXrfWSksJOUTyof0O31PavAiAvth9YxmrDKPKitp7vajem7AdIM6NORA7FIZ0PlEllI6qXTOSPSRnwVS4IyOwRwCDRx7bq3g2tZpHPmU6lvHyU77iYPneWOrA1zPOc983oH3ftvY91KJPJzPXnwz4IDdEolu22e7rjNlrY2MMbExps9au/padeqWNmsTm2WbrlQORd5rKKz3cNgBcO+xV0sVuaJarz7qVqSUPRKMvVI/d1u3tTWMqSaiv4SNlBGtJfX50FfV4C+fBbtlr34/cwUF2KhjKCDTFMMpo7PT/4RCn2IYlBEMq1Soxd0kehl4RufXtXeqEzD2lBona0f1vDR0qD/laLSR+Yrygcgi4HqAvhnM0R0hbgiwLN+jxnLvFIwwkHJsoL6BRhd1p9Kb+PyQ9m3+fjVM8/MwgABLWj8Cvao66cJh+J5VCE9wFaQbzIKTsKAXtVPIRllrnaHq9H7guAWvqGdnSTxBggqud644f39rB2UZNg/r8zvyF6j/mtC+lab15qzA+S2DyTCHcqGwqr8fnAJEDpmunkt6zwtzVVl4BzJ2yErS+M3M65pcP66wqzLo1Ssj0IMCQUDPtK7puVlcewRHARTcdgWe3g5GGB3Tvgv6d+nt6oSlqqiZQwDCzGhmJDqhhAjB8xdwsTAaQc1Ox8OurTujtkUgQmMXazz3ET6nTsYeRVuRVaXDSKIX6zswfsPxSQJBhjwnwovsqV0CU+GqV4OF13Ta7fRVieCIpW47pt+hUwWH3tf3omNJkpSY+zTJHTxIvgDuyuYCmHXPiWKGA/BB1utRWJpsfaVJ7d/i3XBwsebVe5BNGoBDgkcRZQNJs3YMgt50vCqn1IliTVN1lGku0PZjjrOWlOQXqdvUMSwBrrx5wMvGYV3NTOnv66BMJ+SRyAI/E53C89xJUy0RkNvJbnGwvB3qsTqdi297WVHWnDo7zRNhJkGJk3fwamHb1rjt5rfXpzYns+tUddse225qpjZE5FljzBdFxHkW1tpfvGW9utVtCzbXGSFULqfz5OF9W6xYyYnp9CSYmaonFwAxwZ6jvrttAdmRCFfxF7Vue2u0ThviXg5BKFKKwrTYhIGkCTCE535QsybDv/2Yfv8d0DcBIYtF/UoKDkn86qR+fuJBPQB1aRgJh4HJ30sBRgepgbG/SsUrWofxvX4QBjQM7qEv6/kq9x6W6BrqA4i5j3aAm3j3jSQKQZ2scvq6/5Vk9mD1Nu0zC9QHX0zjfZBzoNA9Nw9ii8Nq1NMwsmlPGJy1XnACabgyeBKtgVwiMG3GdjwJpj8Y1Y5QgAZmW13D/tYKZnuCovZp+iOgrp/Sazn818gCnlZjr2cGxiaMwuUzeo8KA2oYDTyqxt/oY/r+/P1F6buo95PMZQufUnjV5kEI+46DihxObIraZ5eSDhq1gPJrGEPLXlxwhywdqbLL49r3gXNgLJzV44Uz+jwknYygO90kaAZZiPgajHEThhJBCJb6X77T06pt8Z6fv6cwE0WHBRlLA4OyBWnsQK3OrA37QWptZjRAW56aOJA4HzOfDhbIuXT8oNge3Z94Ralz68lrQAtcrZQH+6JRTOZcMPA2bldntTqivyNTaO4SHUo6ZbgXQXLPZhCEDgjrkSqoF62MAToHmnIGUUoIqjhnKhdIfgrQUvQxi3Wseicc6vN6X4qXEaTCuscxIXToMU9Z8xnhdc83NNNfecdtiWtw4sj43tBXp5PHhbCwY4vMYSHtxJh3vT2kk5NkkxkmvqZEQYzstStHCJKBHQdl9bKproaOQQiOD9TYsQTDrq0lP6fztDWQveU4W7Nxbk+Aw+aTg/mf77o+q+uEvWXbbpypP8G/N0czRjcoTh73lwtDEvbnaqUwEa2XqXLREfeGF425hfoOLUE+GHu3EFrYbW+AdiMMTdiIHMU4tXj6UOMCe5FCpeufeLuIiOThQFhElbmZV45pRLuAMVqcSxqJ4ahGbpldSD2lRAkBmLwE86o4q2N77ofUmKARn1tMZnvqPUkYU+7yusuSkZHTbc4ZEFJUvcimd9/6H0f2DFovzT7dtFdPQlPpAgwV/Dz3smbd0qt63jXcAzoQjR7o2aAWKL0AYw8wMBo8sV+fibXIGSHMTG9JKjmDgkY3YV0j6swYQhwZBd4tO1yHxjqmGNk1RvnpfEcwpOlE9T6tGY+F96D+hdJAYDxkcX/xohqjmTUrMaCBcvqYiIjkVvSCq0MwmjGk+mCkB9D6cfUhcOxJKBIcBhwM6ALnVO0AYzIwcC1Lcahp9oxCtuxtCkm1l1BvCzIBe6eyDprLELSljAayryaXa0GYyPjq64J5sho+E56DTjGajzEd8lxwimKfZbbtIk2iHyQucGOOYtAwlKnHyLkRriJrygyIMU7nK30VjJNwFP3MMCHz1qP3JyySbJblQ3rsOlge8xB+piwDr5WMlk53ihnpapKAhs7UwDMgwUEmmpnm7HIz8T227LQ+38ZEn5g5wGs55rj+vIy1gyQatDPOnhIRkebTyvqXOrZVKlNEsBYYiGI3T2nWjIQfMXS+KNabLsJhBUV6ah4OK54XhaxTuWT/mBXay55BJ8k2vdom/7cMKrDkgWPRq4XimHayHHSq3AnpVCHAB2c6pgg3mgt0O1vNd4C8AFIQtpPNtGXROmTsd3KSuk7UW7Z1dKaMMUestVPW2t+5FSdGPdbjIjJjrf2YMea4iHxORIZE5AkR+Wlrbd0YkxWR3xWRt4uK9X7SWjuJY3xGRH5OtHT1F621f7Pjia3VSJeXEm5rZPvDDmrx19VEdWKYcRd467USOgk1dttbrPkRuP04U/ht6irgdd+vmzyjuD0zEGetkUVPx3fpPCwP0D0TymRD/bt5QiFRFMS02JDnPqyR28o4ID4Pa9Yhu6xjefiz3xIRkeKkGgkLd6tBVZrSzysHAvRDT0+GtfL9atjmrm2KRUYnRdFUOhDcjH12PxoWNPpAxWzTcIZKVOtM/mzkK2pEr71D79lW4VkRkTVQK29M6LVnwOJnAEO0A9BBgoHERrIAp2Xn6l+2RJcJgfEKyiPAsYIJNSxbmSoY5QwK7dOZIuSu9xkQFiChmEcNycopdTiHH1c4UvmOkcT3mvlkVsDEEPF9m96L/FLUus/IDJFeOuxHVgv00iR4cFF5GmlorBtpHNTBEoAUJUUjjpm/DtIVAbIyYV0d08xXVRPN6YAh82WRdQ1B+mErcGRYf0u4Wa2VZWKNGzO2IUhTYlKZ85mTEMnTaGrN+WTknBkJ50TtEDFvGbZMuyShVy1GWsABURtFTbSIzhYDAJubkgY0kHVUfq2MY6H1M1IMBCArFxWSGb8eaFmlIAhOx90FPnF//cCBg1ISUvqEQmEXHzkmIiLLd+g9OvIFPW5tUM+bn8Y8pcObh0DuC5fFAFYbg0EwGCZLn54jOK7rER13Q7KM994jIiLNGvpMe4O1jnzN+1mHY3duUj9nYADPq4l7EDyq10R4JvX6SM7RFuTdQ31tW+DFd4rY4mRGimORzhERNQycOeeI95fZNG8+ch63Q2KRMaQtR7SRQxxs4xj5e2Sn+q02OZo9Bix3m6nqZrTe8O16man/KiL3i4gYY/6LtfbHb/K5f0lUmBeWhPxbEfk/rLWfM8b836JO0m/g77K19qQx5lP43ieNMXeKak7dJSra+yWI/u48yuOoten4C7ljGNoC0xMRw/WCNVGMfnTEHt/COqYOmOS2aEu3vTWaq6HbP901GeMY4Yxg4/VO6TE3h9WwGPqWRlyZRVm+Tw3HwSVo6MCgJTTOwvCvDQHmckiNj7IGXKVZQLZhHFTqE9hw/8m79Li/rU5V/aeVKr2CTAhruOIsC7T19dpR1s2kJaShSbY33idmKkjRzOwyHRNSNtPZ6gFkBufML8AYRzZt+WPKbMjGvlz+pGYmxh7V420OgyJ6BXUyozA2c3pvUxus7QKzKOBgJI1wRotjKYu2ofNORmFNlUyfWJ/AvmZ3SRPfsTm4kP6pjoAcYA3ZCDiMdbA65sDstngXNJlIKoffD31e9XOu/djtIqLZgMwKalzAlpeC5xyuwmhaUSMsOgLh02vIvpHo4CCK/8f0vteYZV1C1rWcNLrdvfPXV2Q0SHyx9mP3i0irJiv1IphH6KiOALpKEVnWHfktMM7wNBSNJyyPBiHGbEhn2NdKQ2vLutLp8q+lgzHIrACFjJsz2ndKg7QZvrhn0dXZ5DWhJkgyaRE69CeO6Xt8Lq+CjbJGsgRARkv9iWOzpi2Y1mBFkfVg2LPju3V+BdB2ClhztYzMoGcQc29Pcbr36zURHspsaXoRxBkpfaN2AN/7ijKZhsxEVqvSPK0OdVhCwIPkI+xjr74fgCDGvgiCng9r8KjnuWTtVIQa1EYPAi8rrD1Fto71dmBGjAc1gJN/FqK9tE8Ii3bjIlkb7toejPc29r10MhDNwADPEVCTE+PAEbK4DBcyvnzerFtHXwM4rQwqEQJLGKeDjBOiXtMxT4ZTl63dLgvVSSKgkxO1X7mZ3d7frhP1hm/Xc6a2jp7bOn5rH80Yc0hEfkhUI+pfGAVmPyIiP4Wv/I6I/IqoM/Vx/F9E5I9F5Nfx/Y+LyOestTURuQhR33eIyLf21BluSpxcjI742HUPd70jZvYWNifI2I+oEzWubiGksNve5A3OVOolNQx7+9VQWT8Eym0M982TaqAu3qXvD7yELA7qe5p9MB4AjUlfQ13Jghq6sx/VzZ+CtgWwWK/fBuKIos7H5Tv184GH79Mv0M6E+qUiAAAgAElEQVSFv1g+jbqV6STpQGUMzlgtkuCEMmaxJskZVYxgTkDgEnVGTveGDVm28JJGnbN5NZwiZKrqDyljIVdKanFRc2bllBoXLCJn35t5/V4mCydqBvM3nazLdFox7DfrMrf2019vsAaw9iUmQyAprpmRukmR0L4L+hxqIP4ghJF1JktntM/Dz8JpiPg7ONHQCau8E4YxkzZRiyq+ds8xPfYV1EjAuaJweoQamhCOfDSg175xTP9S14uCqITrOcpzOt0u80enFcYcYHnFyyQTgID70+f1dx4hULgOgzWXZFJz2UMabL09EqOuLwW9QusLCZMOGtkW11cwFrao1XEqjiH+nnTT7qK3D/K53/EvxhHHizmsGShBAEBevogfYr7BYTSp1lyLDuv8qo7qfUivIbvyUrLIv0WNnoTUO9gXHQQEOOlEEW6b79csT+G70PHi3k3yDQQ+HfMu1qYIa9W1+zEfVwA5vV2vkVpR4Sqybnco4UX0oj731NFDYuZ0XSN9Og0qO6Nj1/Trc23epQQ7waMv6LGvJOchxZBDknGs4ZygVBfWR8NpC5p6r9KzyJoxYASx7tjLYDK7fTONdr/MQIgk5fxhwCZIjv/Yc5rcmOY8cugfbyxTn411oHSmvCAi69b9uZLsvDcPOmSq2j7fKVbfzTC9Zdv1nCnb4f83o/07EflXIoICCRkSkRVrLUMfl0XkIP5/UESmRUSstU1jzCq+f1BEvr3lmFt/c/22LVMNFmpfYJcLfnN3t8Bh4Bnlju1Nd3II2Yn9iHX6JkWdu+2N2W6gZsrCmaJpThgXRXHpTGWReeid1HMsnqUGkxoTDdQukV1v8IIai5P/WKO549/SHXf1uBoHuVWdJ1kIZDJqfPVhPeH0/wD68OcA63sIKY3FpG7KvDK2y8jjmHeBkeqELi/5V9XAYKQ7WlEDJKTxjPlkXE1HM3EvGKzYeERjSoQZLZ9OMtdxlVy4J9k3UqcPf0udgKUHNbqcRf0DDagIUCFndJQ9x2cbvRWXkfAy6sy2MYpOmFHqAIw7Cn7vk7SGlPWXP4TfhXoPKhs6HgjHrA1q3+feAZZB2D35a/qf3pd1vV25C3UxFMZdEGeUpRfVMIwBZaofRWyPpEEZ7cvacUCfcLvy89qn/pegA8XnD3HkAA5+zKg9a2t8nRtksJbvUIO0MO+xj9HIg+C7u5OAb9opkEywHpBG4sKyhKPINCCTQBF4IaELDUXuJ3Q0mBWwSYMyWoHT5UOg/CJ9v+FeNy9q1igkNJZRf2aTMDZTR1HrQ4cFWR57DXtSLusyB4WXQZhCtAdILJog32Aj+x/30MpD6oCsH9a+VYeTgYMsY4hwGPM0uiEtEJAV8Jqen3VehAivHcO9hqJ0zzSgwgjIVPv1efdcQf0SBHRrD7xDRERKl+uSO6dzNv3cpB6L9x11fvEzmnFNo0a08aCK/DKb1nybZmJTcIpY5xeXQLJwGPVfFN99SZ+DIDvTHNN5k7oEFkZkOCOSM7DesnoTbYIO9eB+yUPksyqyEVLnBRn8Meo7hO59rovc7zoElOz10EGdSDW8Y+y5dZ2ot2y7njN1rzFmTXRryuP/gtfWWtvb+aedmzHmYyJyzVr7hDHmA/s5xj7O+WkR+bSISE4K2w/4ncQsd2mothU/3oLGiDXhExbRZ9udyG/tdiNOO6J9qw+qQVq4AqfnWJIxzWmzABpz6G8VUnP5BzSa23tR+0Da6MufUDxfbRi6QgOAqzA6TP0hHJd6LdlF1OTcpRvqQgHwsBC6NmswbM7AYGrA8A1AxX0oL03Qu8dZNQwzK6DanmRxPqK/nnhoWAINNI2we25PXBMbg/1kFGyAnGP8G2oUhvMw1nvVwLn2Xu0HHYzcMu4tDFFDFj9qR8EY9Elw2MJSyRmgDo7MzAIzHKjDcoXwMKpc/YGfjevUvIgrhYtNnlAdXNOCfs57P/KUrofUKWsW9fPFOyE2HAPelMNzX9HPNwdTkhsD7ItlPKCoLo/BYbus15I7p8+pwKAStJCcs0WR8wN6/wkDbNWReAXqbB40jvVd1TqgrO/WTAXhiOlLet76CT1P+mlQo5+EQ7sG45AQrPERsRdAYc8aGy8zxNYmytsG7/RY2tjcvrXD3oDPCetztVIHFP1Aevj4ZYWp0UFx/eBcQYZaSkVXm1Q+ow4BiSNKk4CB8Tmxq9CycoQFuBUH/kCzOdd+4k4RaTmzPS/q2J7+EWVNjI7q3/CCOmkRRJy5J8fQsqscAPHEi3r8eoV1exjbGLuZDb3m9cM63kb/TDNSxWPqDFZHchIPos/ryTrMYBXzioQTz6jzZE9qhs/cAXISCDw3D3CsA3LYT7Y+ZJZwL1mPF0HHjfeYmSuBQy/UByMjKNlSb4YW006tky3lvY59x75D/SZhfQ6iuBO5126p2UVaGapuRqnbbrB1dKastWGnz26wPSwiP2KM+aiI5ERrpv69iPQbY1LITh0SEYZOZ0TksIhcNsakRKRPlIiC77Nt/U2iWWs/KyKfFRHpNYPYtTzseduG6lGjd1Co79hu4eR0gsGkSvaLjLsLw1uz3QibHzZx0nunltXw652CjhQgOoRtkfjBQlCVE4MGkxO+BGU5M1XFyygefmlSRETWflANpGafjtmh53TDLE3rD6buVeMgVdbPN1fQH8QsomVE6NMkptDvlaaspKBl5Ni46AjAiA4PwAibpyGIGirq2hCGclU/74W45+IHjuC4etieq3qxG1CVXT+G+hf8JayPVOtcWQnpsshQBYfU0IovJZcxx6LFyD4dpcBIWw2nB6mJYLCEvciS+Doqu10rvM/pBNsqLiarY27gRX2+8/frc1tGEX8Tt2T4ab2GRlH7vTmSNLCGn9Hnv3Y8Jw1onmWfUwKDOK/3hyxu2Yv6XKLLajw75jtkGiM4p2QBY+1TUAEMiLDJzeuTNPD+91xB3/PIhFxG9ojU9sgqBCQVOHYw8XlMvTNkyJr9eWm+R6UFwioc+SvIUFBcmc1/Ph0IBFqMro1tX3dsJGSCMxVd0YxLCOeOMLbw7Gm9xkWQdtCJYIYUjlBjvF/qvXrfVk7Qwdc/pUm8RNbUySJwnPN+f0WzOrX71Wkd/YpC5wg1XrsHWk4grWH2vAWRTAZJIgjiEmq6cUTv3eDz+kZ1APV+1DULGTjS7zsI43e1X7n7bnekFCQZCfv1PjUR4IzfrfWUZNNLvarXUD8NEd9zWptmmNnDfczWk2s4WfxcJmoFgRaMrcaEjnGu265GCmuGoyv3bYX9tF2SKTi5GBe0StKN+/Ba//e+TeZnjHdN7rVdfzsJ3Xdtp27bZ9sNNfpNbdbaz4jIZ0REkJn6l9baf2SM+f9E5CdEGf1+RkT+DD/5c7z+Fj7/srXWGmP+XER+3xjza6IEFKdE5NHd9sPX7wi8okiTyiZeM4Xtoti2w6Tz6hsSsIqbNFHZB0IyWjS6njZCt3XbbhsL4RmBBsEEDYxr96OmivXLtOcbyb8UtmwA0ZSf1bGeWSUjnh6n/v3qRJEVkAZOUNP5tnoCEd/zgHadAgwKzlOzB05aBk7grM6Jei83R5H+R9XIrh/W6Hp6FlTYcKL8gmfHZMZLBIU2jbsmoE7ZNc22OYIEOKJpEBykEdEm5DG7CkjknTD26dv54ap0cjnmPA76wA5HenMaWluohFO8JtYRkBL9Mow1GHOudopEAvtkmYLfKLmr+p/qhH4+9xCgbl5sqoBxsHIKkK0hGKx5vZaR7wDGOQCB1L5A4pT+P8pp7RudlwIMRomSz4tManSOnRPFgBk1zNBcbcYO8Ggy6blMJ6594zZ1PErPgckSzhIzX/UhfZ1eIgU/DojPU/PrUj+NsbnB6ECH2g0/QNLBGOxYQL+DTo6j4edr6u9AViAFgoT6KDIfAxCTLaCWimhPaAvV+1KyfhCEH3B26iX0EbBMN99IXICMXTyqDsnGvYBAIkCwdKeeqw5MTKOkxx17FMfB2kVnmvcygNHeQK1jfh51egfYLzwPrG3pCur5sPYNvKLPj7YCs0PxS5PSvFczTJnjOkYjEHekAOuLSLJBBx/3M9zQ5+6yLYS6HdBrrg3q2ImRAc7NwOFkDRwZPXEP05PIsqY82C+PyzXOiXXfemehLfPExgBQp2yp6xueK0lNOmW69qP51HWWuu0mt9fcmbpO+59F5HPGmH8jIk+JyG/h/d8Skf8EgoklUQY/sdY+b4z5IxF5QUSaIvILu2HyM0EgQaHYptnC5mPMfe0mHxLUEvNN6oQ4PPDurn1PzULTInVEjTpGEVlLFYHNqNveYu0GGCRZL9ToQ/QWG10zz83by0yARS+9AXgenJjCHJwp2DOFeWaHqEdEoxvOVR9qosCwFmXUUsqu6e96L+jxVk+y4BrG+CiOW8VxEbQMoYES1mNpTqszlaaRC0PGIgNkKOpJ1jyQAbiIKDR0CKUJTx7T463ryTIXUYvD+TgCR7E3xF/cGxiRZLw78re4lnU4SxdROwIjjYxdEWBQ1LYLSvBQ4dxFc9ecEyVezRvJFeITukbYJxUqlToGyNkqUds7tA5GOJ2l6jhIBcpJAoqhp/T40x/pS/x+cwzOej9JAiBOOqPHmXm/rrulSesWz8oI6Ph79Vh9r4Ayno7hkbP6GmQAcrdCqyIY4bVhfT4hMpXpNWTrxhWuFc16tNHetTPbsjmKeq7ZZMYzekXhfPF7lCxl4zBq6aYQkUcBfNSHccK9pN6Q3DXUtk2DVGPFExTeDVRp6/v+FujgnxTA3Z7x0+1XGEes5SITm5yfFBGR7BK028CU2CBlO8ZDZhF05ZmiGEQLei6DEXQEEN8KJut8EoLq2NdO6PykM7OOIdvsYaAnOfdXQV7T8zcX9fcQSzaethLjn5lVQOmKdI6xdl3Te1e8gGu+Q6/VoF7a6VQhyBLPzUsImF79MDJDPWCSm9PMYriALORJ0Og/pVmtcAlZzYM6Bqk110CdFicyAy+1CYW6ZWfxuyxhsyCxgS5VgP4I2P4C1uB57MT7rZVMtI5Mxl5pBL/mGJApG+PtV22iwLjvHnGQC3r4GSof/udIJHZxrZ2gid3Wbbtsr6szZa39ioh8Bf+/IMrG53+nKiL/oMPvf1WUEXBvLQjaaIbJANNiXkLU2Y8Wu00LE92Hzfjf20p2cbOiIThO5Q5diPMUn3SO3Q1EbLrtjdtuRNsM7FCkj27AQRh8UTeukSd1nJ//h2TmohGsG9XSXYA+zSdhXFVkngoLevzl06iROQRR3oIaWo1BPe8KIt5DTyCIgWnaqOhGmoUtGGf0PMxIEUKXn0Om6lpNUhTvXIOxZpIOnQuQ2ORmSziPuarGXgNscQ3AltaO6DlzY4oyptNUHYKxDc0rQhwJPSRt+Py9+reIrE5frMcJyzASQD/HegfWTpkhUG5D9yh1cKJFgYzoLSPfqRoyVWT5AnyL17jrgnQfcuMMF/0TlpDB2NTnungf6kyOAS6Ww/mQQXROOWqsBp/Qe3DlPXA8h/X4jYVQ+i6CsXFOr3Hhvh4cE9AziCgv3YEMnVXDnvV8uWXQta/yOcMpvgwnFffGTgOdQEplohG4tpM9DNdMiGPu84/pcR9UKBczn9X7tB89V+DMHYCwLaB8fJ4b33/GOWSFZ0AfnfK25A71H86w7FTkj+aCe74gqt88EqMY+mRmXJ2mAPVeLiDxpBYcFeFYOOZJZJnSPRnJz+sx59+m72WX4HwS1so+eiyKIajJoyyCGZyXuAUMvKQQyCGleeWD6lQXXwKj3XqSUrvRc1yPy+cHJCW17kogoLj6fXrNpPcvYo2L7lMnndnTnmpdbAVjB8LO1XHtTIYMok+r82RRExVCHypGALT5dq3HTF8FsceSXnvtBGQTkJliHVdqA+tnHhpcEATfgKBx/0sINICIwml2ZVHn5+uPse3HJtjhuw5a6DEjd9S46uBcOfmaNicJh+kgQO40o3ZJHrZt69pK3bbL9r2UmXpNmxPyY5SDFK/UnqEwXIYK9duXkDFa7AvNufR6GLaL3d3gBGXWwCnBc9HwFORvRHeo296A7UYIKOBAEMpUB8332lFmHBCxRkL3+J9qxHXunWpMFRTd4vSpildguNb1b3ZJN9T5+zDvUMRfrqrDEOYpTor6I5yX1OnhUnKpSoOAYugF/V35ACBFgNSllzdbtM5kW0PUPfao0GlEu02Z8wb3MzMN2jBocMUwHHPLek1hgwQF+nf4MThh0FiqQzuG5Aprx0DFvE66cETaUbTOjFo4yMI0QPfmFnAzKGqacdfUZB0YnCYLMVEyycUsSN8vq5c/trB0xYsw6nsAqVrXe9D/Mq71NtRGHUUt3hIi6j36nJm5XHoIv1/RZ1CZsJKqYEwW9D4SQloZ10FWHsfnCObToU6j9r9nCmK7vvMEPSKZ3z6D7wvgsjFLQKeZYtBz9yBrsAah4md1L7j2Nu1YaVqvDclcaX5QNYaaOSMBCV1GMLaggeacJq7tHqzc7S+d1nrPCd6R4ZX1ZtDuCgkXxT0jiYod0v0ueFY11lytELJ8tWOoZzqalbXbklntDJKhMeB2Mq73LwVadQvCCFlSp7T3kmZqR55CZouU9DXOecxXOvaAGMYXk8K1nOfMprJ+j4GaLIYB6f3riD/kF7XfVWQ2qwNh4vfFiz1i0FfCZjO5YyLSIkuh1ZB6cVJERBpn1aELXtXXhDWTva8xQDp9/cNAQJTFPILMQgpQxPSGft4Au6bLeJHRjvOW64HLUN1ABmaX9ouDjjp0jwfLpYPPujOuTZaspanE98hQKF7wixIGfh18x1qs7fredZq67QbbW8+ZCoyYTHoLTC9ZZ9QS8GQEFYXB2IAjwmNcxBALBjHJPutSvd5OdnGDzXp6NKydiH3oTqcFYr8ZjO6C86ZthKr1XNF5sFnXMbZ2XMfKKFj7oqwaOHSiWL9A54mNDn8ehBYBoE4UtJ34a50TpQsbieNtjunvashQpDe0HyNP0BHR3+dQ9+CcPUB3mllmEUyLihrjtnkFAqM+UxozEdTsYXYA9QuE3jSLyIIh80G4Uq1f3x//qhpWa3dqVLmO7FwOEXmK9aY3UaMBg6iJOjI6jKy3EDDuGaxJFqxwrJcIyjVHVtH4oArJhtPah9V79RilC8jWAP5j4UgGeWTkffp1d1NwL2gI0cGgjhVvIWvnAPMjUci1d+q1hWV6EEktnwj1KlfehwPUcK/mYVhlRJqAioYIbJNoYOUka9P0/dIUDMtN/Vv6tta2uSAWnN+oiIzf87gHyFwGcDRjv56E9wRZ27HH1UlavAMGL54P2RlJ0V4ex3iBk8fsbASnPrcEyvbn16WJ7BqZJX34eRu8nNe0gzHYZqjyuB0aBVfZmqDpD2ngHgRZS0m/V/0IHELAgMnCWe9jltZKsx9w2Hk+L2RsN+AIbibvt8EeS826wt89p5cAIeHUS3r/y2BRJNnJ0lkd47kZPMfQC3ySqhsZqY0TgKYCJnjq9/R3Uz+IwNC1ZCCIWfbStPa3PK7jaOXuAen7PIIVlCKYhFAzILuCuj0+X3ftd2iWy1BjDsEsSw07sPVtQOcvu8b1EE4SHvfS7ToG+8/rca+9XyGSI1/HFxbVOY+GsRa+Ss0tzwm/GfA2Hwrs1Zn74sn+mBOPrc/9Lki+dk6Sy1zhPE4ywrOzdmO3+PBH//39oD267S3V3nLOlI2ihNPhJiYmjXOayDBE+AINLcIrGslsk4NbXPfkN8cJMWCN6pkEHAK1HrvNSLUMpF0uEF0c8fd2uwlOblTSTZn1PoNfOCciIsH3K3vXylmwVMHAJeHE0AtgVluEPkoGGadxHYt0NAhHOf4fNWpcPwZDFvCYA9/Epl/Q3zVK+nf6w7q59V3ABo0VKwMK7soYNtpY//ZOoWOXZqSJmijCTVLjMAjB8tZW7O+YPQFPQR1Cegpsf6NqbPWKGjoZMHNJqAYMo8q939Us0fKDer4MDKD8RXVIq0f0XkZ5Zv1g4GBNiSGMSsa05v2nE90kSUjl9gGpPaBOUwaixeaQ9pGsjHEWBsjjapiGd+qx6FS1Gek+XJlOlB8IwttZGMrBverEVeY5QGDUA9qYWdTvVQ7jPHXAP68CehkDrnRGx9GxPxKpDWjfNgeZyYMxjngXM321PvZZvzfzk0oKMPK0GmepFf1BE9mC3IgW/5OivM2Jog4Os0JwOCtjavwNvqTfb4Jqu+9Ckg2OTJdH/kqf9+x79HkW55Dp/OJTeq2feEB6JrHPRMmgnMskOZ1Dn8lse8FSNsegRj0qtk4EFNgTKw8r7KwAw3bhh3S8pBBA6JnS95ukskcmmDWRvZf0deHcvCw/BPbFeUDY/u4J7QKDfxx7JAJBbVo8pWOz+YgGCFZv02sg8yMJQGJA6Yogv6SjR5KFCPPJZTbgTKX6sFbVdL5eeT8Y8jCuGnAMyyDQ6HsF0OWSnnjw77U2q3rnIdl8nwp35/72af0xHQU4oXVAhNPPq4MffVdrFy3EyIMinNMR7Ut5DL/HdFs/hvUt0vdLl/AcZvQa8kv6RUIpKU1AJyo+NoHfw0GEPpiF8+fkAbxmUqn2MRdvH4B2dXl0Ysk2GntOFR38yBOEpqAw0UEUKGZgu5zU1zOZpLNsqUbT5lR5MjVbsrUdSWfoPDnb6OYEwFvH7wak36ztLedMiZjEZCKLTgszjgnLFDNrDZjJ8iK2vmq7Twtqo6gjVGO/jZmpzQldhChWuFvNhD2z/XUqGO22N0/DGK3ScH1QDdIK4H5DL+im03sBmasx3fxpoCzdpWOx9xLrU/SwjKRuHNQNuMj6E8CbSO0bgHac8UFzWJ2EVFl/tzHBbI5+noMRsTmM37MmuU6jNC1hCnU7DJ6QDY9aMID3teolsZmTsKKRLISmc5Ui8xqctPSsRrY3j6kVzWJ0Ek+YGJDFeS3SiMDg5mC6V3QNYnbQ1Uv3aWCHRhwNLDpT1hhHE+5IL/r0u8WLaqSHs+o4WjpRzFR4TIaOuKKD1ovfCJGKCqiDQSbTgADkyOeTmcQ16OwWpmDE4EETFkr66RDaWyunAhk4p/eljiL7ALUPzEQx40Pjt+cqjLRlfT3zXkBIASXNAbaVndFrbhwFkx70jWJoPrnnj3HB8VNDbVw/YJwUAe5dQj3MHajRM6j/gxCxc77gPKdQN5PeiCTOgZQBRA7WJw/aJSV6p+ZoqDvUlbCRhKXWj7GKWihC2jYOYV0A3JdOVPavtG4s9zaleA8qeq0bd425erCNg/qbXhB0BN9Ux8Mx6cKYpjRBMIRszqb2deBFoENqeJ41HpfQN+1jiHojOaWDjcEJEriwRSTDwevyER1PI4/ra0KdywdphON3eH/zrJK65J66KBvv0SxZ/A5lJw1enkZnwsS1Vn5QVcWLFJB+VklLlj92Z6JvnBekbWfNYVjDuUf5vt5TZvtGn1THI3sexz+g62e4DK0tktZARsCnHfeJttogcltb4NkXJvm+IzPBKbjOkm2TCAE6TeaQPsAQ6yMlBloOD2ysBtkUwdrJoJgn3ss6MYvx59Z51onZSAwCZpxdrfoqz4FkcwvkHok7fFus60S9adtbzpkymbSEhyakeWFSXzOSxMUEE87BJDih+T6gQ4RBtDWfmMLalqO2S0Nlt42QJjdhPQevY9tvrZa34Hbb90i7GQs0RTsZEOdrQF1WToCyelDnRRNGNGuaCPvaGNf5kl/WN9aOwolCVJ6BgNSKnoisc3QcBAZsADhM33nNdKyc1vMNvqB/V4/DMAUyhEKemSdVWNPW647SmuPWRTqxUbZlJNgYzQeELkKUOQVnpzEOUV0wZtk7tA6CtSBk6XMsVkwmHB7D90BIwZopOEeNUTJvocbk8hKOx2yP/tk4qM8gsxY7Y7Zwuxp1s49AILWofexPk4ZbDX8Gg2LHPsp1avtAiTMyvCWF2YFmAY4djGw6fCsnkZkc5IFY48E6Gn2b9NRpwANP/2+aEd1470nntEaoC8utgHQE9XdlOPTlI3DYTzGzREZWsLM9Bzgeaq4sHJgYY68xqmt6pgpmRK6nIDAIAK+k08aMVFBS4379FBwPQN56L+rYJRws86heU+3DMJwxHnNffU4C1Eo5iuxOVOh+dsCDsu1Ul9uRhhotHh5IXENzRO8Jac157VcfRrZ2HZmpQ+/S7xeSWSObav2fmnMmArnMNBgmK8ieUZYE9Ou2B3pc39ZsqsE1D09qloeQuH58/8KndMxXj0GU+0ua+QvvOInzYp7xFqzr+fJH1NGoXNZ5R9r+2gTWoJx2fO2Y9mfgZe3H5igy3WeOuDmevqAOwtr7TuIG6J/8AdSDIXi08qBm6/qeh4EPyC5JbAhzZh3XJpFwLA+iTBQfN5GoBUApKSI8pf1h0ISC1QwOR8tJ1sg258naLc5JMuPk0677jcEp/s6gXqutBpG1rDVAkPmccPyAGWQ6xRgXlkEtoIaaV2eT5/eyTdROky318b7T5NfK+7DmW9a6mao3TXvLOVNiRSSOWyKWXBBYcEvjgsQTKAh27H6MnjliiiB5HJ5ma6ZqJ/X5PTYDDD8N3TbB4Z0m5n7FXduEjbvte6LdhAWZhsbQ47qLz713IPH52Ld08730MY3Cxxj+/chUNVEAvTlIIgsy5+n3il9W9i8DUoXls6AvxtwgjKjvO+rAxJMa4R2ymiFbukut8sFv68a5/LNqlBQVESQhopBlwG6Kj022qM73WGwco9A5OKaQmACF8cwiUIw0fUQzDMGMwgBzATITjyuUp3BAo9GM0JehS7QB+FD/K0kmtvSCbuSNQV1j6sicRHCIMquAS22qkZ6frUj9w3qOVdCHM1MYwYmZv18NxbCuf0f/WiFKdJLYHEmfxybnakGxvrXWNf0TDquB0vNN9Bl2C5n01t6u4yN7Qa1CMq+R2p6skE0k5S7+gj6/g1+vuvqRAM4ljV3WVVVH0UnQrKczgHUBYliv6oHBiJsAACAASURBVHMa/7pmJpbu0j5efZ+O7YP/VTNR0bAavNGgdj68BkuWgbYp1ME0ofeFbKpZhzMAB7KIesP1w3rP+iYBL7xPDezMOpgKYWCnrZUIUfpdwcS3NFdL5cP42Ai9ylxfQ8s1GPWkB0+tat/7XkSWINY+L0GAmsEUSiBwopuoNa54XwjJzUB/jQGVGFk4Sno4Udwy6o8gRRADglwZ4RjT7zEz1XsRAQKSecCJikHnzv03aKoTlxpWB6OK8VG8DAjqOJz1fj1/bVbPVxvW9xdw7XQS66W8lKb0OWzeBUcPS8rmELLOsPN7ntX/XHtEv+fq98g0x2yOl3AM64T54TXWSQavUpuoFQWMmjT8zilg9o/EE9TeciK+HWyALY6Pq21qbF9X7thPPTkYOkskvzEueJWkaW9irSf7KsswmKmnVp4d0MUjWEfggfPTwf9wPsByCSt0ZRDMFvb3tbJaaO6a3Bvb35eOGd6daOJ3anvdw/fyff+7+7X/uu267TV3powxORH5mohkcf4/ttb+sjHmP4vIAyLSEBXf/efW2obRGfrvReSjIlIRkZ+11j6JY/2MiPxrHPrfWGt/Z8cORJHY1fUWdbnnDDFC04ZFJ46e0TQ4VYzwdFIYN2HYpknVUVhxl42ikIQduIwR4UuMsjDa2TbB9wbXc5GpLszvzdtYtAujykWoAWe//CF1glgrxcgoWaZqnrYSv8fN3kD7ZeO0GqSL9+jnFk6ZAfRm6Q7NAuTn1JHJL4LIAPvw9Ccm8EP903NVO1IB3G/oWWzcmYyDD/kkMc7Q6LAhOoeCARbM6caQzqvsEmouzoPoAPPZLaaozcrP6u8qE2oUFK7oa1Krp2DImElN79HRDEEd3UQNCLN3jOCW/v4lPc/BA9IognYb95vseA1mCnB/XXasH+yjs9Cmwz2yfkQWrcUQ6m0VjLwXUO8SA6oFmN8qWPykDI0oEIoMPEeCCWbV8QfDLwblXa0/LakKas0wBqpw1NdOoQsw4MMrqLEIYfThsWYBjaoP0uFP3hOui+FVdYbtgDpTRB3Q4TRnktkGvwYjBeKLAGLKDt709Wf0fO/VwZ69gvqoi2o8RqePSRirR0goGqntd6SNdrVU2wuauj2BdUM+1Mlrpq7fI917fB9ga3Ak++Fg5ud1/q0fQq3PUNLYJ/w2iESAbpW+3/+OvsexFieN6QjwWxKtEBWy+S6FppYPoI6yJ5nVpAMe8i90xAjH5T5Iozt0cdNkUDBiWXQe42xB+zmIsboBnavGYWTTUe9X2czI0DNgGhyHiDH2ZNYyce73gdExv6R/r75H5yHr/gIERoNG8n6WLtJpZY0aghAgrym8otnruK9D9ofjgJTohDzuIjDaQuvgugkZdXV9cMxAxEKHxGWknB3CoAPWcjAgu8A01uF4BIE66OuFYCJt3KOwzdRTyiBp/UwZbC8SlRj2B0GwFASVY+rJDfZLUNlM/JbBcl8yIsD66q6B1+5l8lhHxrYjk7IvOeF+eAscnC6JxmvSXo/MVE1EHrHWbhgFrn7DGPPXIvKfReQf4zu/LyI/LyK/ISIfEZFT+PcQ3nvIGDMoIr8s6oBZEXnCGPPn1trrK9ZaK7Zeb1Gfe5OArU2cFxM4WlhI/K6VykaIzosA2tiKX9juwvX7HdxUdM8nMcISwJiId3B69gvz40LShfl9b7WbsFgGMKYW347oOxGjwOzXB/Vv7hqyBTCa87O6KVWGETXEHlK6DBFKMODVDmpk21Gjkwodx6EQ52aJxgUdDkZ4YRijuJ8wGAYUGqhPCl5FNXpvT6vgmRj6WnKDawtu8H1mYxAo4Uaantc1g7pBeYj/NiaQxbukRgDJNdLQy4mPwIgMWXcCI36DXN5YhkmR/ooa2+nbNJKeqXsMbhD6jPNp6X1Kjd36IX1uhAaSga45ASHgsp6rNqEOQ+YSiv09Bi0/WtkpEkvoVhTB0cslHRWOm0N/i6wcqOubMArTYMGe+JpGoWc+0MsziohIZSSQoWdRJJ8nAQW+AbKRUVBmWxpVcARXbtNOjH0b2k2buPZehdS5QMHlmcS1h4zek9wBWQOap+65QfSXgbXCixCqHdExXoJuVfxu1Z/KnENknZpfMPbk3KRYGvxsHUSS/aL6NjF5Zqhsq2ZQRMRW4GzRAO0U0Wb25m4loGj26vE2PqCeKzMopOoefBYO0CVcG9j+YhDIxNlUi8ETjhmPGX77heS10NlBEKJ5Scc/oXF0HFjvR7jn2jHA8gjfxPcDZLZkXOehnUYfWae3gnsFrTpXi4is2sDTzL4BjgtEXH0IEOYZ/Vvvj2XxbjAJIhPL7FjpcTXcL/+IztX0hq4VPc/pGrF6TF9vHMb3J5Gdhr9NJ4u1aWGD6y4+XwTJRj+gzA1m/bzAKoW+I47p7YlmtsuotNZFOE2eVpkTRSZcj8dg8Io1UbSRjup6Fp17VV+fQOYfGSiaSWQzjQ6BpAhBivpDmrXOPjOppzkKwWM4dYRMikU2HjZZNIDM5xWcYHHZ2X9hEXpqhLWDXTNC1pRBwBCyFI6enfeAtfEkUfGDTrttnLf+ettBkqctq7SXTFU3I3VL2mvuTFlNCWHJkDT+WWvtX/E7xphHReQQXn5cRH4Xv/u2MabfGDMuIh8QkS9aa5fwmy+KyA+KyB9c9/xxnKSJ5cbpaJER5SCrHyOFXuFhG3NMLQnZ2ZpKbdVlBYnf7rsxwtPwosjMrt1kNW/nUPpUpt32+jZmUtIcX4jQ70CDvG1DZM5F2ZuoKyLjP6K2RQiRUkNm+QzmCfWlUBsVQSQyBCFEdprU6ro59Z4DExdIAwiL2dAgotTgvGUhuzP6pC4ZUx/W87Hwev0wKbn1dRXEGbnHXnXEASz4d9AOl4HyghvcZLihjQ3hXoDkYRjZaNKKX9MNtnG7ZhfCIXUI1o+qcZADHLD/GXVwmn2gfJ5DJBZMewLm0JB6V8hQsaYnWEuuLYS/BOemJMacTyPibFG8LxsQ770KkVU4TdU79dg51FBYMKe1WE13V2vDjGOtSp0pfT/LmnBE2DegBVXGak4CkeFn9R688o8gcgqDdeAlRPRHAokxhlIgMSGjo6sTgZNVvKT3b/UMatkAdTQbiMYDHlSaUiObME0/W8NAWVtwIkzWA9Um9Hj5ZzE4YeSvYC7kFreRxxARYWE9A28DfWKhKdZxzSahEaPtFY/1j04QNJWixSVcQpJhzaELOgReCL1rQhMtfUUfSG1ADdsqiCnoFIdVMBtyLlFI/lDLOSTjHzN6dFp6HUMk+s6aFvQ57NcxWphEnR+Y6WwJRvG6jvXcgs7r5TO4N6hFjC/pmA4PqsMSbdDc0EaNuqAGTbNT+lxKz2cS1+IyYEhwDz2ubzC7tHo8lNXbkQmeQWb8BV1HF9+p6xyFimfeD1r8s6iZuqjHWLgHzwe3ZOxRnSAL9yILDtu9ZwbsgGA5rfeRgALyDEPIfn/7fOJaXXbdD4DuxuhuqyVNBp4NpCOo2xcCpteAHl8T9o45nIQrh70qrhwuanQkGtR5U+9HPe5JZIizSZhvWMWegH5VD+g9KjwOhAAEpllTRW00EvqQAMOWK5KCLpoFdJFZLrIfhizjSCWDFsxUubp03BNCHDm3Y5Id+c6rLznhoZT8AB9JWWIw07YYFZNO17ZU952IwzpK5uzgkHXru67bXpeaKWNMKCJPiMhJEfk/rbXf2fJZWkR+WkR+CW8dFJHpLT+/jPc6vb/d+T4tIp8WEckJ0+Eem41jqElii9sIJXxjA9G1wCSFP51Yoo23MAVignpQwL0OTrIUFWY9Vj5/o7zJg97uV/Cz225Nc469jocQMIf9OFOmyqJ5HavU9NlEGVB6Rd8f/rpG85sFnWqrgFwd+YKeM43szMq7NerIqPLyA2q8lyb1+71TYGba1LHa+/mXRURk4J13iIjI5Q8CkgcDaeWUblKkL+65gkzaWZ1Tpcv6ujqI6HEhLykarYE31zvQT7vGDYprALH2iP5mlhG0APFE4UWth6hDsDRVZRYPUBLc2+CcMnht/MyDIiIyuEbqXoZkscFiIw/nkRnrV2PDgCmN+jzN9XVJTahxVj+u97fZg9+SJAORcsLqClcB2cnSkaTRLYnXDj7WIYpJTaeoloyc9l1C3dBBPAfAndahV9bo1Xuzepysfvr54S/q+Ln6LkT6l6ykynqsjaP6XuklvR9RH4RLF9RIjgtqhPW+AuMso9c+90E1mOjA9YA1MbOC5wGHUhbhcPp1r3w8aQYGkKUFpDXP74E8JQ2HvlECpfZT6lnGR/QZmRcRkYdRVz05Ink8yxiOvlux6Wgw+s9GMhVG1nEsZ2SRMImBNQYJ4WQ7zTKfFRBTJLWGz68o1LHQC/hmQ58Bnytpyq89hHGGecqgStBsQX2ZtWHwz2UsWDuFYIJhXTIh8+cuJi7dIngR3KmLzspJQOherSf64OC8c0nJEDpzzFA1+vAGsuN8nxlIBmzIaEq4KdvY45vy6o8jg3c8qYtXmtY1hMLCTZyrivk1+IK+Tm3ACXtMr239DmSYIQNQ7UvOL8L/HFvqFdSdsVjRLynYQrqgf/dfa+MMeqxXoQVjIDS1aichPZHD/KAUxGF19DNffVY/f7cyPxpQ0zeQDWJN6PoRnU9FQrhHwVAKYh9HKMHHwfX6MkjB4OS59fvcpHa72IJ9Ng/jO0/pvhNiLWBmlcF0Mny6gDizyrifdJrIAOpo3tcpeYDngTHpQyLFtytdSQX2dtpcnhPF81jWoxGdZFufM4Dm4iZtWS6PmdC3H30HcJfSO2/V9ro4U9baSETuM8b0i8ifGmPOWmufw8f/l4h8zVr79Zt4vs+KyGdFRPqCIRtks45xxuGqPWyx05nqlGb1IVVkvWKkkDUBkt5CcrHP4kS/YZA3evXxMV/k6N4j4ulvEhzPwV66NVPf0+0GnGeOexaUkzWKBdBpREinflJTDPU+LPZYb8ny1+hVJ4uGbaOfxeM6Nse+BGgVdVhOqqFJw5YZrPH/pkbizHvxu1nSgTNCru/n5pPZip5pGINb4ba+pk6jA9SFr2mIgM2PawON9yYgjeGSvrYwMtLP68abYdAERmM0rccp//Db9TUi9kEVaxCMg3gJ9PDITBHulAqP6XngbJGJNHXbMRfVpREcFWCgYv1JleFoL+jzrQ9hs78G450RUPTVrVUd4GZsOWgHhcvIwuE5sIaOBnTPJb038/fCQMItdeyOuLezD+k6TAPWBiLlw/peeRTEEwv6OrUO+u0zasSxBo0aaI5RDktwHiKsdLR74KTRaWVWJ54HhBtOuEVdBesJCSkd+sZM4l6Zdb3GzJpCqkhPb2fVmLd3qdMdToDDG4ZUdmHT3V8bJQ0bV1TPMYQsK/crGlWsC/HFV322P+ecwZiLPIOIOkSELlpG2J9USF4exlvhuAZJFu/Xex87CyIJU8uUrZNFKHxHnUg7DkY51hvTiWWdMuZROKZFSsGYGuuNIe3L5hgclwlkc6jJvIzaxCP6PTLuUh+M+2JbpgzZ077nQCgDB2bxbn2f5DZjj2u/Ng7DiUcgIb1QkdKrZHQEo6TeHgmaYD2Eg51ZTAZ0SEGfhdg4synpNTDXmaSEQHYBY41O1GWkgBnouaBj0pQgfEwSHWRSdiQg2a7tQMtPh9sgI0Uxce4JldvUgc+jVjB+m0JICUlkpj47peMg7te+kpm1cEkdlfSGvp++igwl1sHiy5hfdFhYM7UBp49oITpfdGDSIgHgr+YYUuYY91yTHckXadjhyLtML4/JW1MGayLtSC8w4yQoALu0rBMETJAQSlebxT3IEz52wRFXd5gMILhMVSbdgltS14tB/CDpsHXcB712Xbr8rb97i2auXlc2P2vtijHm70Xhec8ZY35ZREZE5J9v+dqMiBze8voQ3psRhfptff8rO540FUow0C+GOivYJAjn42aV8jQR2FwGK0hGCFrMMtjktin03bO+U6cGY5BiliVqlDDC5028PWsj+O0tOjm+15uf6m/OdqDr303DM84tJZ2TFIyjyjiM5WEwys1Db2ZRv0i9p+yajrXaKJjT3qXfm/g6IvAwoMqPaAaKkdbUus6jxgC006bVSOx7RTfIGYj3nv5/daN85af1+Ee+oO8v3qUG0eALIAUYG5boBaWk5kbjGDy9SKsLQrh7gU1oIsk4aNH3FKOACMhYREIZ3W+CfSy1spk4bBrik4MvwmDCcZpn1Hg03/yu/sX7qWP6vqsJgnEQQkcnvjInApgYHbfs+SSbV+oQkvW4xvpxFL6T7IK0w530ZTrM/fAZNZDlRxWyw3qVLGjLN0f1nl9+RM9H+B4dkvm3AaJ3mdke1DGhTmX0yaqjFh//ko7rSz+OmhpkojhGM3D0acRRT6oIBzw/B3gfoFENZO9SYK6LUJjuHBJv7TbITFUOIPuC2iiDjKGAhprGZGYF6/N7tMaj8KTCkIhMYFQ8LNe3MI0l6145t0nOEA6hlpFBQDg7TWRfWGRPdkBnXAHi1pyakW0b50IejuUM9juM/eqDx/RzZH1ICjLwB0pUQcbLGIEHc7uOzcZwC+5XeYdCb/m8qLdGRzEgHGwAQYRXJ/WaYRynabyn6OTAcN3UezH1Uf1eP8a+gErfODIpzFPeYjxmQlH7LurzuvZ2vefDT+vvnAjzIESDAUWu92J+bpbk4BfVyG4+qutWFcLOdPDJjnjiNzTQUjujMLKVk/q90f+m96JyLJlJZhY0s6J9z0wnIcqE+jIYEeA58vk7+Qca57421H6axwLntOqQhck9j3kDh712TG0oA627YIQ6CejKK5p5rL9LM1WZOV3zi1/XexWfUEcnPYcJDnin2/couk1HBg4Jx77bD5FxCaGdZusNRwLD9S6+Q8coReSbk1PoJCCGIyOJvjen4Wk7GC7sSMBs2xrO4+o0g2RtW+xlFOOqlyV3MOwg8Tt3eGSo3D3oLTk7Mdr0kFBspIVnfSWzYb7j7YuYd9JLvVXMhW+Q9nqw+Y2ISAOOVF5EPiQi/9YY8/Mi8gMi8kFrEyDPPxeR/94Y8zlRAopVa+1VY8zfiMj/aowhh/OHReQzO3bAWrGNRisS6JM1OGV5bFp0VKjXMABBQRJYcGB41KOJgesLtt3oYAqTsAN/AtumxxTzJhu03abNOcs3Y3HCscgG1/uUbsrlOzWafEmJtSQN7ZUGoE7NfmYkAC87D6IIGKxRHlmBYdQMwIhnQbvTpZqFMzb5/7P3njFyZemV4PfCm8xIb5hMJjOTtsiqIsvbVptqtVrqXnXPtDQjb2a00g6kFQaY3QFmsIAAaWehXQy0EFa7AwijxkrQrARBI41aUrWT2qlNOZZl0ZvMJJPpfYaPF29/nHNu8r1kFMkyzSoxL0AEIzLimfuu+cz5ziGzGhf4/n+Aobv0BObd1A+zoJpF0WVmG+ptNKAvwuGp9+TNf+ZBXDNrjvwXqVujTBMNQWV63Iap5YebtxwVOU/N8/i+MwbV7zTiYiswLvx+bN6xcRi6cooyV1hDRS2f5ATusRlhv4pzg/Y8Zo3o/AViEywWnYMoGJfb3Hmtgv/FaSSI8cxBBVlrpWJtNVcL2grS4WoNWDvVITgmrrXnDRx3/mEct402hJwmOdF1Pk45PqUB1klUfes4z+AQjaUss1/VbhrVLCjvfh5Gk9/D2gs6TZlv4nnH6Iiopk2sjFv1JLqXSDZH0BqyKHZTPFawpPQMKfNpyMRLqoUjzIkR+WCARiRZG+MUXA1y19WgilVWsB7uI/GBMNtfjMX5DdUFRbV49BopiJfzJTa3aBlFEKHK90+DOS3fgHNUpNB0tZNZnh9FllXGv3cM1ykhaq+5xZKXZH1ddp66YQt0DAQX62WtizKB2re0ly5iTqeXWVjHeTb3DAIF+Wtcu2YiunGcC4IRil0wvbrlsJuZLRyH8Z+dxe8Kp3Ge2iOYU7lJGPOr+8PkPBu7k5aeJ1HO6Qkc4zl8N02B4rVxHLtNRvk3oIGV6wDU14mWEwKZO4e+EWlCnaQdzQ7Wiylzogwi+7LBceMM423izi0QNrfTWrD5amyKIMQjRC59mjIXGruypZhlVVZGmWbT8xUZxEpYbFmU6R4zvILGxjknNObdHFI2ljpXjnLd97f+JkFhMarKEY9AwUXj78iJ3M0zGKFzyvFwbJpcqyMi6VGIucvOttrT3d4eJsfZVnai65lbcNfk6q5UOxihpneBtChyKrIeRh26t0149Y/UHr0TmaldZvaHrJuKmdmfBUHwN57nNcxs0sy+RwflL4Ig+E0ze9ZAi37BQI3+i2ZmQRAse573W2b2Io/7myKjeMvWDCwoVxyNpiIFW3SdTIsTIqBNyAgFcYKCs5FNKxnJBqm9FwOHEerMcoQEY1tUeQeW94+6bdsw38GhuOFVOrFQbnwahop0gVI0ZJtt3MyzGP/5Ajb1yjLmR6mP2dJpGoMVsmCm8PuZH0a0UYQEtX4cZ/UQ5l+8itexv8TGVx5irdQimbvGcb7sGWyCy/cK9oDjTX8CDlGiHDiITZtEcFnY7jZdOYCc28baFxnvblNW/zLiGhyGc+SdRHamSS06h6fnJlRnbU+6FHZIasN0KEmN7sRK58PZIXf+vOjLw8x78ULBbEBF1+J35mbbpsg1natVPN/cFBwPV8yvwmsFh6LwsBaOuoOr8M+iNBdV9to+bOCNdhbaH2OkPIP37ZcE3cPveliLV/4ncHDjG1XzC3Q2hmDI956gMaV1TsubYM9tKs7HWpxihkm1OLEFPidmP2UEOmidNJkiMFCvymh1VnVBNFjjcM6yFbKU8XIk3iwxZkdtz0BCQEKF5qV1iwviqTpHOXAZwvmYzfL1fOiISYNJZAwag6456nTeS5SAItrkTCkbS4deZA55QlDFoLY52hb6uatX4jPJrPjO0cpfJXxvhiLXrpaR18h7UxBBbG4ao9UR7NWiSC/3MkNEZs+2KTw/GeVyPHSnMmglH1Acpm5UDXOk3I/fD7xI8p01GJ1tMxjja/fgRP0v4jpVl7i6L2m1boyl1EXWQO3F+PWfexOfDzyAc9yrLAsCJ21vImgkaFt6nsfuVz0Q76kcGeuqq1wO18Um6GA0IpkptW12ydsJwEXJtdicSC+fZ0xBKJ3jANZLWyEdpxP95bzk+uhgzgdG8ferzLIyo+SRPVWZy+i9tGIe9XJED9W3srra75zAL9cKwSIdoQQDXC5IUQvDabeRPKiPhHaI7s3NSB9Ga1Kj9UqRe2yZDYpkuoLrfrMNuq1DOnKN+g3/vj3iIsduhw3wRu1OsPm9bmYP3ODzG14LWfx+tcXfPm9mn7+t8zeb1ixXzNtUypjFrnKKZMhogXBivXSylldCf9dAjDttmhsMtAh72DuF+wme1Mgy6thqMuy0nXaLTWOyuCtsFAmaE+zDfGlsMurfwcwGWf9S6/hi+1WM/9nHCeMiCk2R77XDjDoOMFJXY2R2jxwXvJz7RdbYTOLv/SdYk/DT+F1qlsxPxxkVvYj5qcLtIG7WeZYsebNk5OykoSJIFSOhwr8HNKKsTbDZjfD3fenYkJBAUWBu8ooW+z10DMvcgAkpqd3Xw77C4crM1nWsMetNY1tMbIqkxpgZUU2Aa4m4BaRvVyGz1iWtOekFXEuT9+Kgi6wJaC0++db1lh4NXVHkx8thAoLNYWWY8D5ZJIzPF1QKn1d5SxvMEqYZDpt7usuStMlUx6f3PV8EfNPRPY/AkMxMsvYiSXjRI6Amb/B5uToJRnVVb+SMjlZ1JYLopMMQLBlGYg0ThXP2OcCXGkdGcd0kZXH1DIzcJzoLrp7O1UKoVspp5ZCRkpBPizAUNi/TQWmxB7hAm7KaLTKNgZ67akVIUy5HX9k50fYXJum809CV8SiyFfN9CxgEMNbWBBFHTvAs5+woYMmxVdqP57hJ0gsHsyTtvsacsp1i20wtMegg52wPHBlXSxfnGsH3qbUwAcX8xzEW+75DXaJxZjYJK4zRSe4/UbXFY7jWnipgYt4ZwMM0l9suYk1ZPYp52M6MlfcCatFiMZxLdoZqTBObYaM9thoeq45FrosTLlL7qKzEFoV+xOZ4J7ZCxHFwupbSqhN8mrVrMcL8pNen9dIoqqx10x1X9ZyqSeSYNGXRXSaT59PaxvN5UUdEDobWi3KlZZZlS5CYjnUbgwZRUe2oYxE5pwvIbKvXrd3w+9taK6epVXDL1exv/81N6+VajYUde/K22h2tmbpjLWhuwR3ExkdIjdSzo61JKJ0KeKNeezOKS71uIG4TvX2Hg1TOVIy00654sRqBOey0u6O9C/BR1WQonBtX7T0N2USC8LB20gjnMN43SmSx1D74MKPw3GMkrFnqpyE6SKeMtMSZc4wO76GhycxF7xjm2+o6N84rzD7QeauwDCOXwfX0/TX+vnwUG3t2selomjNiYysS9rARzvAEjlqesAduzspeO1YkGsPJFZLUyNkhW1uT2aDYGiPxzCA3RfnM+bo5RKiUdOIC1oZsMNPxPCBWisQ6IgMZTIR2BeWKg/gqw+GgTcos0OCQUSBxz/gir50ZJsfUpXaT6GMgqBoN00SFtXPSCWM9Su4ahVkF+apHjAimtqSzs/AoxUin49YgGq/awwyjyhh2A1K2sT/MJKcsmRzyalcYupibI5SUBe+2F9lXX4xd0cyUaudo9KeY6cwssY7lBdXkMSB3LyLwtcfANud0ki7TCRdt+b3AzFYG85als9Ik06OTn5CxJzgljWM5xaozMjKpOQhTPZzdvN3WIFRSGlFl0k8L2tb+EsZ0Y5qQRf1Q8CIFGfePOO26yqPoj8Qm99oX3gxdo2Ms7A9nWVWrKDh7jcx2Wfo4nRfRJ9c+hD5LrtGBoOMnggu7n89DjIWbDFbIHzzrh/5eIVNh8RDmWf4SAxbs22ae87xat2QR/bN8hBmqPXi2hQuEeL4EqGlbByDHItFoF1yMoZqvtgAAIABJREFUjoOv4O5urAXxacKd6VhusS5yrEt8m8K2slscu6P0494NeF+0RbIhbo1RwFljgTVLjpSLtlOM80nrouDTDtLKe3HHWY/AaVX7Kth1g/WhghE2wmPfkYndkJk0TOQgZ9Stow4adxOyhpuQdWz7vQss3MQmbAn3C//9hvphN7MLbpUyfafdUrs7nSmzbQNJm5BwvIpuyEGRw9JKryGqF+Ca522l2N8tsTQeJzUfSVXvKF3f1S0q5HlbjZHUBGMJYlXbHKNBeZUsUd0wplZ8bJydX4URsT6uugXMm543MSZnH8O8KQ3RoGRmK3sZr13nSMpwhgbMLnx/48NkHdsDp2CNBBWVaTLp0RDaKOJ7G5/Da4EyK5tDccvP4tjVHhwzRxrcJiFS/iDuOXmZBAJd1DfpIrPc5XABs5p/Gidxxb7C24t61+HlaQgfxPky8+iTtb3ou77XCJFkhkrUwCq8jk1AbDS6BjkygaZviUHSEbN+wBHoyDDVekSjLLpNyoHcRtl7kyboWmqZzpL0kSsiKuAlSpqGXVjexdqtEj5I8/cbo6wnmyecszuw9LIwhHhZPkYDv5esXbyZRh7/SW7IGMBL7xusG2N9n4JPgWrbaNTFlRHUGs+CehmJzoFhXYtPpkRlH5xGEymhVQ8YJ/W9y9As8++M1Mc7M1s1M4IT6XmRIS1GZrLGNYwFewSEH80XQDMdPwqGNCPMz8HSA803GqbRLSFiFEpbSVTRgkylk/vNzKy0m6yc98EBjR0iJT8d2XSELbJWiDvIr4RmNdcdA11U8FQOIsdW7iyJQZhBbD+LPqn1Yw2Yf5BQVtbtxc7BKa49hGtOLeP51HOERipLynEiNkAJES8fplPG7Hbuq6/je8yYNUYp4Hoe0EcvlbLu5/CMVx/G32ptDCrswvPM8/nE3yThwf0kldnPTONZZDFFLx6fJvKFa5HL9MXDa5DNkiae7H1iMHRwT2d8vzsB3Bu2IOyIKBAQiH4/qqEkJslINjbG5KbLoDBYFKNQbnRNimaPLOJ0bdv/Wjk21//fiZZz3rTK5txuP7b6/q3agjd1iN5+IPVdY3veaWZ2FztTW9ESZqSUFmckx2PEUFjaLc8/XLTn2ltNjvdIcTq2gmikcwt3lK3vzhaNTr2NpmirRCfrbRjnpQXMh13PYVO//E9JL30SrytHKeZ7Bd/f9S1s5jMf6uTxcE1XPsXswhkYNr0nJRIsfSh8Lo2X5ndhHGQ+gmj+2hD/ToO0cYDRyPOszcnhd71vwKibezRnq/tJocsC9fpnALHp/DtkFBqDY2ZmFqPYY6xI4odNrAX+IrM+ErjlWuCK/hUZVWR2NwwqRbC1dgi6k75A7Z69WHOq3YT5vUgspGAoBTo+ghjLWCGkKkEDqjF9zQJCEmNy3JSpiDAUCkYkOvf6LjgkCbLFudaqDm9b5JW3OIDvd57G8+85xaL+++n8DtGxUOI+x2zEGp5NjbpT2XmcL0Wq6Eqvt8XOxjb9KZy0vB/PJ77EDAahhqq/EvX82igZHs/i+8mTE2ZmVnpyP68J/Zyhke+0t+hMOWNQ8DxX78CP2YexN6gfNY5xUW9jPdgFOAN+P5kTm8w0MquXnlo2X6LJcjAYda/uxrNOv4RjeMePmJlZkdnW9pXxUN8I9uWKyaUzJZYwlUy1YnoVYyXHrpy7+GvIkrZVxkL3XhpmbQm7SLWN8Sprh0pNi9XxZdUuJhcY/IsW2wu5MYN7jZHVr3QY82n5EIILqt+UVlmDzKK938a9z/8zsMJJ561rGc9Dor5ysrMcJ23TuNe1MWaLqF2noMfGp46ZmVnhG+iDjVH0SflBsDR2Xqpb9gr24M7X4CBXqe9WGsA15TWH6QylX4fD548BmupFjWBlFmcYyBmB8+oxEOCLbZHNuViOBS5Crd1CH/NdaXKS6BS7zJ3IupgNd3IzysxG6zJ1OIla04naGruyuXQPXCebkfMr0xWpD3NQ1xuVV7SsXXqbmaJW34set1XG6lYhd9t+/xaB9FsV593JSL2jdnc6U0FgXlzp1ijWlZtQxBhxeHdNXLUWDFDXn+u9Sp8qgrrT7vIWhQyo3U6Uigxkq+NhiE0HC6ul0SPrqcpoouBcCTJ2KdIuw2fmcULsaCR3XsLvV/fR2JjjRhkL1z/IqF6cZ63BHtaOvAlDa20fvpelzbF6jE5ZHzNeZ+u2sQfXXJiAgSGjqnb/KO+Rt0RIk+BcRlhdbDd1gSqRyDlrrwLSkssAFrxIOige4UuK+quupPt5GESbZErUWhMsU8uE0BLpH6k2QM6bo35OpsxY5yWYV1waV3KuInCv5iiMs8QiazBkaLTKSLXYpN09dZAKfQD3usKi/o1xQpCrygLQ4a8rI8VMJMkAqkSZ1tsEfTSrUPqh2kVnaYJZKzpwWY4dZRL6v4nBIIFoZYhSz53BwQmblOhyTMQS08j6COrqr4fZxmJ7YcxXJda7SEHW3XAYOyYIoRThwgT6dulp9HXXGyRvaKeDOUhnOeZZPvp8RJ7A+isj5G1zHw1TlTb1Yl4kVjk2VFxPR8QnOVFiBNfemNrKpuCDcORd873xYTgQCTqCOn9wCtlYGf9ta6x70dilI+pNoi/91VVLPoVjxb4Nyn+fe2V8HFkZwSul4xXo2jh/JHewcRT3kuvA/OwitNdv4lrWWVuV2NTawc8PYf5o/EiIfJ0Q4Xqex9/H8fR1jUk8p+Igx+oxOJIrhyg8TebQWkfS+mIFnpP9z4BIdgHvZ34Qa0j3GfS30CTxSULgRM5AchR/gM9vH8cwg01ithOkVBkpwXObq8xIiYggSnQQySK59g5sEjkpTrtMbHsSqJV+G78vOKdbzyJlCa58QWQ6dI40pj2uwz6Z9VRjp3p2wWgdmYqge8wM++vKlPlbtYlc05siAxIrcysny938TZyhm/Vr5Heunt6R69xM00kizHZr37/RuXfau9ruTmfKzA1GpYxd4SajKC5TFY1qtFqk3mqAvkeD14+wUe20u7S9C1AOaR45A5QGanEIn4vxKrlC44n7nepYOi/AwCkNZfkei/u1j5Nq/Qw1djK6VryoqD83R2OkzszXRWRMKt00cGlYZ1QKME9aXTpxEqpuUDQ27gXWcxJf3hjBJt77KhwPCQznXiP0RlDdSJ9INNdp/HCjlWCi03JSbZUCMCS2kEZQshqB6tAZyn8PBmpzDNozcUG6WGuQiNRBORYsOn1ePGb+4mL4mqNaYxERVzlB/sVJnFPkG/VIVjNCxduqBWU+r0lmlMjmF8Txux6g0WwFiRWLbeA6NJ5iFIWud9H5IkzQ8z1bJzpu/C/hnMw8Rc2qs/hOpZtwrEX8dvUhGKDSBxr6qwkcgJBHZeviRT6PCxi8opFuRrJ0jhaZdWabe2S5kC2wyHGgmo6USFZoRCZV58K5tYrxl6Km0+ZIzopHBtlfum/e0wXW0uyHQxZntkXU/8qAJEkHLo0mN0aU4aBhKs0m6Slua76MQLxU96MvBV0Uq1yCdUmxGUKwZMyzniV48hjvZ9RpIy39zOO4hioDNK9SG4skF475jPOkNkgnqFMGJ43tJp0Z1k1ubGKA9Jzl1zgvq2QkTZTwXo5713ns9eukKy8Nct7HlT1lBrsrHBAqDtHQ5fQV2U61OzA/Q4f+FAz5pacwl+VA2yGsNasHMOcHXkFtXMAsdqMNnyfOY+yVHyDrXzGsReccA2aeRRTinGgibNxzjxIdvJc2QiQTFGWPU5bMk1OzsBD+PllKReHtHBxHUELbS06WY6mTTcaAUgQO7TKejtyFc6PqO3suyrPj+i0aJHdfuMXM0a22bWUit1jHdDtMzTu1UN+X5gXf5w72PG+Pmf2RmQ0Ylu7fD4Lgd6/7+78xs/9oZn1BECx6CIX9roEevWRmvxAEwcv87s+b2f/Cn/6vQRD84c3OX/C6g8e8Z7bpqGjCuwkYhSKoGFk6Aa3YXbZu5Maf77Sd9j5szQ+DYHNzCBtR93OIMM9/BMaBtH2qNGDFpFVgcb3IFNJrNGwJsfOJsBn/Y2RjNu5D3cP6CLMMZHNLMsmaXuXxGbSUkzX/IOZdaQzvD/whXi/+GE4gmKGcwHjVrOMCDD1Fmju+ctrMzLHiNSVwKqy/NmfVPFXC0XvHOkbnymN02CckR9FiJ+Y7gr5rvqk6FEbv7wFEK7ZEmC6NeP9+ws9IFRxbxOequZFor9OcKdfMo4Pn6zOuWz6Fg5XJUOZB2RjvTdK6Oz2iZOgeb7p+PX6/mZlN/RDuOTtPg0XIOIrv6vmqbqbSx3U1L7gf1t2e1/F9MbYNPl+xWFW06jCyBr/FyLO0ASVevh/O0vreROjcDTpjYnHLz9BRWcBx207jeM02PP/4PPtbQap+ZDyKB/G8p34YHxfOUhuNxAgaZ7OPt4XOm5vD+TIrhL6VOVdyDAws1Rz0Ta3J+h4/QwNUSDhCTzf3wYnKXyHJyRIdOWa93JiKOE0KErZ8no+C+VAZMTf26CzVjiM7U6IYc4XrgZ+S88zDi9Q2YdagxpycD+mEdb9G8hPWA1V2457SzNpIS8lYK7X5+GjoUtuemzAzs8l/sT/0+d6/oF5bgdB9UtQnlggv5JyY+RDOt34Q46f7VYoyD9BJ343zD38p5u4FF+aF3meWGjb9EVLXk2EwtUYW0ytch3grYqQUBFXZ1N5XmM2pat6ybot1nJUjcK4yF1k/xkCM+kZjVfVITvRV7I0iz4my170bJQGtslwRkVe3nka0lRIknPBZ5+Xq1hX4ofMjnTgJ5YrowskJsDkiLkEdIzV5oeuO0rzfakDy/WrX3ei63q/X+gFrzwd/b+vBsnez792JzFTDzP5NEAQve57XbmYnPM/7ahAEp+hofcLMpq77/g+b2QH+e8zM/pOZPeZ5XreZ/YaZPWxwyk54nveFIAhahN7eujl8rkufkpUsFhFJ26bldAcH6s5k2WnvchO0av0BRMwTjCZnLtFJYvGFCAf0/c4LsBo2hyliSdSYnCKPWZelI2Tj20WjOocNtErIziZfU7M6Dl5HnsW0PvPr2EjXx8IsghJ/TRG95ifNAhpTyU2cq3Yc+J7UGxP4LesRjLWHLoIqqJxgdoq6V7g2iA5a0WGtHdq8FZCRvpDqYUhY0KDx7k0zKy7nLlBknMxgZENrSluoHFG978pbjIZnfDFMke5VRERAJ4e/dXUJzGQ0Z0i+cZvUyTL2Rf7gxHilM7QYhrGU+/A+Tb0wnwQU0h9T1D+zpAxX0tIrNNiZvVx8GEZVfo4wu0Fcw/oYIaK9qn3ic1EmYTqcWaiQFU5KSc00DdDhHr5nViZP9r9FRrwpSJso4/P2K8xcJcOBAwUEymSwzM0rC8eaL86R1fGsJcp09C/RAWeGKrWK55S8iKBG+X5SaNMpVnY1LTFY0v+LZc+RozBQ4EVqqFxTZJz34OLdZItTwEECrMkVMkkeIbSVGa16Htet7FNm1bfiAO6z9wSuLbYWdhyV+c2usL+ZVZWx7B8HC1+Vz0vkDsu/ACeq2oOrHfkS+46aWOWPw9FvewnZV435WALnSbCGK8Esaa2d2dFDFIc+TVIdckSIVXLkr+F81/tUpxm39sv42/p+BQ8YdG2QRGNWWS/edBAeG9JYWnkA/dr1Ipym6mHCcUWRLvgZIZBGEhYhahqEHMdJuy8WOpexkjMddaLeiQ0RccyiAepYGzPrdIr8SABaNagOFshglBxEV4vKzLKOr+Y02sQOqMCQ1uFotl2XnUg658nVlDmnqkX/6K0cw7cgHLvh53eivR+u4S5qd0JnasbMZvj/Dc/zTpvZbjM7ZWb/p5n9WzP7q+t+8hkz+yPqTT3neV6n53m7zOwjZvZVCfV6nvdVM/ukmf3JLV1Hq02llQaUsMg3K/L/fk6mncmy096lJp2Z/BzmhYqwTcYdyRPiFWzyS/eptgpfU7Q9UWJt1Hn8vtzHyO1ubIj1duH7aEys0tBN8PN2zC/BviQiXH+ARfxMTlQ7xf6G9zJge1+B41Ppy7qi7dw16pbk6AEKKqM5L0FUyR4IKqXMlPD1kUJnf3qav2MkPCKcKthKQ84WjYbECs9H5jXBA+PUm2om9DmNdNZ2eD5FhedYyD0yYN40I9bKpEsLi05SFJMfF9366nroWm9qJEQbl7nsnGCazJAxU9FzEsbc0n24ZtVQJYo8Dw/TdUqQvbDjkVmsW5OseV3nsCavHMQ9SJxXTIGCaUURiR6dnjbY7NZOwoFaOyPffL5JCrDXCS9T/V6SdTDr43y+G4SRsQZnYxjjoXAZz63nTRwnUUIfih0utYHjJBfx3FN9MIRrHZ5zwKqElrVPUhtpGQalT3KU5CquNU1HsjxEVksSioi0JL5JA1PZNXLSu2L96HN2LGZ0ijpxzcVDzLI9+Sj+TMiian/aJ3DPyWtwlCrjyDj7hNmWBhIuK7p+ENcU8/HadpH1fcw4NFn76zK+JL9Y3Us4Hh2PBr3fZlIOCmucdpGc5ii1njSvuyK1jHSq2q+iD9s5LiY/swUtNTOL0+bf3Nvke3w+/xSe28C3Mf/KR7us/QqfOeGupYEwu6XIMDrP4B41lxePYkxJZDw/i3Op3i/JLGaGmcL6XrI7MngSq4TtkAQDQ4HTTguz/22TT3k3m9aYVKTuh/NIOn7GbKkyUi6wkxYMMBf6PKaxyntygQEnUB5eo1zmXzDAlo5jc6t/WsH51KI6UVG7sVWt1PfbqdqxBe94u6M1U57njRoEfJ/3PO8zZjYdBMFrEdG13WZ25br3V/lZq89v5cS3XuD3PubiVwGmH2Xk2mk77W02ZwDRgOx+DQ5C5TCMcEGpBOuSQVstYL5klzGv0hNkZIrBCJh9glAeOkPSiul7AR9UB0V3TCr13U1eB7439tcw3urccIvDOP+u7+J86yPMLlCgNb1UsfgGI5/MijUvU1Czj7ThdRlZzNrUwkXkLnBCWJnTAGImSzTULuoreAo/9xkt1iavrJGgXE7X6BQgd7FR1ksQllQdohGipYZrT/0A4IPJNye3aKXlCIo97CEwm3ks7vdIx10bgcGaXA2TLNitOlFscjikRyanOsZYVK0D91juC0d2a11h9sciV2xF7gWRi3/jZUveC9a0yjCyJHLYVBNVmMI150nHX5dDXxUciw73Cr/3MrYL//G9eKWYrNgaE6cm8MrnKPaxdBccis5TrA+bjpBGcMwJ6rY2jnvvfxFG4Pp+jIfKfbi5/hdk8G7pYBXOU0OHUMPa3l72CzONLwOiGtuDDsuqxkmQR2VJoyxuTm/Iwp9HW0wkH6zJ6sS8LfejTzdHcJ41OrT5qxg3VcoIKOvX6GTgIFt19XQd7DfB49ZH4JT0vUpoYp1OC6GMnjJYvEWx79Xo1CQ03ThmtAY1OZ8y8xpM7BPW5Eg/LsfgxeRn6aDk8ffcG7gejUEFDDqoES346Po9rE+zLdbTjks4Ru/XUQ+08jQyicqmxVYJxzuLdXFgE2mvK5/AHq5aVQeXXiSkeJ1BqT2YA1n2kV1jEKVXOFpmwUWNvxYOlojt0d5NZ6oF5bjgec6hH8O65uozOQZFJCGtO9lcCkI1IxIFWyyAydDnCoDHOzvD523h6ASNxhYU0dVR3QAKeP1vW9l9rcR3b5flb6d94Nsdc6Y8z2szs/9qZv/aAP379waI33txrl82s182M8tYLjyQo6wt0cJrNxEjC8edpJfUubW4vIsMPTvt7mwyaBSBzi5gwyuNUBxSpYSEXKU28f2+ryM7M/eD2DBzU9S1obRArQNLjIq5uymQmb/MjZIGUHIZBpCco809rG/4Aby/+hFssN1n8L5EYozcFAyktTGKXb4KGmP/2AFrii1MUXllkKS9o8yTnCBFWGWQEJbiiAlqKozG+8QeODVeB/tI+ipOQFWR13BBtAQ5LUcIjs63AIdHEDwVt5f6aCQyo+KIDbxRlwlokI5bTk6VkLQYjW6aXFtEA4M01tcJqZFGy81EKt16yC4h4jFZZJH/afx+7SDuSXVDxVFC3Yq4rgoJKPJAZlmGTGubfK6xY/dYg/UjcTJtdVxA/7aReTI5R4NxGQ6/4Jlz/x088L7nYawVx0WyQTp+Zo4cc6sEcfn8vMgaL7rv9Gp4jgg+Kqet3E1yjV68v/pxjIvO8/we7dnJT7PWLmXWPoHP6vcX+F3V4PAel1mz9DSgax4Fo2PLeF7+LIzqOJknG9QbU3MSIBIWrt64NkS1UhLt7fga59EPAWonWFqjG+vC5j2kEW9ndi9JQes4+zbwbJXOYgc4F2zhOA1XriUrB0kEQwKReCeuUSLbuXlm9Eh6US/g+5kJ3GPpAMbw5m5lbnkc1pEFG8zucf7GezALNveTjIM1XZlTJEbg89nzFfxu8lPMLLPOqUabv5mQbplZdhnnrLfjxwlmVTr/Dv23+GmI+K4+BMKJ7EI3z4mBn10kFT6DUX3fJssfa6Mqu7lwKoFI8pIYnWRvhU4UdaYsohvn5BWa4efuqNPfjrjzTZjrHAGEMlViS+X6KxIU0e9HNbJU0yqny8H/ROQjGn85QEINRevYW7VYfKueq9nCVtrmNO1oeO60t253xJnyPC9pcKT+SxAEf+F53n1mNmZmykoNm9nLnuc9ambTZrbnup8P87NpA9Tv+s+/caPzBUHw+2b2+2YgoGhxUfpy+HX7wd7y3r4vTYxcXJRc8XgriOJO22k3aaIHT5IBK38StRpzn1CtBr5XY1BW0JfFD8OJ6v+zN83MbOHHkBHpuISNTjVSqmWqM7pboahldprG9z2wyjvfwJjumkZWYPUAjl8exsa6UcSSpQLvjQMwRlQHUX8U2Yx6e8IyxMxLF0rUuVsaLDQ0lDlKiYTmxnolLgvAbLUyG3Y/DM646oQ6WO9QgnHui2FPkVHWNfgXJvA9spq5rIEKsblvb+5WsT/6svd1GHsboznLT8vQZDSYhmq8RiOaEW8/n2K/0OjbILQmem+tWtRgcsyGFnpdPSSacLzPE0InfankFJ3rQpiwYm2MpAzL+Ly0p93yl2Bc1XtIrqExOsX+pBPr1kFm4+T0bBygLleFGa3jo2ZmllqhTtUBOF1iNnSR72QY+hMnk121QEa250kYwgzj8hFS7negN4d/+3tmZnbhdx5Dn1C7UFlf0cVX+xu2MU6niUKy2WUcU0GJ9XtoWIoI8jIyH45emkZhc4l00b0c64zqO2KlmzTV7ngT9G53IVuXXZIji+NUuzB+iswcV8naWHf6Vfh5s5Sw1Dw+k5ZYYYLzJhkOyBReASS1PriV8TEzy1zEvTb4eZwkDcVDyCitHMK19L4uo5odHHUQ+HnA8SLxZZHoSEy43INOvvRPsTZ1ncLPy+gKl41X87OetV/Cc4qdRHbZ5NSSur7jIhkERwlZpP5Uah7PNUtHcu4xOlPfwTXNfYh/Zw1h2wTPQ6fX1XvyuSt45a0SEkdIsYMSM8CjLFCzVdDkreyb6Hei5A3NSEZfmmdnyWA4xr1E16K6TQZy3BrE5xffDTREs42OIQWORa7hglRyrlz9Uxja7OrhlYWqN66Dud7a/cv5ckClVhmpbT+8SaD7dgPhbyez1eq57eiSvqvt++5MkZ3vD8zsdBAEv2NmFgTBG2bWf913JszsYbL5fcHMfs3zvD81EFCsBUEw43nel83sf/M8T0HXT5jZv7vFi7jOaZI18AGKPEivQ5TNKpCvvw8cvZ32gWyK6iY3SNYgmBH9c0XblZEQnEu1AVd+5V4zM+s+TQgHMyaqkeq8GCYakNaPNwkoXBsN0+AyoFj1Bw/yeLie6T10CohmE/vf5i7WxczQ4KWxF682LU5DQlj8uIq1WfiuyOg2I0B9koiwUEWEvsXmZ+vEHSlymuPm38G6Fh63egCGVvwbL+P3NAZ8ZhOky6KmOrSmpIHoiDbTykKZxV+AxZd6Gv2fucSsl+oGGJ031o9ssPYi9zKptxm1d0Z3K0Mp0pQBE0tfXAYqCQhqhD/NPEVGLoo/qx6F6EPbGMVrkvZU/3cIMxvMmycNrUGlBPgjZZAYfZdTZGU6x7yFDTJG1nOi98bnw1+AU93oJ4yyF30nh0JZnyb1p5wGE4dLZYDjqSoqbvRFYRLvL/3voAKX3lGJgYA4STfapphNmExYk/MnzYRS2ylSjrdhjOVmRXLBsUAhaTWnGyXIqiNS4vOPiPi2at4SGdWoe7R4DGMxR02t3pfDrHO1fsytWgfmW3q1zr5gligILMWMUpxaSfptXJpKc3CWmsqmXKXeFwkHavsRZFgj2Yz6WTA8ZbgEhYyzzswx3Il5V2KyJH6psD5N7IJytovD1LyL63Mc30GSv7sQPs5AzlYPY47H9iFz2PHnmNuJBPrRFvC8epbg5K7ejz175Rgcic4/fwXnfOxBMzO79NO4ZwUnROCzdD/OI2bIzBL6JNaHuSFIc9BL7aUpDnYGbmKJCJxNEpUR6YQbwkBbfUfEEy7LJWeIgZajIAqJXUXwQyQ4Tda2BUXCq+co1sz1WGNVtVE++9seQqAseZnZu2KYzU9SMc4uKnIcKDh2HVOzlyIqQLWmN8tqtaJZb/W7VsQVEcIL56S5OrObODq3Ch/0vO31kTerD9tp76jdiczUU2b2s2b2hud5r/Kzfx8EwbMtvv+sgRb9goEa/RfNzIIgWPY877fM7EV+7zdFRnHTdv2AjML4btbeR5hXwY8cnfFO22lvs6m2Jn0SjkbpYRgDhcvYpMt92HzS5FgY+BIgdOXDcBCufIIR9f/rdTMzu/gboFpXxL3zWWSuNp65x8zMNvfSIRnGBpmbJeRKWRlOr8JpnHDxPhgj5QGKYpL4QGKvuQXWGhB6Vc/HXISytgfxluRJZCAUvXcU5jI4VV/Ca/AXwhpOrhaAsLDEAByTJjNUgtp4rKlSAbzTURGU6pmH8PuvY/nThupF1hZF0OU4yqm69hT6rveNhsUZ3a2RKKTNYybTAAAgAElEQVS+C++TMxSKHUGMqjQM41eiuEEfOi7Oc4qe2EHblD2TsxXR24sReqc6Jhmk+ctwROaexHXImZZjIYpoZdDSq/h817cZbVY2seJvUdWzNQpynhDhLu/CwUr9dJrIKCenp9ZBJyivLB0+X3wKY7YwhedYGsC9pVdgvCVpvCXlvJFRL30YTlvuMvqqSLhYF2F8V3+QhlYeJ2p7Htcrtr9aPyFytLOTazFrn2DWZpKGJeFda4epqfVVwMWCIYy1rewZM4typqSTSAdFNTQOyurqWcKMa47uW4Kpa8qy4fmJQMaYOXbEI8zSKBsn6OP6CM5b6wwsuUliFSWO+Dr0RTLNcYzJKBbbZW2cmVoZ8ZGtOUXUrbKulX7CBV9EXZmMR9XeOMOUj7P7ewjgSINr8nM8H52o9gnV3pFC/yprudaZ7WPfp5990ZqfQT1dpRPPpcGgRnI5HGCJkXGu63uARS99iPphrNfLzpNMgyLWmUXq5TE4Ue6lA94MM0qmWA9oF6mZd3gU31NwhNBha1cWl/P8ZnC/WHxb6cM20pKIDeQEhYkE8JNhbTtlqnwGg7wzDFYcJsW9tD0VvJigzp/gz8z6NXso4isYduS5qLa1yZos5wipJjaX2wo6yOEI3/32WtLo3xWsaAWHVrtppiuChApu4lS1hF3foNzEkZD44XNGHeZbzZ69D2ze93P7vutM3elW8LqDx2Ift5Z6C7dbUHgHm4N0SHNix6naaW+3UTdo+R4YqPl5Gn6kn84R7jP7KAkeSFstY1nEAoPfJkwFwXnLzFN35Rq+t/gxbJjDg9jo2lJUtaeRUKzD2JtZhPGWf4URRO4tm/uZfUjhfPv+AK8XfgFfGPqSNGPi1vsqjLS1fRT3fBWGRGye0JhO1YNxc1cEm6x/zSyzKifO4JWZruYI4CdxHscfonP2Coy5OAkuRAbgMio0NirjZGj7FhVt2RyhBaPHmz8E7Z8SSQBEPy6tryBm1uhi7cpVGjLyP1QSwEuQQ1EgGkkZwrZZZgvIHpb+Bq4pPgTDxWe2QNeme2iOwABd34fPC2exBsWuwZif+TEYSEnCL9uukgKadTJiOVO2IT9DJ3kBN5Baq1lxGMZw2yU4p4pQF3dneGxce4pZEacrpIzIMp1aGlfrdMjnH8L3+k8QZvY6nGaPhAW1IRhrse+iL+Q0V46QMY2Oa7UTnTvzNGtvhhAJLy/iuveMoS8W1uE0VBYwDrMzdDIeXDXf54N4DY738NcwZpePSCQLL72vy6PmB6/TyYo4Dqo/kQMfLd53dNEyrOS8khzAozPnoFfjIEpYOY4+WScc0+mFZUXZzWzE9XZXFefMX8b9Dv/OS2ZmVv8QxrWa6od0TlGi62Cih5fD6PfgHhceJksgx3z/syzO4j3ISVMGudFXCJ134jPMHBPu10H5h/wMxurcQxhnw7+HbFOMjk9lH8ZD5vKSBYSYujpMGqrxI8isl0eY4TsJB65xFc5UYjfqLdeeQGBAAsPXnubYIIy6MsT5sEAHjnI3nRfCBvHaOP7edZZ1ZhT99VgLm1jk+CEsUBkWJ7YsSYWos21miUHMdWXQZTu5saeM/0OHcO5zuEcXrJL4NZ2l2JEDvLZG6JokUO29hGx7bBR90ySRj5obsyL6USZSrKgSqGYwbJtWaDy+nd1SkG/RtOdEgrEROobudVtGSwEwaWApKxYlhFFzdZkRojM5uaJ3V5ZOUHTXB3TSo7DN61piFHNXa7ijg4+SDbVypqLXeJfCAt/POlPvj9ZKQfpmkYb3UROc4W0Vke60nXZdayYEccH7RkYUv8z4LGGzESlCI6+ocfi1uIvEENz/RFm+fB9e7x3FH5osICk3WMNDXMtQG8LO3VkYQm+UsKFmJ/G9nufJqPbPsUHUOogOlhwLqbn99JbYq4SEa700ODthJInuXRkkbeqxGLI2sQ3CSGiMOQpnso25jBPhYYr+OpFKsUqR7EFOW4YRWVG0N8W8RWauJmt4UuuM5NKBUSH83meRLbz8mbR5lbCeTXqdtWNkBet5lY4I631Wx3Hvoi6PzxPexXOI/ELZuVg+TNqhdTNOo6PyEOna9+M1zQym4J9aR+ceoS4SiSY6z+Me5h8ia+S3kOlc+ggMgOyFBasRQiUoqMcsWcdBUmCzJs1FzgmrXDuKfuz4FuuLuvBc8lN4nukxGiAkjhAUS7TRUrOR+SNaf1Gdy0GtUDsr0Y/jyjHq3IU+vzqL61DgwG9HH85WMWbjpzus0Yb+7GawoTSIc3SdJnslYXRiDJQXHKfwc1yQxG5mHk5dQN9IZ4pjbptobyTaLIO3cRj9HyRg7McJnez+MrzwHo6TpY/ie4L1OfjuGo8X34Kldp6X2DX6w1ukoTlDqKkyCDTa4q/hHipPI4tdfnLUzMw2dlPoW8oGzCTt+i4zy6yJkhZTwIxGMBimFV8/jDGuGjZBiXUP8w8QQscBsPkjx3D+YT0DvPRYj2Xo3MbohCgbojmczsFxWH8EtZ8FkTIQrpmbQb8v34N5oGDH8jEGClh3Vh+hI1LDtWmdWzmEa1I9WiNLyKTIcnLU65unI0Gn2e9i4OYEEAMy+jXf/bX6lkaVHMQIC6qrx2K2S2LjHol1jDBcnwyRcjD9kwhORcV7VRNpD+C5e5S0EJmGCGKUNffouJgcHmmp0WmLOlFqXja7VRoRcRC2iDtqoWOIwMU5TxHqeTefIrZYSydKzlea81uaW3JmeZ5YhLxITpqDcYuIJAJptabv1vCtwMlN+ACi7S53om633cXO1C1iT9/HTRNwp+20d9oCOlNdZzGmGqwziRFeskhaZ4l0Cmojw7KZCtfQ5Lh5y2AtHMSGKufp4hkYa2nW0jQyNML24Pz7dwFHPzqG16nirtB19iex2Vz6OdIavwJDqoQgqg3/zbxNfbaf91QP3VOThkOTdO+CNjq2KG5wjuWP8CNHma66FcHzJKZLMV9RMMtITMjIozPg74eDGGPNgDIiNodIavwwnQVmWKpdNHT4tdnH8SyS62b5GRr01PeSM9uQgOw4ayYIiVp6iGQMjO4PfYu3ypqLZj/FQDfCdO9Rp8oxFsbkRJOBTXDNSFJOTrpghrOP0Yk6iwHT2ANDrW2a0J1CzpGhRJt/HhmIxBCen4Rq/QOoO0mUCf+6D/2cOYHvx/byea/IqNAB/dC9NgUrYqS71k2jkH2qmh1BWEs1GqzXCDc7Dke1eh5W/5Ua7q13F53BfRgXq5e7bM9XVWuGMbo2hrFXoLNb6wproiVWSfN9BQ55455R/P4ySBycpk80wOYIK24MH5Jw9Brht9UOMdixdmsO40WkEZ1vYozXeiiezb4s7mL2tRCztms4x+L9FJ2mE9x/AmMooei6smJibctJXwrHUvayPMBsCqensuNqtV04TuplOpQ0jAW73XiYFN3Un8tPM9uzgjG48ACenwSmu2jzbw7RiWN1tmrv1vemzPOZZSbLYrDIOaz6xwkGTvYgU7t5FGtS20lCeEm04x8b5rHZkXxMMWaoUhlmX1O4xtkn8fnA89LjC0Mim2llPPjCGjwFzTzpVEXhbMrYJJLOwXI1nceP4G90eiTcbX2RWk+KJwdPIAMZZ5Cquov1XV3H8cqMv8oV4nJkVI/EYJWXoXOrEygzViqH3mtMO7kIl42N1HbVai2D5XLYLJKJUlZtW41TpLm6MXet4eyOYxHU91vpWPHzptgYkzcmj3AZRe1VjurdtyafWzR7tu3aWtm6O07UbbW705nyYhatkXIY40jadVtk4X3EhBKtY/ggOIA77f3d1pi5kF5UnjCwzAKhZyO50Pfz18jQxYxVlE1Om3lHFpvUxEswGtKE1gy8gLGbm4TBs/QQjMfzD8IQHr8PkJH+w8gy1P8cxsj5Gbw+MQZD+eUTqFWQwTXz8X7H0lUcwjwpUAvGZ7RWhfGCrMXOTvIeuGGmxHxHB0KaLouMpGtjFcmDWj/gZIrESyC3+DRgMCqA7/kiawZoLIi4otZHAdZ1RvRZNyHjdHU/fj/89bJd/RiMJNUHydm13bjX6f281yzuNZ1knzTxHDfGGN0ljXXX8zT+6OAFwyyIL1Z4y1wfWbcgmODME/i8/QrXJH5t+M/RpxM/xxq8KYyXUh++sDZGg3YxYmScvWy5POrpjDUYIiZo0lhTBiKxh0bya5dx6U/CcF06Snp+ZjhUs9POa5CD6Yz4CKuYoI1O5FdSTvRLap2ETr6E51Z+Cg7QwirhY8dwvPbvwYhcKpO+v5cCvENFm/os67MWSOSwhH5Yfhj32nGeRfUreK0No9/TJTq9cyRzoOMu+ukt45gZCe0V0boXNscG58u549jmkN8Y4XsabYv3U+MwzSAIt08/x30zW7O1ozQgec7EOqn+Z9BfhQU81+CKnGE+xyX0Y3YJYza1qaw5nzcDBxmxNu7GyQe+hsBLU/sgDWMFAOIVBHDmHkFfDH8Nn09/mM+5i4Ei1vEVJvD7paO43vbJcH3b+t60lfuZkWLQKDuCexDJjVrhBZJWMIBTPIz1K38G15xbQB+JNCVzjXWAqvtb5nPtE1Oeghi4d617ddZaFS5jkK6PMxtfY83rd6lXxrnUUPZCDKXM2FgQmB8hLqj1KIjDgIf01TiUROMfKJOk4BMdEUkcqGYqTikDR40+D0dUjr2yqc4GizgwDsKqsc3PlZ1xUEVRp1/HMritViySoXWZH8lbJMI1iqKaj4ogt2RUlr0Yi8D+5Ay1ggPqd74cnxbOmtp1fSRH7H3NTP2PqN19zpSH6MC2Maloda3FZND3FO2IYFzvRHNRiB1K9J32DpuKhBV1zyzAkJh9Aobh0hHOjzTGveiCq53YvAefxxhc3SfNF/x99hli9hdYrH9av8OrRICLg92h6+l5BZvEhQyMjweOwFB+9TiMgPyrrKc5gM2ufB+jlIs0oAueValpJGKCSh/+lp0j8xVrbKzKDY2ZJadTw6JxBwWhk2RDhKUsI6IqfRRX6JwCrKjeRTgh+7bUh79XenA9XWMw7gQTrPdK14ZGI43FGCPpRdIq97yBvr760axVdjNymVb0FefK52jAtOEeqnX0c2meDIe4UkuQkc5PhaO9/l44Uc00dcAo+qsagjizbYITCnK1fDjMGDX503Ci6m34++yT+HzwO7jeFX5/c4ROIevC+lbGLXEOBunmh/aHjkkORSuPYBAt3cuaDfr5quOrs57My4pgRNsdHThCUHNkOAxiFO9dJ+RGEDoayhKuLVxCXwle5sgXHqLjOkd9rP3MiNyL55uZYj3GLC60POibkTK+Qc2jQZJZ5KYZlWdUvbZb0DRFukm2QaPdEVGwKZLuGNeUgahHnCnVaNAAzV/juFlDHyRJPKF5rrFbpSPZTPE1J9Vm7ofNLSMvVmHt0zqzJyLQFdGLIE4kfBBpQo7EAsEg5l12HvcQK2HMLx0nQyXJHHtfJvyLRnnzXmTC4pdYr5QLw/RmnyCByT48n/x59KGjSqejlJvH+8JZzPfYCq6r70zDlp4ZRX8we+zfj/WqLRaeT8q+pJmVq987hnMfxNjrPAHI8fI9WBNSRP6W91GQdglzv+Mw5+GXsA6uHuPfN6hxtosZ6KMMkkhMeYQkK7OsozmP9TTeLa0L2jWCHMfj5g3jXvSc1ph17J7F/fsZjGPNF6EGao8hCJJ+gzp/YhRcIdEImVtFVCHSlOZ9eF6xSQoSa2xGnCjnfDlni/ZPBHqneiIH2atuZagcdLGL9VWr1LhSP7iaqkgmKuJ8biPhcBIBmgdhh9R9HmFLbRXkUAuiTle07kn08LdS8vEBQl99kNrd50xFmnOiBJm7yUC7ZZKH78OAdTj4DxKt+057XzYVKktAszQE47ZOA1ViuxtkkRKL29o4oU79NCaYZBE0xjwSJMj5ucaNLYaNuZM6LIpWJlg4Hd+kGGgZxtwF1h0lejlPJ2EsnFzGht9RINkEDa7eNxq2dJT1VdN0GFj/JWrx5FKYWrcp8ddhkC8Ya6TEFhXrEqMZN1hC32IR8ew6hTXVp6rFapuBw1grECdPZ67BTFR6irU7ozAy6l04fqWHMD8FGrnB+5nAkss04Cs4Zq2D0foEo7Uk6shcozHGpJpElOs0gjtOU58mGa7RSS4xK7cRLnAWFGeTdNLDX8Nzm3+QNRu0Oao9zCIw87TZgz+s7yWFPR+nnDrbIBHJaLsFFNutUYDYp79Q+hCcnno7DXtmT3xCRZvMlsTKNGjrfB5cJpXFizG6H2OGUpC15BzHKIu6Rftu/fx8As9l4Tipm1UfthZ2LKvnCF8bIlxzHDebOYvz7H22aav7ldnAIVKrjIS/ieIZGbTpOYyNoA3zyO/lsa9KGLVFRLtFLUd0X5JTllQ2gbCwwrMncRhBHh+AwSsiEa+hQAWdbiX3kmZ1olvbpnCujouYb9I6a0zA2HZGL+u9fBHBPAUvKbFW5jnQV3MP0/EmO2JyiRpY/ZyP3TDmJc+QWyH8ls8/Sz245QeUvcM97P46Lr7KcSDIZTdhwn6e98xaL4t51nGO80OMjawhk5OU/d45nEK1LjSiEy8B4lb9JIh/pEuVIYGo+i62Hg5iVTmWS4/QWWb/BwNcLy+JQRJ/rlDSQtDEzYMMGI3gvOkvgVxDdOKCiTZHBsxOkdBjBA6eHOrN/ThGZj7MFKmMutj4rJs07aphEmV6jcENZvTlHPmkMHfivRy7MV6bQwKINXCd0EXaQSKkkBPWjFCnO7IGZd/suvouZnajTlBUVyrKghltzgnTtVoUfke4oHOK9MMWELzI+1bkETdEJ90uvfpOe0ftTuhMfd7MPm1m80EQ3Hvd5/+jmf2qgcfxb4Mg+Lf8/N+Z2b/k578eBMGX+fknzex3Deji/xwEwW/f0gUE4VRq0EoB+9ZviAe6AwM0WgT5PoIg7rQPVhNtd5aGpAwX6UwJ+lZjSUaNG2ucm7RqdFSAXqTQbM8JarqQDVDOUs8rqslRbQY2yOzrgJmpdkeMbdU3EEHN349NL3sFm+DVCzCs+8dg4KRWCS0KfAfHkmEvxrlmjsY1DVRt+k6sl1FlY+G6F9mUm1OAHjoqcxV1q+CdGl3Jk4j+NscA/ZEx13OatSJ0tpKXUO/iahN2496l4SOR08wq+mL5Hizb2TmzwhX2T0EwSzp0fN91hnCUFDrhyo+QqGJOtNWEda2yRmeMKUdeqxj0YgdH8UrNGNV35a8hg7WxB89513dhLEx/BOOn0Yd7bRRVSI3zlXeRvW+W2UMWznd/GxC+pQ8PW431Ve1Xfd4DHXfW8SmzJIdM6bZESb9jRugUnlfxOKCjM0/i98kN/p5Zt1SMmcfFMONZLR9eZ13NDgWG15kZ2fMVvJ/6HPq6/2vog+IKa4BGcB+VQbxOfzhheRKfZRfQH6mrPPfe3eFz9pEOmpkl1b4k+L3mJMekjDRJDCTD71vtV4kxZBDL+zF210fopH0I79uvhvXj+l6mo0mSgNUn94SOtzkUt/xVnGNjFOdc2886udM0OD/5iJltMd2J7t2/gnvZ2IsxUy3gd5sjNJJ344GnUlyz3uA84Rja6JX2HK65PoT5Xfh7ODBrvwRx50SB4+MVOKj1Ap/BGucn6zuVmawMpNkXZForlSwxxSwKM7VJnlNyDJXHQbqQnickjfNHmarcFTgUy/diDek+g/kjqYnsDDOCx/D74gr7sB8ZpO7/Aw7E0v+MvycuYqypNlFZWhEEtf8doAHz/4wC14L37SND6QbOXxzOWaIb8Njsy4DqWrMv1B8Bs9m+pUOfp75KxRsyQfrUaxM7n8c6MQWpBN9NLHB9pn0W2zeK8xAmLXZArdPbSjNEjW78uMJ6zwipBD5kpug6unSz6wPUYWdGRBA3rVOXExaEf99Sj6pl7f5NyB9uR+z3Vm3UnYzVO2p3IjP1/5rZ75nZH+kDz/M+amafMbNjQRBUPc/r5+dHzOwnzOyomQ2Z2d95nneQP/u/zewHzeyqmb3oed4XgiA4dctXER2MN3NEWg20O4hHFZ2tY9pSNKS640zttNtrMbJ2uWJ7Gq6D38UmrWzO4gPY5JNrghvhJRDRxCUcZ3MES0v/d2BsVYYxVpMTMD6Kx2AErut7L2EjrXNTjxF6lzsLo32oAUN3agzGxNoP4zyZi9jklnuwGSa53y4cS1puJlxH1GTBdLUL95DopA7UVTgzNoZr8ttlkJAWfhNGhFWYNTgEiE5wFs6SipTj9xCORkptb4QGcVzkHIT7MYuXuQyjovgAjI7cBRhGxV46soT3yXiXnpKM+N6X1+3KJ2EolvaqoBxzv/MErmnyx/Hd7j4Yb/tzMBYu+OjnVdZUJSpwolR/InHdvm/BEPI7GPUdxe/qHaQ4ryrLg+9nXkO2IfUgWMxqvSL94LOQgcOaHDk0lW4YD0sfluPpubHVIJSw8CUs7+mHcOzkCdCD67nJCV46zuh7ieQWe3FvcsaSm3jNLfqhv8deRRbBFOGmUZelcK3HWh9lDVR71ZjBPc08KT0b3NPiQ3RcmZXrej0MlasXAgd3jdVJsrAP4zx3jkyErAur7KUzRQdPY0e6YrFL6Pd4L2vclA0Q46SY1WjARvVs6oPoM2UMlcWtMs5QHCarXJtqpCiwmiQxDeddrAcDp6ujaJ1ZnLubuLrlMn6zmMI9dpxjdnMXxn/7FQ66A5hvCiL4TB5oxw5WMT/qin3QB46fJ0kHSRy8hkg7YABXHyQJxLhow8VYit9r7E78CscXExjVDvRRx3nS1j+NMdpxoeggwYLNJegYJK8pIMN+Pcgo1AEMnvZL1EZiBrLxKHT5SoTyigLdiaOvE6bHIMhKAqnllf+e114j8QelJzLn8bwbHax9vUo49Q8gaydSj+ZTYCos7UInFM7hhInSdTYEsylCLRROcd3aB4ex7SU4W0mug7WnkPXyxHJ6DLWi3iJJawSXFoxTWW9RqbtaLS/0uXOiWGPqyB6UPlKWRlTp8bCTFZSvc4Ro5/kLmGequ3ItShiRVKovzCB623Zh5PgtWyu26Vs9/tv57o4T9Y7a992ZCoLgW57njUY+/ldm9ttBEFT5HWqO22fM7E/5+WXP8y6Y2aP824UgCC6ZmXme96f87m04UxHPP4JFbzk5bqA0fcPvufN47/4gjeBt3asf+ftOhmqn3Woj4YBqZ+SALN1LqtxMeNx3XiTshKxfaWakNlkQnSgymjtECAcj2pM/O2pmZkXVAuRhcK0+zmgvDZzMNAyv8f/MTNQlbODxKzAWO+6Dk1Y+w99NwACuUNQ3seG52gwZV8lZwEc2qRMVZAmxkmgou0I1GYFon1dYGyW9FDLPxaNrBouSxcZX68Y9pK4yEkvacDkOMmCbNFz9HuoRdREq54w91prwmaSp3XTlkx1WYs1YrgP92J7FNS4+gX4f6IKxJ6r5lYqK4gi54RIhg1EOh85VH8A1xmqqFWA2h45Kk8ZfQxBK1lo5SNW0aP34/izhUDTSs8v4w/JhQRepSzbTtDQZI83BfWC8pUg04XRulmCkbT4wbNe3EvWoCm+i/9MJ0cgTwkhmugTHRZNwzS09HRpnDBSoLqjwhmrx8Nr7Bvp8ikQnWULvqtReqwzgOgefQ5/1vUQh7KG8VTvCsMj0PJ6jGNFU05JapoMnNjbSwnsNMqTJAYxkUR0BhQRsVRPDJmOx2kljnXV66TXCenfjXjb3qC/4IDsZzMhS1yiJG2jPoC+6MmXLJUhUwCj9JjXkBIPsfR1G79wjuIdqd1gCQAQTsQbuOcXSxCwTyqIFL3IOeN/m2CQtuPpS2aDMGrGtKdU84nry0/jd6d9CkCRGzbWAznmSscrLn0UfxlkDlptLWYn1k2lmovwiWfdUa/ganKV0FjFgZfx8ijL3XMPzLUyg/2Yfx98HScwz9UlcQ/YKndmjeL4Df4OxvfnjeJ6xb1Jk+TCzcW2yTxRQwtv1URxH9YUbe+mYqDaIcMXUWs0COiMbH0eGqkpY7eKjWP8UHGqjE+WozgnLFCNoU4EYMYFSqsCRO+wBjFBOkzSVmm1kY9xNgqBNShCQiTR2nt6ubDm+RrNHCjo7Lal0egtuJz0nl7nl/BI7nijRVYO4zf5rUWJBG6ylUO7N2j8Ctum7rd0R0V46U38jmJ/nea+a2V+Z2SfNrGJm/1MQBC96nvd7ZvZcEAR/zO/9gZl9kYf5ZBAEv8TPf9bMHguC4Ndudu6C1x08Fv/Edifq7Q7ebY7Ne9+fUWYZx2rTihFmp+20m7T4PYjGSmQyexUbVWkUG5EzthPhLEvbFDauSj/JHWbwPnEJGY2VZ4CBmnuKEW0aUrESNy1Om2ZWEW9C3zqwedU3ycR3koYqo6Nr+7hxHkFUs/2r2LDX4cfY4PO+MyDSizhWrRvHyFyj87TJAmaKfMZIoSy9omCCFL+EaDgxXlFoS7BTtNNcK+KHEQGXwduk8bBJfaN6TrU1hEK+iOzb6v0syGYQVH2tWiFBdyTamyh6Tgy52s3sxxkYDEWKLfd94ayZmZUfQcckN/D32cdgTQ3/IemJVRdGSmfBkKIFzYKNKTs3+zTqGdLreC5dr8Pi3WBtxspBwmloc4gRLbOC44qUQ9TaEvP1/MCNDdGuK9PQdQ7PY3M3OkZRdjVljsq7CLkhyYNXxHHaL/L5sZ+H/47OFOvERBPvrZKIhOLO5/4lnk9qhXpSF2V04zhdLyIGePHnYfx1MtGVLIpAJOxIJipmSeqCyalMrZHB7rvU/5FQraL4opsmQYQ3RSa8iA6YjDynj8M9oZXuTfFziFEWmf2U2LJ7btMYN+lruA6RpcS/9ZqZma39JCB7IuNoxs02RvHbFCnkhXzqJYGKHHYFSiQRsPYQahavfZjn3oN5OdiO55FPYj6XGnj+Zy/CGM9OESo8z0w055egrNmVZug6rn0UrwePYJ5feBkwtPw0bnr3l5C1mPwsMmUihehg9n1tPOko/wU51cB/P60AACAASURBVFwVxDD798hSxyiCLQeh0YGgxsohvB/4MmrWZj6Fa1g7iOOl1nAt1THqTC3wBEMkfVhgVnyATnidNa2ncNxKLx1SZj5FAiJpi943SVDDwFH+q6iRazx0yNky6+PUm1KAhJDt7FWKVO/G2tt2Apk91ZIqi9q4NGFmW0LF/i7q+K0TUsfmn2OW7mMP4RqlR1am00VkgDJNRikLZbZU/6TgmHOE5KRxrPubxW0U5dvEc50zFQm4iSq9HL5211oJ3rLFIo6nsunX13Hh8zCRT3Reb9G+R+CDPK4Xj2+vr4oeu1WwfScYH2ofNNHehJl1m9njZvaImf2Z53nj79bBPc/7ZTP7ZTOzjOVCg8RhZVUguvUjvmrwckOIFhhqc1IkIv42IxG30VydV7SoWIXwO87UTrvNpoikSBGK42HtEBm56RXWwGTCpAuCBcaoX1J6iDUYrG8RGUPnSdbGsDYgdYWFv9xkivvhvC0ehUNT34uNcGOfakVw3u7TON61PdjsSgMyFnBZbaeWtjD0jGh6vqBSNKroRImtSg5EczeM5oRYo0iZHUQIX6KORryfNVYbkewAmwzlNtJdLz+AaHaV+jgZCiPX20l3TDiYMlNxUXsjMWNdZ0u2chgGxPoh9vsjOEZnAfdy5iOjuBdmiBqspdr1LRKNPE5NK95KalnOMZyl/MWV0D141EOSdosonWtthNjxnjaHWQtH1rfsPN6L7nrlIIvIieBRRqT9Evpm8XibpTYFAcR35Hw28mJsDF2aI55wdN3JiBFRwLmLewQxFNkFBYdX2P8F6hXxPOVB7BHtE8oYMgNSlQGN483/ACPoJAXYJPqwMIH3nRdFdc++H0w5xzq5QWdHQXYZXYycJ/bgmupa+1kjZXtY6yIjao2QKRXzSzNLAqxRoy1iaAlSV6OD2sip7olzxcfDcPTwz8AJqw3i+jv7mQnNl6xZwsEaTVxLuYR7WdtgxpYQz7Vx9JsyQGJ0jHVTQy5N6GAmPK+WSbqSmaYTNReGnAby0F0tHZlIe+gw9uF4V1c79QMz24LRTnwO87nnFMZ420UsLk0SzPS9vGXIrtxDO4IOujL06fsRpBKFvV0k0QfXpnwHIHDzH4cTleQtBomwMxuQ+KfJjHLsGjNKrEmMnWP2ZxfGsNgW5YzpOQq+236N403ZV84tEZ4k5zds4yjWQTlF3X8JB79MqKCEwHMTFAYn66IxexpbpTMkCB3XW5N8g2rkToN4RNpcHh10uxfZPK3TRoSA12Q2ydleEYSARIXJFugR3tcga2Asm3HzS0EkZa1kD7rgQ8RpkoPmdNsizbFmyk6MOHRi2dxWoqHft2ID1N+dfSkGwxtnyoJm0DKw72zXKJLQISx2nKi3094vztRVM/uLAGmyFzzPa5pZr5lNm9n1la3D/Mze4vNtLQiC3zez3zdDZspicTeSvAgTV3RQKrKnCIW/zui1U9WLePFJTqb30qERnWa0qPGdkmnstA9muy4aZfb2HHk5U8oUFKYwtgT7M2ZJ0qcxzeKjA6HfiyxAdOPanDfG6ESdkjFNY0A0tZFoY9tJbHjtz2Gzmv1RxFSWH8Y9lQdxnDzlkNrOsMh/DMcb+68slO/MWWKezhFZ+mIU2xUlr8RBPUU4eS+xCh0Gaik5Vj9ufGKXisVIP0yIlaOnpiEb0DkTtCp9hfAV1h2JUKLWScNqEudZI4udot5iSJRRKCjelU9krTaCax8ahNOztx2vnSkYARN5XOvlHBkClxgRP8AsDCFRMT6GeC28JTRT+H2c0KcEtWIU9V8bx3H2/vGEmZlN/dSomZmVd1PXaoF1MfeIxZHrKI329susIxvQuGlz96oxJQPQZTGlqUw0j9jZlLlTRk+iuvEaxzbHTvVeGkLncqF7EaNkcjUM6VG2ZXMY58lPc75xr+h4E8/52sfRV+0TzBYSArs+insrkWp7+AuYQ+mJYCuKTxp+RdutC2Ov0YexkFiEk5K8RsgoDcZmTrpevFcSxzdTfI6zyJbFVKwfjXhz34ozWJKbRSfLofGaYadYFO6VETLpteF693ZjjA+3Ya51p4pWbse1LVRwTdMJGMubzGpJhLrcz3PweSbpDzZZG7UwC6dmjvMxYN1dnNIHOQZQBr5JLbp+Qh+fg/FvdGiaGQyc5XvIfLnKOqHnGXQh813fPyDbt/TryCZJEy1N8ocURb69XMYCZp97N5hVbsM1b+zFPS7fi3vPkWmwDYkqx56YP0cCjwN0xGkjZwlFLY3hgxRrpeojGJudr9MxDXC+Wichxusk/FmgM8x5prWkMKGgFCF5IpwgRFUC5H5/hxW+O4G/PYSaNo+Oe/5VjN/mEtdTCRRz/ynejyhCog39LGmIej/rZmcwRjS2m6yxChpcY07jvL4yxdS4swEiA9jn0oWLEcLamEHtq8Sh9T1/iDp1DKL5c/NOgyxekNAC5yEZ//x51ixGKcmjrJmRpuyXc4KdqC7XWZ7Pp2Po7NDEjU1xh0Jy81eUpGHbzzlfN0BIOSgjoY0tSdduV9R3p4Xa+8WZ+m9m9lEz+zoJJlJmtmhmXzCz/8/zvN8xEFAcMLMXDGbFAc/zxgxO1E+Y2U/d8tmCphsgTvFaAybiHDVpPDj64wgW1lGrV1s4OO9Fk/5CBNa3ozd1d7d3BPPkGqwi8MwlarXQAak9gihh6RhiGOllLswvwjpIjT6O77NWQLpUMUbv+//L63hPgVQTw5JqPAStm4Hx5w3AgOp/Hhtvmex+YkJrp3BmZpWF1yR1WD6MjWPob+edZoo3xKJ8OU2CiSzh2G7+iNlJhBU0VLfl97lmSOBSsL7GGURYE6M0PvJwsvxr8PzivTAGiiMUda2g0/NfAvvV8k8B3qKsQHpJBfU4bYnCnA0ydDVTTfOo6yOhWF3rQhLvV8us09qg4XiapBrzJE+QThR/KPZGwTjlRInhLF5kHUxalOw47twn9/J7zA7QSWsepAM6i+u4HqJoZtb3ZdAvX/4lGEBlGrSFSd8yy3V+xiwWje/2s4zyV8NrrZjoRKLRdwIGi2BIaYrGLh6XExsOzdYKpK2mSKw9B8hT+9qomZnNP0yiCmamqhTzzTuCEV4f55AglwvHcX45wXMfA9wpWQosN8/awRLmg5ymZgdhdIQcCiolCusYIafBFc4XZYhJKx2nMybhVWfUuah02EASs2SGcLXuFzHv/W6SouzG8xNUcZ3EJSKBWEzheyvMRuXSNYsxM7SwQngrSRSyijsSSpiOIGjUv4P/wHtKyrFjJmpZ7I645sV7cRG1IRjn6Qk4KP4xclW9AaKSxF7U1Plp9G33CUFhgce8+nPIEp3+11gvxAqZciQpdA76KCqbSpixHsgrYT1KECrcSb27tQcwZkQeU3sKjkZhgI7h67i2/AzWu6V7GSyiLnV5SNlQ9tEGrmHpUUpIrHLNL3Disk8qpFfVvFa2dm1fWIA6N8PIBFuT63CsVLPigyTGuYQxVRvAcxRVQ40CxBLjFSOsoMR1SkAY68mEekgQKdAcwVgW0Y8CAt5BnFf6YKVHEVBLP/siPj+C5+rgfGRdTaT38J550yKeSMqm45rW1bWF6mHWzJFVqO61l1k26blN41pkBzqa9U0RujCTKGmBKPyOe7OEwM05U2FbTvVerfZyzVs5garlUiBV9qwX97bmvBy8FnTurt1qPVj0+zdjHrxL2p2gRv8TM/uImfV6nnfVzH7DzD5vZp/3PO+kmdXM7OeZpXrT87w/MxBLNMzsV4MAT9bzvF8zsy8bqNE/HwTBm7d8Edd52s4BuQlO1NVFaPCnqOfQiirzTuBOdyIId2dzgYCbMATdQqv0EDJzGvOicYxkCh00wmdg2dcJ8Wh8GjCfzi+BctejERevwGhQ3UisFxtn4wo3JRXEq0CedNTSHJHDEuPrwEvYPK59iJmOEcy/ri+iJqhjENCTVFFkLE2z3YgsB6wrkV6KRyeqweijIBdqDvJSDmt3uI2NjmCMgRPB+rShiTwgiqPwqBGUWifLHEVE537lYbxnBqrWLkdGGRN8Hq9xY2cOLTuTsHiFm7B0il7E89sYJLyExfz7zzMSu8lsHZ2h2Atv8lLpBPHeHKW2jAMJZHLjjB8YNTOzntOEZ5KIovc7cBw3xmBoJU7ReMiHnShBsqZ/HOPLZ8ZDmZBm0rPUPByxNB1nf4r9OgZjy+ZhNDcogFrpQn9Wu3CMeifuRfV+5R7Wn6zh8+wi3rdfxHgoDdOQJJNkbD/usXQAY3ffHyPAsHJc8CdchoyK3lcxDkTaUpjE8fv/4ATO+wyY0yrdW9khN682aHyxTitGY0tsfKppFMzSJK7MMRwVG5VTFY2suxbZl0T8Uc8RFnYfnDU521kyH7aR+LJjQoLSON/SfchOqGYo/3zFZh9DP+9+jQ4js9FikCxcwj1kKYugrGdyFn0w9VnpiTF4wGyKJ7OFy57qf+p5jtkxUm2TSCaxG2Nx8xBZBC8SojqLPp/9cRjnG4dFikNtvEk6kLs0JnGe5Xtw/JG/XTOftU9xZQK7GCxS1vIbCBaUHh7FK4M+S/fhe70+xn/XN4DdXVFWhY5ofpIZqmPoq+RlsjLyeRUOwektv8xs+xGyog7TLqHunhE2WCtwfFCTLbFMUohRzvu5JXe9NQYLcjHJTTCYw3sWusDPiLwmDOnOv4nBskkh48wcCUEIsUudY5BpNwl9lumYcM2vHSb0kXIawVPH8UoNQpdVIvTb1f8rE0amy+Qs5xJrH4Pp2a0AGzNxgnJ7zH45rSxJDJAUI8oxEGtjJpiBNa2fRqr8bbWnkTIRZ0fWwrA9zdsoZXssQpjhrkeBQO6rXippPjOHWsNjhPo2W0AUt9V73cx2df19dztRaneCze8nW/zpZ1p8/z+Y2X+4wefPmtmzb+siYvGtQe8yVC0KCm/wW7MtZq9WqdCWuNR3sd2S2vVO+0fftghJuNuXbz89L/2aOI2jCqOO5T6K6z4LokyPTlH1HkQDZRj6z8CZKbyGSHnfa9SCOTmJEwhLzrYVUVNUS5G9cHbVJ0Qvd5rX0Y/o8upBOY6IJqu+JrWp4p+kgzqJES2YxubeiDCaKSPlIBfsC1Gkx5ph6l3jJt6cI+ko2d+2ZQRjEZ0TGsBJUjWnT8A5WB+B5osgPg0ycSUm8L5M6Sc5HNKeiVfMSru4OfOUk59i9Jy1Ev0nWEtFjZzyEVxLZgW/K1AHLMFoe2MWzGfxiMClG2Oq5WGfyVFRNm/1YTiw6RUSG1BbSVToIoXwGqSp7yH0poDP621kE1uPWfHjMBBV3J8swQDKX2W2ZgxjMbXCsaTs6lX8Z506RSLHKO0mlO0y+4jDoNpL+NYajelpOE3SDspdhkE08zGM+d7X8RxTE3Bk1h5F4EDQHj3HTdKJF38GGcf+L8FgTu1hJH16yRpkhowxQxHIKRIk50EwqTUIH5ODadcIaWIgwImtMpPsjZLZcBbX6GozWlAyi5lwfS+dKTq/tR4+rzx14pLMUJIopkZnPkYZgg6y1V97KmNd5/GduYfkLEmoG2MyQRINZTvVRANfHKcz1M4amBjHSoN78CaONyQWv7Jq0QinjbPPdtGIpLWjNW7pKMV5D8koxEuTWaXB76HPLvwPHOO8Z7+I4099usNG/x8QuJQfRvZEGV0dy6cTlT8JxyHbjTG1egTO5+JxPLcBUqwPvIR7nfxRERSEgwz7nsZ6em4Gi0JHFn04/gyiVq9dwXNPpcnqF1BomIQ/beCIsOUHcS/zT1JHbJr6WPfCgUmt1swThLAfAZHUqxi/9XtxT7F/eAWfj+O9nCBzkDRm9lb5HKXJ5ZwgGv5kCm0QBhh46BuJO+cmMf8aXaxnknOnenZBxQXBk8B0ByUwTiFQpzkSmLnMUIOvIoaQc6Ugn8/5pCbkkTJMbh/T+khnxgm6c09oCsabUFlJeB7GKQgv+nbZdnp1wRIF8/X3COxQdWdWr7vsme7FBVtvwkjt4OqRrHYroeKdID7a+wXm9/1rnrdVJ2XWmvEkKtqmAl5FBOr+Db+nYkt33PeCGj3adrCtd3XTYucMprcxDkTCoIicIp+pdUKiqNHi6lE2VeWNl/Qio4mEdMS/iSJinw6KREHX/zlYvzZotInCV5CaBG9BYrQq7k+zvqjnb5GJqv40nDfRiA9+B06Xn+f82yi6Gqkm56JIZlrCIcXgxExTjPAQF9nLafMXhS+zQnyvjcxXrRSbNiePm1l8liyAozDCU2R0ixPetDmK35UHwgaVT82Yxgjuo7iasfFxOD/ZBFn8SD99bRnXMkX9GDHhpedJt86MVfojYIdLL3Kzp6FfZb1L+gqZ7vJkIcvDwFG0VxTa2dMw7lVI77FrU8s4397feM7MzM79Jzz/8iCj12RO26QzJVHfRsYF523hCRryq4yUDxN6Nkwdrj6OsZTQAxyjFCous/8OdqHf37xAodsp6hUV8BwXx3j8vch0qWZLtP/dp2E4rY2jL/J5wpxonIuEQ/DCtUMw3pQRW38CcyCzQOMvFrM4YX1GYy7Yi+xpdVc4w5G9QsiqDEeywzV66fSyviTJOkCx7SWmIqKkkYJ3NUHp5Mg7zVFmNDo78bvRTsypnjRFZMmoN0lnfHmM0Fbfs2v7aJQR8plYwzXKwXcwzQSzItxTVw7yd00a2euqReSAIMGHaPdLvfi872uoQ6oX0IcinBCNf4I05SufQfBCel8JPoLuFxhYoJTCpc9hz9/VDyfg2gzuMUZWyMAzm/kJrENy1JIlwpq/S5gk16P6CLNlcxgbXV9EtnzhnxwxM7OJn4QTlF1ghpjXcOg4vJ8zU3jeasf3IBBz4iScuN3HCAGgmHmNwsbxuu6RNY4HSX3PGqzMWtj+ERSsPJhxKIT4EtnyGFyIUz8qRihcU3V5RCW4Ugeur4l1jmVpNSmARuFv7TnxPjLN0PhPsn5PFO1Jiv36olZXAFy/k6PC17SCLFyXGxRb36qTui6T1IrMiw6hMkJ67/FeVPukjJDuXdMnELyPfSfmQUd4keXn0oXTdUScKbenK+gYyRrFCCl3mbByeatWKhIsjML3rreHr7+HllpYO3bmDdvd50xZYBY0tyJ/LbzuLWIKRj84WF1ReSvvXgP2RinSd9vp2SkYvLub9HdaMVLezqGIY88sYqNJXiTDA5mU6sPYOP20HBGcOzOD38XXdG5uuAdgkGrzWXwExsTS/XQMOmVQ4qXmC9zPon3YKJZgnUv3ScL7fhSZqF1fw8Y69aPYSGW4FsgG11xd29ooD8CITfAaBcOLBj4cFErRv6kZvhV0UAY/I9WKAgpKxYBLXJuQNl5GMcsH+tlnNE4Yke1+DUb+3JN0RGkjCIpT30NaZDoFaToJg6MLlmemQE6U6lTqVYXhlfFjVoYZBMG3xCxXIWNdktmZRpYZImY7fWZGHPyFYy/zAlIR6x8jzJLaTUk6x1XC+ub/1RNmZtaJ0jnb3IvjtDGLVO4LiwX76a3sSO8wHeUhGob34Te9afRLO6myM3QopWsk6mz1jUg50gV8f5ywvSufpQMjkoVM2IhQrVP38yQL2A8nSsQUooiu3YOxv05h1s5XkBVK7e8Ofb88IBKOQUts4pp91o+U+1kfRue342U4yzJYFV1X7WL2Itn6WGPVvIDMRWoFY6l+L4xtaawFK2RnjAYLeb4MoY+qfWtcw/WsHoahfJl9W2yjk87xpj73OX8blaSby3KilK0U4UryBOsyj2KtCPJh4dTuV/A7sSAqaylLtZ1U3LM/gr5o9qBv2s4yWEEhXe3x/hOAWao2J8+50PsSvl/ezazRftKE78PnlTquN3sJ9yyylo7LTVsbU3CCF81jzz+J55khHXvhNZJjEHqWYvAqP0d2y6OEoh6i4bseNs2eOYwg0kuzuNdDvRgPcdZKXVhlDR3hfcEK69PmNOaYuWfGWtpaGl8rj8JZ6zgN+6bSUzDvJaAR/Ifh8MkRVH2tE9ml8d3sYpb0KtZNOe7xQhjy5hFm5lNaQsGm2AIPH5F6sX18vhJJp7PU1Dq9thE6fmwcMODEDJliSUQhh6e5WbTYKIM+hHzbIPqvKUg4A1/OTtReq1oqB9tjoC5SOxWVzBFMMEoQoRqnLXa+8NrjMlKR80WJZNzef50NuM0Ru4l9uA3pFIVV7diVb9nuiM7UnWwFrzt4LPbxrQ9u9f5bDcRobdSNRHx3nJyd9h42Rz0raKkgqLfRBAnwWFdk83BW6ocRMfWYnWmS8cwxWqXDkADVEwly0dgFo26WIrLKNnRcJk34i5Oh38nYmH2c2YcRGuc0ArJE1g1+k3AmRrfnPwwIWBdrgyrdKWs7z/qgU+ECdLVgiUaX6rNEzdvO6Drru1RMHMtkQt9TXYrLWIluV9H/ZtgJk9FQZx1a6hIMmfXHsLGLkGL+QW68XDbEjKfi8tSMaMU96z6Fz7LMdqTP45hzPwSDIs3ieRX1i9VLBej5v0Y9T9RBlMCmHMEo6YZa/ZkHcf7zeDCV/Sy4H5DxwC6gQ5JkxD1BSFalM6z5pO/X2zxbf5iaZTPUMKNhKBr4zDUYW/2viG6d8B6WwKXF6s5+TDBrsPIU5sfu/4aT1ulYtk2jD5OLNOaks3MPxqRY3aR11vE6HJnNwzScF3DcZdJkS9dIx+9+FgZxsBfOmJ2f3DIcj8NgjS+w2H+f+pHRZd5Dbo7P+SzHpqLI3aL3FgyIMCUatluG1Y0NpPonULd39WPsky4GCNLMDpSYtaN4bG4uAmcTipfXmVkOnL7Wxh5pV/Ee5qnBJEdQRjlrChsFzDPRjYtZ0DGkSQeaY7l9is/jT0BQoBopJxKr/mbb2I+1qHAafV1hFnDmKdxE/RCeSUc7XpfnMKA6Xwlr3bVPlmzxfhJQROzQ7jNw3OcewT3ImWmSrr+ZIsz2Aucd5+f6h/C7B0ewvr50CYGg3h7Mu64M/n7uHNfpDE6cIatihWydbRcFdcNx2yfwdckrKJvaRsisiE4ktGuet6UPNUwYK8kp5IA0mWVRnavY9Nx6KNi5F3ZMXJ2sNNQIu1b2x8HxxKLKrI2eq0gypLEWzeYIKZDoZ90focuJXdT6WlvfRhSmLI6uyelLaS2POBoqC3HivhECCdcihGVaZ7edn+d7O3s3DtDaxoyy+bX87o6desP2QdOZ+v62ILjOs7+J2G4rIolWRXo3wqHuDM6d9h62VlGt2zpGROG9uYiocSM/amZmqa+8bGZm/iceDP8ukwr9LriGjWvpx0B3K+dp8HswBkRXLmdLdUROG+QynKvhFRTcrx+Bobp4DAeSQOvmARj90ufpe4HR5T3Y2LOzFasNkMWtCeclIKxE53Z1j5IakKNAyFJsjOxQYhiU48hXh1eXlgjvwd0LI6EqBI7vY4aMdMSqlxElurI/ZpRjUBCS9Q4BITvBOIy82mzWrn2CFNWsaQkCwPQapHePMcIthjoRQGTIFFj6F4DdSTRWdUeJIo6XXiI71GlEhRODcFoDOpwrw6xLWaK4cxfPVwmveXpuyvLkrsGY2CBLnOixC6QVL0w1bP0w+iHOLNeub9OgPANjexFDzJYPhQ3H+l707xDZ4NYINxN1ev6k6mVxj91fAfyrfghGY4xZWsHQUutko8uiDzvexFgrHghnnIrDuJeBr8AQ9snYtsKM1cZHQHQgpznec9j8NJ9LieQMRzHm6nnWmxACmlkm1fwFzK//v703DZPrKs9F31VTV8/d6m61pNbQmm3Zli3jGWPM4GAIsSFxGJJAQuBwSULInNwczj3hnnvyXEjOTTi5mS4hAxACOSGBQMxosMEYD3iQZGuwxtY8dEs9z1W17o/3/XZX7a7qLnXLg9D6nkdPq6r23mvY31rrG99veh0Fw/5Nys0Qr9QoLLf2pABDZJxI9QtB7RC9Oea1jYoB23Gm466unde31vM5qYQpRvKq6YYG1YCaVi2piSm+s77xzExu07QBS/BeA7mpbxY6Yr40TNJotEueLXsdQoI0yHtDT2x7VKgYq6hgWG0t80hbCORku/IFVc9teBPn5py8QhZybDlRiQcEWCG+WaHQvJN3s53x9oYo18jytSz82cordP0dESHPvo2hhSOrBILSKo/yLQJXOad6Yj2qG7eMfd3Yxb3n8A8FxnCdFINmIZOeEoBBnYVyQWOU8URCvBWK7niG7Y1o3Y4pDLhZkQim0Lp8gah3QFRConCgh7+pYLeVjDD5JlKiBO6QP8A9w8KfZxUAF2JrUsK+Qa2bMcveY1QoV54s3y6jlxnuTOmajNVwsmK+FoFg+7NzUV/NiBfBvAtt1hSwyDgRU0jioeLR80yZismNkQ1jlvfHl//+QmkOGXMWnHula4Ocuii6PJWp+SAiiymKM41p7YHxAr1cyDb8qLD0Ah4h70vOasDcQkm19pAQga5W8UkhNflOChq5NuUSan2klVszIYjr+pO6XvlH010q+rlbHqmlQqHSfUk7hM5T6WraK2jgHA/Qs9cLDetqXtf958wV6LuHYWYNpwxqegpTrTxEJ5dTmK2x2HEL4dhHIToSGky5klU/18aDNdWrQ968NDl5mszaaHHs5uFS7kAEhytF1QAx3L4efr6BwnVe9VgKEqxNobFwIm9FaKMipFI41g0gm+GYTIitl3A7OsmxDziFJ49J6THQhSW2n+lPwiCY+TlrhtQpJXFrbgodFOrMe2AKytCmUs9jw0EqPue2SbCRwjGpqcl08f4RAfNZu+ekNGf6U/C1qnUmJebImwTNrMgcE34blVQ/skHvRXD5xiPjS0u9ApkBV/L7yAryttVAm24W0MVzFNJr91Gg7d8oz2Zs77dQqb7baTkfvp7CdsP36BFtbKDwaeiNBRVhnmxNI5c1xUBQ42Ixg+Ne8gOVTxTPDdy2Sn2WhVsnuNWHstwn81KPLRfkeou8KoflUZYn2kJSDcEye87C+NiRCSn4TU2lBXQzSZUoyMgw45AR0QAAIABJREFUIGVqLDkjFE5JmZoQkIHN/1SjxtxRGlJo31vInKH0df7ZDwAAp3/tNgDA0u3si3ntohBICcIJCekF7UnmdUkqD9AgzodXloYNGvJoTvWolj7Iud/9e6oB9Xq1VxDy6DdbcezNytc7J5CNMQvhlBLcezWb0LS0Pi9wFK3P/HWcv83XkIl3HaJCf+gs98UNnTQAbbqlBwDQ83XxUreMKF3UNKd7uQ+37LGaamzParGZMjXSxXbbv0/laVRAQvlVVGynWjnG7OHzcC0qFN2u0O+cPEPQtC0XMo5405QeL5TNCJTBeG0J99koV85KVSyRsiVAn7zyAJODyoXS75BRyzxbXkWCE1Zn0ZQrU3SslpRAkwpWKiOTnglBbDXFTOeYjHtRWF4s2sOiE6IzxMpqVChXE5cbK9WCrFj7aR6wiDnl0FCE90Wly1OZAiqH5VUoamiLKIKwjD8nUKBLmUzwEJxwXkADTpbrqS6BJTxKCHQrfJuOQtkKJdfX9POQshwag82NhPdVKvp7mAJLhIokyG0nZcqf5AHaOKS8lEZD85OweCuBMUx5W/KcBK3VjUhMyQMwYTVFuN0ZKlR6nM+KYvntMNYBmhqQSdyK8Co239Xp4I3FsUfx9RPKL5ISZDDjliMVhdR9l2hYA7/IfCKDlTZlwQRl80zlG4W4uEdogtv60T8s71cPvxtaXpozkT3PtpY9SsGl9lFKjOfvYViZCd91gr5Ojits6IQED4FxFEwxPK/aWnsI+Vy3fBuvExvU9kkBkhA+3mG5Wfx9WtDM57cIgGS5QnjOSuDukIA1nEWmnv9v3sr3YwK8KYqdWVmib2HjG+rk/VRncq9gG2fGKJw1Zzg3A5OqvSUFZkS1sgbOUoFo3iXvipDNLATRisn2byPvt36LyrhvtxA7/hkXwuXUm5jfZ96B5gOcy5HVyq2b9EhOloY9Nh2RkHxCeWJL5d26gu93VHljFjIHsdSSZ6jw919HwdHyXbJZGkUMlbM2BgIQoZMpZ2r1FxWuuapZ7QrQoEkekw4zjkjBt6JRKjjllEuZHkxEYXnZIX5XIwRJ80RF4XJ72feRzRS2J1Xvq2Wv9p43MASx637l4jSS55sVjlnYwrywQkp90POTvdLGJLQn2vh+Gw9yjxhv4xhrdFnzAX4/LJjwwz/LPa97PfeoK1ukNE/yOcd+YgqvamGiz1MnyStm3ChIuczukPdrK+eg8bjGrjDJ/pPSnpdSaVrVpdBR8XjvKN/7+lb+PrZKBgN5qaf7Bd4h3puU/mH5lhMC5zCAH/Pinb6LipHxW+IwvW6uqZv9b6pFokfQ5Y189/klCq/TPmYGMNenvTqq16c1bGF38ihFNQa1/+WPq80t3MMjEAVeFZWSiHKzVDTYgEoK9Vy3OSlhEUy52jPlLfK2GcjD1FRUeL1wRolaphyZomZ1ouLyYbyekylPerah/BkI0SzgsnxM7oyAJSoAmhkkezz6pJLcWZyrValOVLXhfCHs74LoZaVMOed+A8D7wGPpWQDvAbAcwOcBtAF4CsC7vPdTzrkaAJ8G8AoA5wC83XvfU1VDVTBHBG0OQ3XRRp0sYlYASCyiUGqgQBeRFsWDZjnbQWE7cQMhmQudPHRq9lCgGL+N39c8zuuiPCElpCelcCz9NkEe8kuUwPIs80US67t5vWDH88ofslwsgw1PtFEIcaq7Y2EYrdsVhpHlQdl7LQ+b1v08ME7fRgGp8UQe03VKHO+hYDrdIU+T2jDlymqLFHpktTe0PhWDjPKHrDaW3WfWywhhSX8tHt6ECUsy3nNA1wudTgiHJqw3Huf3VuBzrNPCnCSIHWG7gzfw4J463BwJr61EaMbYgIqmWnL95xieOXkHLeTQmBqPmRdOoVPP8/3meylceAM1idBLJSBJ+LAwsbqzQq+SMJ7axdCe0++kslawlDp2Kwonm27W/jmp2lwdFiIpJaveY00b39sdHZy3lRnyQH2Cfb8iQ8EwL9dCnSAEBwvkxb1TFL7+tPd1AICrWni9AVWcm6DgU5vm50xKuVeQJTwtA8GErMlnbe9XSNvb6NFKC5bfQvPadvN9n7lBOXZalnW9mZLrMiNAreYvc4rKq6/lNVbsdbzdFAQ+wzx4poRlFZ5pgqUVtLWwo2g9yaOcaOO6MUHWeDalQqtHfkoeihbz4pUMGau/kVe/JBArxNWUacuTytUWh3ryb91JCaDGcwLFKJylolCvHJjk7dxjzJtthpjTd5Ui2tm8Lv2S1pX2v3Nvppe6xXLlBERgRWTHl3GuGk7KCBKTguz9TG6mcjU4zvd4NM25OyJwj0wqh7QGflUnect46oxCQ9072Xb+EO85+SqBlpxWmOQR/t27lMalrSu5DvuG+blWnsAjQ7y/ZikVyAlToiYM7pp/JjpkDBGvTjeJh/O87thbVf9Nyvh4m8BB1izTdVJE+0cBC9uTASXKmRJ8uK+VJ8pQUs1rozPBgjbNU5g/QeXMCZzIKefUlCMnA13irNzn2jcLKtieGJIXTnm4qQNSxjrJs1YrKrVCOXKmDFjYrtV+OnVmBkjMKF9qEEt2sM8wj3yszmhU7iICMpPCN631YOh/Us4iJcsAYOIUCwuMlLRI+dI+EJdLY4AU0e95VC7PM1/ef5yCUlUVvWyUKedcF4APAdjivR9Xsd53AHgTgD/13n/eOffXAN4L4K/0t997v8E59w4AHwPw9iobq8wYZmX2pQwUWRZiFgKzOiMuyM5XPTpQoJch2SZuMLQWL5/r5uGeFvqYV5X6hGC+k7LMDd9MBcGS8VP7VEvpLay1M7RaisIKCYEKhzG4YwuTsXootX3K+ZAXydDklv6AFtxTd1IRGtjA5y7ZY+EVMwVII+VIgoIXyheWKUxFBpGkDuW8hDur0WOGlCg0xIr8Wq5VFAIiIUIWWAsZMVjcwlqGfyVPsu+T3fJw7BNwwWbePyUp0PJgpuUFGLhGY1PNGaQ90l3sU/8KjiE/pkRoCbm5X2SOW528AEOvViHUOj6j61uyeKseTrZXOVFsAck+CTaWUyfPhglSQ2vIH+Z1ieDl1XdT6gausPA9WYCtFppErlydAWTob9pjXaMKiJpGJlqRJs/VSZoeEy71pNA1zhUouByfoiFgqJ9C4fYsPQ19Q/x96rTgjBtMgFHI1pAUPCkU6QELR2P7BpVuIY7mFTDp0eUsf0aCqXTrSAGRnDWecZhoUcL7egpvBtBhoBX2IpbstmLZqpHVz4eeEVDL2FLynHl7cCtDSGvOKuepT3klBmPdZjDUbEDLD5OtGnM3r6+r5Xtvykopew1/X5Zi+ykx6Vl5/8ZNmHQe58cU8nuef9MCR+h8UuAjnQqnPCzFvaZUHDlzg7yuUsRNwbPpzgwqJ+41Kvwso4RBnk92KHT4iEKYtR+YN7bpQYZhjt3C+wc2sqF+oUXWyTOa+lfO1d6r+dfeZ/K0w3e2UvGub5OSo1paeRkJNq3nRtZ/lcBUlHt2pJMKwdiAFBDlaT13korAiiVcd6f6BcZwSEAX5gGWgaW2j7MxLs+8hRdGXm0pWzVWLknvuX0X+WKy1UAipOCfkeJUk44AWGzt+4MMzTYUvWRHuzqjF2Toe8p5clZM10pC2H47LGAQ5aRGUQgqqmsojMmV3C/NG265qVZoOK+83mR7e8kYDArcSwEyY1ayYwaJz8eL52oMkZJkRXgVsu0M8jwWxhc3YMaVrggF0C6ooLjMFN2OQaIbRSiBhjgbTz/RWZSbkWvnrUMaR6CuREGJqopeNsqUKAWg1jk3DaAOwCkArwXwM/r9UwA+AipT9+r/APAFAH/unHO+GnjCcpdcKGykfW/JfTEozECBLkWKDgkrMihlKl8rJeucajCd42FfUDJwXp4pC2mypO++N1Oo672J66dhOa2Ra5t4WNXG4Kyn88pj2UYB+nQfn586rENOZ3/qeh6glmhtHpqBDVIm0jNhRf03U0BJK+SwVmEl/iSVJav/ZNC+CbM2GjiGeaPNehlZ/0zbEfKZGVZMoWiyGiKysKbZztSV7E8+q5weWYdrz7O/VkTUPFKRYFRfenBv29gTCWcWytY7rHCwgnLfJqVUSZC0cDvTT868yiDvJZy1Goy1xtZZq74IRKC3FOnOFNTEE7v43G30KjQeZ1/rHmco3OgHBZ0uuWjF5yjIHvhNvotWRqXh/DUa66TDuUmO4aHvMlSt8QpKhFd3nCqZh4OD5IU6eZhODQoMQ4JtQjlUZ09TeLfcnaYjnJOuf+lh26+lxbx5Hzt59gbOaedjFPb6r1bdKOX6LNk9VTIHlsPTdx373fGM1orACCaW8vusBNvx9hSm5eyMhOSzvLb1JPswuo7CXEIK2oiU5uFbxRTS5CzXyTxZtb18zsAWjqHtEYWoqj6VVygU5DXw6VIPmBXjLSiU0iD4l9dyLpbVcP3XmDewgXwynOM6HZrO4kSGa/fYlMJrVW9qYJ2QARXqVislypTS9LAZLBWq2mc5b5YDwj8NgveOauPJg2VFnq3YcmE133vz4/T69L5WeWevIu8Na04Htwh0pZPvbewE11KTPGxtOy3XbQYcpOF5ecYPUIGYbCz1Ku9tZNurl3C+u+rYp60t7MuAGOCJUzROTT3HOTvFbRNrO2hQyCyjErzvIYY0jq/mHI3TdoU6KXOt/8b33a/SEl51wiwstPmQUP+WcG7rvvQE+61QymzOajs5JE4IhGGlvFYqRGtofl7hkxaOZyUnUgICgTxYuRP0IFkYXkLIk06Q5QYM4aO6fvLoGwCFhetp380r1zVxjcJolYNquVk+hqiXMIAgA6S4aiOSdn4ZPLspggp/LUwo9NvyYy0Cw87FuJxneVtxKHNnz5NX1sAw7L648hQPK4wZ5ePKW6TcWc5VsfG+kig8X97VhWAKBIroZaNMee9POOf+B4CjAMYBfBMM6xvw3hsHHQfQpf93ATime3POuUEwFLAv/mzn3PsBvB8AsqhDceHeikV7459nofbN53EKSlWgS48SQpyzsKEJWXcnJGS3yDMVFUiUIGl1idJCgTOLZ+9tXLqdK3loWVK60XhOAi9K11un8l86V/Pv87UKP5JyMKFwsFUP8PnHXyNvkDmK6zyyciyZk3l0uYpyymKeaFIe2EEKKoVdDEW08DsoJCoK/6twCEUhcNOluQIRzLhZRpWPZopm9hCFktM3U6FJjevgbeB105bX0igo6awEqEGhkiVzGJiigHN6gIL+xKA8HZofE6JsDkxgbd0vREMBD1jxY1Oi6h5j6JTBShtAgdWQMUsuwDmyvIecwjUHu/me+jepqKkUGAO+OPxLDJHLZ7lPTraaW4fX1R93eOb5bs6j3fso52nXOXoIRigTI6H8kbOqS2Uhgx3fYx9a9o/res7b+S0CRznDtke3UZDNnhMym7yty78ur5ze++gyFSUVj2XPyAotSo1x7sdlgD91G4XMaaWKmGerQaAsdWemo5pjEUmxH9nItoZWp/Qs5ZMIUjut+mumkCx9lBqawXxPN8r4MWbJNOJNCb4GR50ymH8pU82KmMs8w7GcVaji+WZed0h1dtobyFg1SeV4KZ+tf0JK1UQNhs8rjPKQBEgtfVN2aoVQmDwvr5lyoQxIp/NxtmHeuGw/H9C0W9qo3svZ29intr9lYejkJnqarHZecpDPH93K9W4Q+P3yBJu3xquOm4XQNR2SYWGA1/dt5TgM1MEVZpTguhPyAArAoWBFXR+ggL9/E9/LibWcx2uWch1taRQQxFI+e9+1Ahrp59wdOkNDwes3cG86cT3Fm/Y05+7ESa6FRnkQz97Kdlql+A1S34iMJRPt6peMKUPvvBkAIiCUrIARC5lU5E2xHFPbQ9JWm8mMTha2vFxebSlJloualBfUr5DiLoUNQn41cmOKZujmeswfUz6tEGNNsUmtVq6r3aczCydOlz5PqILRZ0NxdQ6FJfKCnTxd8ptFEUTGcTMuKic4qklohjNTYkw+NEOaAbvEjPDzIu/OUoAqAKDZ5XMBV1SL2hfA1S4KvWyUKedcK+htWgtgAMC/ALj7Yjzbe/8JAJ8AgKZEm49yHQAkairUB6jcUXvoxehaoEAXjy4CbxrgwJhggxNTpVbhoXU85DOCGc4MKhRmjIdO7/X8feAaHhpmMTXQgPyTfO7ROh2w1mUztMtsMr2cz+1aTsH22mW0btYm+dzv7KaQfvA+eWCmTciUZyzt4fTw1u20cBrM+tgyrv+aAR5009fQklo3qrFvbC95Zo3m0yyiSTtILYRDikVUM8gMNebZ0oE6eAUVHgMbGFivsBOdq+MrBAJRJ0+XhLr0CgoZnc1ULDesYhjMs+eW4/yQBPYhCnEtO6Rs6tFdX6a1+OSbKYBYwnlmSNDpk0Jl+5qUpyvpnSls4PWJIY3BQrAMGUuCkIW65Zo5B+lTFLQm75S1Woh7lnMz3SoPl8L9EpO8f3itcgumDIXOo/4gx9J0WEqPUiHqzyhvp1Mw7FIYpwWNnuqVN0763rG72Jd6Jf+nR0wpVkidvAktjyi21DyQ8spCaI6FtJRvwzVoF5CFBNTlD1ApP/5mKf6KBp1qkcK4VOFtyonLDGQwfYfyQaZn+BaYUTxygrx3+VJFvnUfn2W1rwZVC6vh6LjaID80ClFwejM1z9TuHgBFoaoK4Uoqp8og7IfWaYYUdpnq1/s/SGVgcJh/LXzU3m9Ui2vAwy9TKOkDnLB8k4qzjpMHp5ZY3o88HCpdMPIG5ttZjtXwalMA+LwRCeWG+tdyQLmGb72pZI5qT3MvSh8mr9ae4Prpvam15Lq6swo5lpW/XsiI0wo97bmXYzKvelZ5TL3nGgFBmh95Y6P6FAN82CWPvMJda77I6595DT24R1Wo+5WdBHR5RTND6f7y+8zza1vKufvmfu53925m1eumFOfmS1+5EwAw9QYLqZOXVEAlS57lGHPq19AaQfFrWdsasfdXyEoJP34O3oAiZCDJq5h1cr3s2cqvhdawATxY3alIkRAqoBkKMCWwIXmcrJ6VheGZhyshBNn8c+ThKIxa1xV2MlE0uWFtyfPQJ/RV8VVUvsNqJe7YE5V4SFhNMoX1RYisVgPLcpykXFntKqsxOFOUt1SUTsiLZ6UHjGah+ZlHq1J+k1FFxWgOo32QVV9UetkU7XXO/TSAu73379XndwO4FcBPA1gm79OtAD7ivX+Dc+4b+v+jzrkUgNMAOuYL84uK9lZCRYmH682HnjIzgPLfv0zmN9CPLhkKUlQE8XwsybUKHrRaIIN38dDOCY666YiMDPJAmZV4eJXyjBQ2Zqh9g92lOVEdxD9AzaCs8YdpEc83sa/Da3joWB2dTL8eqMNlWgLY0Bp5Ol7N/rxyPRWbvglaYk8Py9Ko2jAuNwMEcPgegwXXmA5Z8r6UKdW3sTDAlCHa7aMQZlbMKcHG15wU0t0IJZKcEqujeHvF7NuBCh3AvbdTyO54lEJjz09RKBxfzzHXKEcjlzPAA+V8dLKdWkGFJ+S9ubL9DLY1UwHoTJUmVBekoR2YoNCwc5AC0POnlTN1Rvkrj0pA7ZJXzBCBrYSW8oOaezim7GMCHpFSdfKNVESXPVzqLTi3jcL96HJZxDssEd7CQJV3MaHQnQb+nj3JsTce9Zi6j3z8U2u3AwBapTUVJPkl5BYwQIq8vs8KpSHr+DctDf18nrzy3QGa6x8+pFybQXkcxmyvV/6eRXmOGy8qX+gx8kff1Qpfa9T6WkNl2vJtcwN8bqMKqDb1yHuzWYLZKDAl+c+MCDWS0Tqe4ljHVkhj0PFi62uyrXRNW1FWq0t17loJaTq2VjysItpa15kheZTOK/xIe8TeD5LHb7yCCvsrjL/S5K/zORW4FdZ2nRKIxuTqsHDd1vQYavQexpQk9oM+amiHe8k708qlSo0o7O+kvCMK3T17B/uYqudzmlREN6dQ4OEh8nDNwazmRJ4L1VSrPy7ek6ew9nTpnNVorsaWKvxWMn9+CwXg/3T1IwCAa7LHS+5bUbTW9k5xfTUlJITLkzCheOTTOa6DTx+5hc/W/Ex9kZ0afT3bavwa53XiHj77t658AACwpYbemX8+Tw/SwRHuGc+f5f2bl1KBf107FYvPHrmxpK9jKpkwMS4e36N8wY1k7vrtMgRp3S//Pud4si2D+h4pGBnLwxTf7iVP5Dap9tVRgdZo34s8Ul0MD7RyGGmrZSVwoYiOKWxXUOuGCOtVGNee6/S8KCrCSlZY0WDVKIwKYA+ofl87X6zlqvrRUeSvoDcrKeNCHNo8UpKkoEWof7G6U3bmRqGKY9Znrovkqq7S762QtHn1KuVGGZlcKTnUlDwDtpiplVh6n0ulZmpgxZCoXTxMvZKMeyEw7D/CdCkW7T0K4BbnXB0Y5vc6AE8CeBDAfSCi388D+Hdd/2V9flS/f6eqfCmjGArKrO/N6qx424IVrK5QQT4CpDDLg0FrBgr0ApOPIQ5FcKoXwIMWxtC8m9Lc6DoKS5YHkpwUgMFq88rwT+MxbtD9m+RFOMrrVn1V1vwahfEdZKjctND7omKR+3ngnb9atUWmDASAY8r+kEpTIckwskkd/g+PUOnbvInCxoYlVFCeXsWDu/6Ew9nrpdzUcE2bh8BC2iZUYNYABepPSPjeKyTCbh7eBrlsVGhQmKDVU0mUWgAtVCTKKTBI9TyFBfOQtT4vL80N8t7J6l+7jsraSLPCATM8FEdHJVifkhdqRU8kqJ53FMZMgTCFKy1p2oRcp+8Tk8pf2ax9zs5kG6or/VxI6X4raqnQRzgqU+YZMXQ/E86mTdHQ85ppZMboSn7R/e8c68GfpsBjYYljyx2ubOstGUNHitfGlSdTHCfUqClZRtNye9bpvvV1fO738uQpp1yefL3u05+kUPwiWHc9z6C7J+RJXLKd959ro8B61UbyT91qzsXIlXxHY9PKAbIaYAP18FLkaoS+ZnW4Dt8rz16bWbC9DYZ9kuKXPSuviRWPjcoBSHiWQmjrNmU1RaWw1zzFvg6/huspdY7Pe/ooBeWDjTROdDVx7htS2mv0QjOmdYtM0R3J16AlPV7ym+VHWjHf5KjOSvGGeUmmmvhFcoB9XvY1PvPUbfJkKT+yXvJNzTnzBqnkgOG0yCFhnksjA5A4Q/0ESzdSIXn1UgrjV9dzT1md5vr+1iAL7u4Z4n7QkOYcLMsOYV2thGyBorQkuJaXJrnm1+sZ6zfKkytePPobnNemBOfow1Nv4Vyc5N7xR/kfAwC87wrW2Lqt8YDu5xj3eu4lO7fTK5PYJmOEEClHVR/OJEAnj9XkOnmPtK4nBepRf1JztYP7be62zXCn2ffCGhXhVY4nrmAYXvIZGlYM4TX7LPeEKOfJgHyEvue1LxpC67hyRzO1fF5BOVNpU6YUepe7nglkhvia6eULnbyuu6TdCIjiuMK2Vwil1SDz21TzrqsNXiHUEUJrk/Y1q6l1XGPXXu91ziXbrCahoZCIhw2ZUB5ff155ZUIY9Ip6sPDoghAQTdGJK3MGmhHJmzFFJ547FYVSGnLs1MzZHylcdq89ypfuzbNovnDAOF3mnrCXjTLlvX/cOfcFAE+D1TOeAUPz7gfweefcf9d3f6tb/hbAZ5xzBwCcB5H/qicpUVGhOauNYEJHlFMlZjamjlBVzINVISY2UKAXimKb1ixIdBPuL2BzS+hQGdqsvBDdaqhiLQ/TGtm3ldZlE9IKCr2xYqP9G3lItTzOC3pvp9BQs4nWwuy50vVx8g4ePpZHMrSa67FOwuXUBnoRagY4xsZjvK5mkL8fHOBBvPQ6CivNV6hOy0Qb1nyVB9ipVH3JmHLqqwn8VkS1rleFU2/q5ufHGXqTsDCVpQKoGCoN30uso5XTIIONogNXlljLF7KwsnFD3z0nz6K8NVNK2E+fpkA0JmQwKORqyWYqql/fvQW+YGEiUpKUcJ6p4TznpgUvfdxC3Xh9x1HVbFqm93VQ78Vi8K3WlnLkUntkjR6Q0JAsFYRTUrZ7r6NwYMWa08OyqCqMbdlXKbAeei/n7MRrqUBmJXdZyFXrjn4cvZOCy86TVNhWCSq9I0thaywnGPEptmkCZF5zYh6MvGr+NNZS0FjbxPlL9fC+Fil4E21CRJQQ3rZL+RJmCFcekhVAtRpLo112FvDP0QG+75XNtNAb6ECtpPgaSftDnVn0yrN6TNDXgyNSGPgo1GcU0iiUy/RJMu3KB5VfIqPD8Hp5T5ssfJL3L3uCYx7vECy7UBytBpvVxxlaI8VdukHNPgthJN+cPU5h7US97S38Y7k4pgSaJ2y6yc/A3RtJaa09znlcrZy0wY0CJpD3u/EQ329G3uazqhfW+YR+38/7zl3H9dj/eo6x6WF5cjX2joeVQ6N9cGolO3noPs7h1qt7AADbWiiMG/R+Usr4f/RfBwD4xreJiBkp28phTJ3MICfo8XQH94SGOvZlo4w7NzWzjXU1FPBN2bopS89fs7x3v3k9PVH/43EqUfVZ8srf7HklAOD21dyL0kJP3LqC2s+BLBWG5x6hYWC6U3MuD3CmSWUULJcyo3DaI5yrBjndDDAGa7o0h4Wo7l7qJOdleguVnzFBy2dvpgJutgurv2ceestZytVLkR/ke5zcSKV0qlnrTfm2Vl6hsFkAFkbGawIYGVvdVPJzXspe6gz3h6luzklypNSYWFAx5nx9GjX7la8l+c8JWCIhICXzZiXGZBATaIahmUJpIV7RB4m8zk0LdbR8WUP3032mvCXkdbNC8E5neFQ8OPJc2Rxon4+ULeuvEjKtQLL9PjY242WLDP0yPpmHyjx8hgS42DT/y1SJMnrZKFMA4L3/AwB/EPv6EICbylw7AYYAXhg5B5fJzBQrNBfxaS0uw+s35szogB4qLeJmCYje6n7IsmGJvbMqYb8QdJlbAi4bqlBF3Sgef+1jlqhq+MSMBiPL9GwDzpJgWZDlLZ+xJFVecPoWWZmap5bnAAAgAElEQVSjGHz+fvhdtGxPK2dGpX/grfhrm6CCUzwtzkzqEJhSyM9BrbushYPJgn++1Jq29Cn2u3+UB3RimwTXsw7nt/DgWvkNWo3Pb+WB1/Y4BZtTd3Wqj3zWyHKz3ksh2ci8odR+ShxORSu9JU6v4+8G/Zs4x3aiA9VQqCz8RbttSqAAU93yvilMKXEt+x6F5GioyWGF12iOB+t4AGf3ZTG1pDRnJV9nwrcak1BlStbQddzHxjvZRuQp6uRhnx5TOOYpvZ9+CgMRYIFquNiYLG9ltLNUoWg4prCWBIWDsU55fzr5DpoPsJ3h1QJSUAiWzf2Re9uQuV/jl/LSN8C9euK0wuU2ive0NaeHee9INz/XnpVAqby/0To+6NGNVPC3/D3Di/pvJO90fZ0CcEE5FtNLrE6UQZ1b0jlK/t5yNxNTzoyzf4cfZAeO5Pj+D2ylclCvMM2N8rhlk9PISVOzGlc5rQOM8H1MS/hNnRNvKhfnxB0ChllpyVUKSzLERxVtPvQW/l39dXlnG1R77UkK56N3ESlxSrJi6lqu87o6vr/RIfJ879WlHunESVnU5TEzJSrXUmRcFO9ZmJ63iEUtBDOkGLy3hRoevI/zuP4mKvDXNVCYH7yTvNQo79gGKaWj0n6/O0CDjXmiR8Wr5u2s7dVaqVM+p+Dd94zw/T9boBD/fB+9PiOnOPaaSCYnr276I67/3teuwrj4vuYZrsnRlbxnZ44C/faMAFg2sRPrOslj17bS+7W1jorcKnmwfvnGhwAAxyaovD70Twzbe+AcvWNpgXAsu56KYpMVrr6G95shYaCHLzRfbxuDvH1nMpoLp7mRJ1N5nFZGInNiAPk2vofEEbaVOW955QZ1L7TKXtULs3p8pkzpWRbVYIATaYUNJqaUm2hCvpSlySUCHDmnfNx+tbuE739aPFz/RA+/l7GroFyp/Mal6q/Q+5rrS/qZaGuKwvIi+HeFzUVgKE0CatlLj6CBEpmnaRZZBFMv32+kyNjZYB4wO8MlV0YF4/UZsbN9Bs1PvGsQ7XEZIBZeWBKi5y0ksNS4MeOhKo9MOC8oW6ASetnkTL1Y1JRo87fUvDFyIVvSY15VtGcsAAoZMSWpX0wvJcpqyeT7uImZmzWv4qIluVcLhaicj+L5XZfZu/yRpxgvxuOrI0QhS5g361Zcka9CmUoIVnbqJoZUnHwltZ/a3tJ7xpRUnq8RKINyXZr3CMXtRh7u6RM8HJbfSIH1XauItHWVcgCyShKZUNjLUIEH8Jhnu+eUm3F0iuvTcjL2D/Og3LGXHqm6nhkwGQCYvJqHSn4qgcxJ0wT5xwRRg0xv3c+DZ2A9r8vJC1d7jjcY6pdZTDNH5T6xOiY6gK0YpJMnyopTRrV8tIecfj2Vt6wUwoGf1sEtAWhaHqnCaKpkbOPLS9+7gTR0XNWLrgbuSyYYNknQrNdfC5GblABrYUKPn6Vw0Pucamup1tKs8LHjEual5EzK85EdNE8UP6/7PPfB03cofOko3+94e6m9rmWvkNVWUbhIStGp6VN/z3A8p+9aPoOUdpZ9qz1DoWpKtZnqdnGeB26hNX1oLcfW9W0+o0+ei+yABEU9z5DLzrySba94kN9nhtlOppc8NNUhKGi9/9M3C6lNbDWxinP+tlc8CQBYW0Mlaf843/PXDlO4N/TFTAOvn7KCq9MOyVHV2WoVYuMx8bPZLDR905uUN1fHebqyQ57YNOdkVF66evHBZIFzMSS0x52HqfhnjsjyLqOH5WoZKEfyJhoE7uiishWnaWnt5ybry/7eqBC4TCIXeeAa5Cqy0NMHTxNY4GSPeRAEbKDctFw3x3Tf1c9wrLX0whgvNyo0zjxIz4x1AwA+s4c214zCYk0Zqj9Smt85tMkS1FQq4TDnbrJdXu9e9mflg1QOeq9TLa/lFg6suWhw6HqIRgaD0c8KqdAg6tu3U+E4f5XxEu+1fdRCRW+4lkL71qYTJWN9+JzCm/Mcw6Fn5TlSruG0+GbJCvL82IRQWFXTKyo8rZDKpv2qoabX16iwbFOqGndQcfKZNEY3cy3X71PNQSlDdr4YOENqpQAp7BwyCHXz1OucKsSNTd3kSZhsJS/N1Cq2m97HuSgY4Eg910ZyXEqaFB8LsTNy8grljvL+pJ5bHEoXGb1j+UNmLCrElSbLUVJ4nsleJj8a7Lo9JyqZI0q2ylM1WuqpKgj4wnKwovsquYnK5EbxctswysiClcr2BHmxKroUc6ZeHPKelnuz4mtRzbpM+SYF+90Y0QTamKBqVplIcC2OcZ1P018srn9YFD+aFIXxlQ8djaxQ8dDTCs+ZxYeJ5Cy+HuyWYNHBz6u+zYPvxB2GzsbrMypkmsiZVZGPSdeyrz//E98HALy2gQWENkjoa0/yYOvL8/P5guoRKdxl2nMdbUxTML2zjkKGopPweCOtyJ+WIHVcoTvjSrRuVN2lxuwkTp6nUGugB9ljHPcgZTkMa6yWvD/WZRZywdomeMBZLkf9Eh60UwKsaHuUgsdkFw/KzG56sJLLVcvHQjnyJrDwOeNtEqAVgmfW6gOnVbj1fKnwZ2Shctl1PICX1w8hk7CcKKF06bOBMFgdIBPOrABuQ4a8M6jCp4U1Kgo7USokGyT6uAqh5ixMzN67TpCxbs2BCtXW76bglb+ec2bhZZNCgUyZB6xHuQXKrRvZQuUuNT5Tq2dUdYBa9gsAZJBjOfpOKtTmldOQ0XOv8ha0HIZkHbaQRCv2asV1VRoJ0/WGGmc5deb58hp7KWhG9hjn8ntdzANs7CJPX1tPj8rSzXxP5yW57h/m+z1SR4/V8GgWmS6OpbuZ58yJNs7jFUtLYaObM1o/GQptrSkKZccnhYimSRjOkWeXZEph29va2ZdBGRgMAMTL82s10Jzg3fcMqqCu6ktlhaKZ0rozxchy8ezztJS4BDzSutYU+AbFHm5q4do+mRTkpG1LVs9UvPXsAD1FfZMNGhMXULNctJYz1zPO50z3cqFOZVUvSmG7hvZnhb3NYJA+LaWgxsIL5RkRKMjht5DfOrdynXdm5EkWHPyxoWYcWKZCvnKe9G+V8WFYQBx7FT4pA46tl4Tyvpp38/dnhmnE+mErw6g3baChoKOW77tJ+2ftNr6HYwolnXqc7Sce11yuksEoaYBBMQhuE08010seocIxfJ1q37UqUqelJqqfZiG/CcsHUsHulIxE3kLlBEVvdb9MITGBPyGlJm/eFaHtwYqcyyOcfEJF56RgJM2jNJwpvc/qR+VLlYTCcdW1MrAG8+IYoEWhEHmKnHmUJL+ZUd2UIsvDyvdaAXdFLhnS4dlSYIooB6pghcBN8RRoiX0fi1iKK18zP8TP9lJlaXaIv0VWJWfkhmrB04IcuSi6/JQpAMUY/LMg0WOCZ7wOlTFvBHlp38dDq8o9c6G/V6L5FkmgHw2qlj+i2Of4AVpBWfeFKIzAwCtMKTLvx2SrFI6jZt0XUtZJKR46OA2NL/1mWh+vr+vhZwnx3xeqXEeSQuP9g7cCAM5M8oC2ejUjsrCvr6OCcUM9LeSrUjxQlyV5KL1jGYtNTizlYfjxfYQS3qQQqoJ3OG5JuZq+/k4deGcFsbuWB+hwQod8rebP8UAaWVk6bzkVLjblqmZI6FMSOgrXUrg3RMJCpl3PQ8lc1SphfuwgD/RDTgiExxUvb6APVqBY3ovaM2a55/c7jq5EQSAJCYWgFRrknVR4WE2tJf1LoVBnChb2ozDM6WHOyaqHSmPYTJnKxMoh1Z7hGAc2GxqYIbGVAvg07qRwkm+nkDa+TF4a5cAZUphTCEpGBVvPviKFJbdSiF3TSJ7K3VXK12tTpTkRBoZg8Pl1idIcJQNNODpOvnj6NC3jo2v4/dioPE+TMcFFuT4WYmWFh0dXaA18ikrSp99Cz8hr1u0v6YcpHCaEL28cjv6akrJUeWAr68nn9YpdPD9FHjk1pkLE8lDsmqLwe6iXvDM5Ip4eMD6QMKiaZXkbUzv7sPrL8s7dZPDX/DnfL5TNb9DbcPRKTYUthdhWZEqZwfsbNLdPeSBVenFCkP/L27mGlzypd69p7nyAQvDR+9j2kf3dbONrvP75dRS6BxTeaeuwIGUoO8pOtrF+NBS9h6Y98ogkqCWNySEifRQjGzRXV/KLtgb+vbKVCu3rWijcNyqWeSDP/eJ8ewOe7tCaF49dWU8laDDH93bwDu4BJ0ap/BzeRQWxdqVCerWf5uRJauwkH5z4Fp+7bwP5YMVKeocapdA1Kryv73rup0N5PecE2zVj19LHOTfntsoTJp1r2RMyXq3kF4Pr+C4mFDLX+vwoxlT7qqZR4a5H+X6c6vPBCtpKibKi51azKULjs5wdS60w5cnCAk2xMZlL19lOlKiVQnOQ+ZZJy18aLw1ts/stIiCvor9JtVeQJ83V1ES5oeYlm1X/qdKZa8qQKXLTpcpOXLGLFLlcBflwPhTocsb5uZ4Teabc7DFUAlsLStRFoctTmQJma+PzeYfi1wdFJtDLlWYVmK7A497PBE7rt6YeCZ4KLaw9owNPCQ+t/0qY6sG3MDk7Iy/BlBDOspKMvj3EEKed/Tx495+g4uFVTBayzCZGzfov4V6hPtslvP/DlbcBANqXUWi4sZNW/yvrKLR0pil8vncDUa8eHyS6VUt6HJ2d/K2vX7DpBtbQpQKbyteyc7TpoNVgkQASCV065NX1tPo2voR9b9vOds5fy0O+5qzQ+bopJDQe5hw2HOehnx6gAefMrRQ+6p4SLHJbqWBqQqZ5QqwWU3oP72s5CjSckkdxrQE98L1Ntmp+p+V2Uci+eRxXPMTPfUyZQeNuCk4TrQK5eFaIgmvZt4YjkjzlzSlIscwMWTu8r+6gQoIGeL9fLYlWwkvD/kHdr1pQLRbyppy9LoUpLc/htqVM0jcypciUpDilY78nJY6Zl87IINa3nyFvrhdYwN48Ff6CwsRsuZgH0Q9Zzga/N2V8cKOE8R30Kj3x8DYAwMA1CiVXzpvxnZFzHpkaXnM4LQ+D2hwZ1zz0sc32HwpwRUVYlz8q3n2lFDxNyVSHjBrKscocUu6VChpbON8AnWnofILX923l9WNLVS/uNgnApoTL85SRQtm+XbwoD+O5q0prewEzOX5R3qTCvU6MC0VTtZBWf4PzOHQdecVg3y2E7fn3y1uakkEnbeHM/NzUyIaGhXZ5fI3ywnrY19H1XJcGbJF8H3l5801U9FdmKWQb/HsehkiYLflsStTOMeaDNifHsbyG97TK7bxCqH7LBJ++PMO9YbBRKKTy9K1rIM+Zl+3gKBXyMRUxf2aD8nyGOJbTveStU0J/9FJU0y0qkFuwSAEZwTrljbP6SNqzzFg2JRCc2hMqN5BWYV7J29NNGdSdkfIzqfm2IrgK9/M1poHLO/6c6j5JmUl2yJgUgS1o4VgxcikkkDLmE/JMxbxBblgufTvXYoV0I9CcpCv5bN4nU9qshIifnJxB4Zsq3UssJDBvkUaJ8nJhPKQ+An6YiuUlTcdC702Ji4fsm9IVB4OopOiYB8rCFM1DZQpTuaLAi0aYqEABQh3A5Zgz5Zb4m93rZpguDpFu9QUiNL+gvQf6EaFym55tyhJ0crcx0dnyRIzvU8PytkgIzqu4o3kuJpbo0L+Hh1P7tyiInLuGj8n28br253jYDK2yEBt+33JQHt+sGS34JzXB9dh3tcIxJAyMd/H67vU82G9oo5Jl4U/t6eEopM1C4B7oZTL4iUGFpKUsRI7P7D9Ky7WhTk0vsar28kCMq0aPrL4pWcLT8lSkx0qT8aea5Z05pvwwCxubVM7UT/LAnrB6O43yZJwW0tZRs5Lyz8gahViqXlb+ihFks7xniQADmmooXBmEtZF5/sxb0jNCgad/gkLe6aP87ASZ7tM2FoPSMqUJJd9nBpRDpxycJiIrz8BSa06suG96xDya+l1z0fggYZZP/QxdIUO3jGNbN5Pz952joGnJ9rVpdmIyJx7ypXydSfIFGIpfjcAdLMdmlbw/3+tRnSlZ9XFK9VjSxvsCUNB7XvkQ2x3ukqHhHfSc3Sql7+wklXbzIh18kt6FxBq+5+yjFCbHbiKPLvtCDc5dKWTH9Vw3jbs4cSNrlXshD2O6UYJtUmMQsuHGJgqcjcI8jyuO/dMUKJ9QjtwZvWckLBFe510/x7RhK0NVr1tyvOR5Fr53TrCdZ8ZLEdUMLtwo5xNFHjmr98W2jo5ynbXWcB4GJ8mDo4KOb69VqG8jlR1Tou39RaGEUvDse4PGNzo4QqG8f1KFrYXuePvSgyXPrVM8bbM8TwdVmGrXIL1/Z0b4XoekrBm/JBIFNNZz3m0v6ahj381TVZxDBgCnxrn3rKzj++vMDJX0wYAnjo7yr+VCGk+depSerckulUAQ2mPN8wpxVOHqqP6fjB3jKhhtocJmIGo8wuuntD5b9wkdclUGdX18dt136Orzm7o5jwJmyR4QBLkAHiIv84T28mYBVSjXNCeIdEPdK7QIxfEsFdCCUE+j+46ofpXCBaPSHwbWYDmrhpRn55speVYyxArxKiwRBT9TTsTyt6TYJVrZh5zqSkW58KbYpdV2rA5pJCfGwvviSk5UaidWHyqOvGfPm6UsGc2TL+/SmVCe5yJRtTlTl7wy5Zy7G8D/BJAE8Env/Ufnur7JLfE3J3+sei292qK9lxK9GDGyi23j5RzH+3Lu2wIpims30AQdQIVNEgiPKAfGDpVtVLrw7PP8fAUTpb1qhST7ZOVtp/Bgce9eYbVRfY9CqdIWza0VQWzQdVYYRfU78hvoVcjV6XBSmNnJ22WJXzOJtiXKN8jqMJXwZUL4uLw4DTU82EzYMhpWMvfwgCyc47LyNgtoopeHfvPzhkLF+wy0w/KL6k9xr8mnTbDR3w5Z7JW3Untawr8AKkzRzMvaP7FEzxViWmI8gYKS6J3C+5Ky1hs0uk1nUrlkJuDWZjS/+tx3nEKEKVOWV1TTb332JZ+NJtqlbEvhWLKH7UzVl15neUemfNcMcQzDyofq2K7aMW2c89HOZFQvqP6UBEd5vzJnzWqsP0MUsqZWyiL+2HMAgOk7ruWYxFuZM+SHvpsUGifvXct+ASXslnB4Ukn4JuhspLfTLO/+Nj53/3syJWNs7ODzayRYT+XK5zDWCR5uYiqNtK6tl2vJFEB7T7bDWE7g5LSMHnp2k4R5qx9mAv+yFgqg03qe3T9wlO85Jch6g/Y2EIjMBnkU43XJTPnSZ4PvT0q5s99N0XDOR88wss/mEY6T3Rt/dkHf21zkhVRpXht0CHSlkXORljJt3hp7D1OTEpgPKzRVt2/8NL2ph+8jX5gyPeN15XUNJ8TbUjySUx7eQsvypsSUngm1fQpBExT90Ppa3cvfDQzF1oMZmYY2y9u5RMqY1rONybzsNkc2t2l57UaHBRN/nH9rJAuakmXedwPCMGAMA8fpeHII48upJE02y7hUbyG/8jIfM9AY8sz0Uiqd+TpDvdQ8DqhRy8F6jmGwyWWqpmwpFyqObnu938V8WQvBSwg23LxKlsMV5a0L/Mtgw03pStSU5k4Vp2REuUqmtOg3U5osnC8O8hQHfIiM7/Z9XKmarzivUSUl6VKWOV7Mvr8AbV0WypRzLglgH4C7ABwH8EMA7/Te7650T6RMVVCOIlQVW1QvBsT5C00XGtJot8WLvy6EUeOw3vHNpdoCcHFPYiXX8jwuZ9skZ9qvgIRY1H68z7apm6UsqjAez7+rNF+V5qQSj8XGPi9aX3yu5nheXImyiu4FJSKPCeq35rzq2pwVIMvgSOn1zbIyqiCjb1L9DNXv8MoxNPQiQw+MwiVUo8SgYqM4ePFgcqkKMMpKmTAUJUOC0v0TV6gWytI0JuUZsnCjtqdoAe29VbkTAjgwYAHzrlgIjRUHtTA7E6rssyk9y++nB2Vio4pb1sZCLCxcb6rUgDO4Vghsgvo2hTA9qoNbr3V0mQTpFln6DY1w9zByDQYoYKAJBu9ullPoWQr/UUJ686FSXu27hvNnyHcG8pAeUtiYkLUsxCanwp0H3mbCWmkuXduz8rq1Gx62/kigqjtMpfjMq/heO54pTcpKnhvGyFUUtrK9UoaF4pWQol5osxwN8fl5JXm38/3m91AYS25mUr8JaSMbpOBPGFKhUPx6BI0ui7nfTQ+GCVRTt9CzWbOTXtAx1SMbkUKYHpWQeZT9HVmtEEa9ipEVEoRNPqspGrAr/Wt1ogx5svGEEA1PyZuj2kxWy9cUdfOGWr0uC02tP84+9V+hujjaOlr28Xkn7hSSmjwbDUckXGqrMDTHBtUjytUbSIuui/W//tQkCgrnmlYI8KRCy2z89adyGqOMGU3yyi1Pl4wtyjm07S1X6gGOamfZdiiB1ryelp+Xq5ehx977qL5vEBT3afLstEJPMye1tyjMzPYekw0SG9dGuX5RUVbzMMhrYiVXkhL8CxtlnFKtunyrUC0PMmy5oELhhnZp6y/7FHNHe99KHpxq5JinpX/YHhaBsWguor3KAO9M1rd3cFpzMV66NzXuOB2BUTide1MdCj3UPpY5LuVFkOTR2E3BsD3ecqDOW4260v3RvDSRx8m6GgvBM6XIvEf588qBMtTbqIwNz6iSsD6Unq8Vw/N0Ztq9s5So2Bk9S56In7mxyA/r6yxZoRK9EIpIlXJJtX2YV355IcYwj0wUvZfpqbK/zwqTjKMhFjlRLhc0v5sAHPDeHwIA59znAdwLoKIyBccJ9CgvnCeaZO2w2FXBHfuRUsCJiCpYEspaJOaLf50VWlhB0J9PWI4pFFE8riWCSjiI1yowd3i02Vl/ImVK96vYm89Nz1Ji4m1F82hua214FkddUfmJjdmQecwtb4tgVuxzVKAu3ne9X4NJtSLNZTbakv6jEC0028ydNtqEDkwr0Fc4U+q6t2ckhFQWWbojcBMdOlY4eqRUoDRFwn63AzqqURGP686XbiwFO4vKbBB2XaKurqRNi2PPNdeUfD/VoveW5EGWtjHYe9c6sXpUFs6QO0JFI7Wumw+SMhUVvDUY22NCwmuVIGzvR9flz/aVfLb3Z9ZNa6dG7zOzshMFhSIm+xQmcoQKQecYQ2UmugXBqzomU20KL1Gh2qTVl7JCjRprFAJiQrreS/oRekQyxmvKGSjo0DdY3dSyTs0lcy+yPfpdid75OllFxXdtOwwcRMLg3iNst7MdNQYPrDWbPaG+Kjncq1Cl1cJqGtD1gvKFIHuX90k5FlJW9LvVyNrIvuYatQYiS7yEg1SpgGseQ/OuNe2g1yfXyfbcGOe88YTWnXKxEiNSvgeHUHdUgBwprelRCSA1mp8zKkNhfC+jBs6RB632H2ydSfBt2M/fLZcmrZpLufX0dqZ6KYzlrybsY+I8P4+3i6dvpqcqNa4wqF7BKit/qG+rCiSf4ffTUjyW/4BzmjrOxPiJzcsixWzklXxm/bcYUjV+B3MO645IQTRYagnlS86Jp1UPxzzCceXawnXTzzEUsfOIpG/LW6mT4jCoXBFLsdOYmvbIw6zQq8SYAC3UTuYYx2J5KVgq705dxk5YZDXfdcu4thOHCWQwfRUVi5Tg8JN9Alp5Xjxhe0qngGTEBwmFkU23lvKHKXbZw9orlLeHZVyHOEUeHHslkfPS+4X6JqCCgvbJzEat69MKM1vGMFMnb7nVpsTIOPKn6MWMirRa/tCgkOzsvDMe3E1ec1IIElazTjyNZ/YAABoPyVCg/Tkvw13HF+kddSrH4C08WwXFU71S+LT/jq/hdYPdOksMMIhDRsuDgsBfomJu6meh9xy8oMXtfKnR3uzU15w8uFak1870SDkyeSJTGhrnGpTDqj0mKjxbMJkrFgJngnGk0GiTsbnWmJKKdkjqXSBS7vScohwvH8u7slypOOUNCn0+A3SFdJGZB1lNLZOPzEJQIfIpXhalUshetUblkt9MDiwtrRJdVkEWckmTW0oN4TavsxTTeaK/ZsG6zxP9FXkLk4kZ76UZXWPex0iu0YZmsteMHC9eTEn2sj7H5EeXScNNVOd8uNSVqS4Ax4o+Hwdw85x3eDFDuQQ9AF6LxxkCTEzAnX1DjGHiKIAXQvas+UIK51OiKiESIl/62ZcK5zMQ3FbrJKbEqV1fbpFYrG/cMhCbB3PBR1SltSJSoqxYsm3Ys9B3tCHn4u9FVmEJ89ECrthgsRJs4zYcaCXMVrBWxZ8R3WeQsdM6LGzjjVng4nNiPGgb68x1GqshCtnnSv3xsU2z4GeshrLmpaQ4pASSkN7LA9WQkWxM+ZhCn2yXEKX1UzjEv0kJJnkdzNG8a7MyJco8VZGCGBUoFg+bhUl8lbTYdilRNpdW5y3pfVTbo9BzrKTt3KEeAEB2rFShzwpZML+b+TvoUH0T1ZKzeTWFr3BASk2MCjn1NUKbKs1jKciKnX2aAq5VvXcS9pLGD7Z2LFxF9+dtLYyNRfdGxgk7TGQUKlhYpgkWq4mqEXkAZS02y3luQNZja1PPcZPKzThJAdSs9KtqmeNkRX9b9/B7qwFTc0aHlYTGlEEE6/n1O/Q8K0FhltvJSfidFBwjxFTjEY01ofdgBSttTMaLeX1OGLqY5s/eR8OoEup18BqEff6Y1be5mvdPKKdtwvJOpDwPKszpu+xnYhN5vXAlhXerW2UKZXJQ3ggpFZkn9iF/ZTfn4ZtUxM3bXfsgCwHnrfCphL3cUa4XU8gLh4+UjDkpXk3Fis6jix6P/GEqb8bLZoFvUvhf2y7x+Pd28PfVVDATUn5t7WTMOKJ3Y+suoXeRXNoOL690rk+FTAUj7WQAST5Gm6c3hUG8l2wRWpsUM+znGBNrqdAbelxCnkejVBe90hYibOQPc/2bwlNz/w/5HI0hJa+2KV+FQ2pP/Jbfp0TAmDU72d4WGedMearkobDzKqk9xRQR26Oi+pS295tgKkNMZCw0xUW8bQbQVB+vs9pP9l5rU2s0Zs21QlSjPCaD9irR8S4AABfqSURBVNZfMxgWStCJ5VG0PUNyggmctudH+UQ2ZkPvM0HXhGfxSHS/GdgqeDAiQ6zO/gimXGSCdLT3ay1EhqCx0jIBcG7G2KqxFLR9RvDtA6W1qypRpbIlMzKYXWdGo/Kek0r3V3x+vB2j4jmspAAabxbKhyZWvD5RqpxGe7VF6JgCU5iY3ZdyXb9APIKZGl5TmIVMGAf+sPMwUYpWHO9T9F7iHi57L4maOIBpRbrUw/zuA3C39/59+vwuADd77z8Yu+79AN6vj1cDeO5F7egMtQPoe4nafqnbD2O//Np+qdsPY3/pKIz98mv7pW4/jP2lozD2y6/tl7r9F6vtNd77jvkuutQ9UycArCr6vFLflZD3/hMAPgEAzrknvfc3vDjdK6WXsu2Xuv0w9suv7Ze6/TD2MPbLrf0w9jD2y639MPYw9pcDlY91u3TohwA2OufWOucyAN4B4MsvcZ8CBQoUKFCgQIECBQp0GdAl7Zny3ueccx8E8A0wsPfvvPe7XuJuBQoUKFCgQIECBQoU6DKgS1qZAgDv/VcBfPUCbvnEC9WXl3nbL3X7YeyXX9svdfth7Jdn+2Hsl2f7YeyXZ/th7Jdn+y/12EvokgagCBQoUKBAgQIFChQoUKCXii71nKlAgQIFChQoUKBAgQIFemnIe3/J/gNwN4DnARwA8L+X+b0GwD/r98cBdOv7NgAPAhgB8Oexe14B4Fnd82eQ924Bbd8B4GkAOQD3FX3/GgDbi/5NAHiLflurfh5QvzOLGPsHNI7tAL4PYIu+v6mo7R0A3lp0z98BOAvgucXMe9F1PwWWd7lBnzMA/l792gHgzqJr/xCsGTay2Peua94GFm/eBeCfir7PF43/y0Xff1DP8wDaFzHvq8VbzwDYCeBNc/EcgDoA9wPYq75+dJE8vwbAt9X2QwBWVsF3n9UznxMPpCu0PSd/ALgCwKMAJgH8dtH3WQBP6J3vAvB/Fv32t/p+J4AvAGhYYNs/q2c8C+AHAK4t+u3XNLZdAH696Pv/S/dsB/BNACvmmPdq18aNmL3mK/HcRRm7rrlTz98F4LsXMG+/VQXPz/eM3yka33Ma7xIAm2M8N1Q8/9W0X0XbrQC+qDl8AsDV8/Fc0b1/hjn2GxAp9kHM7CO/VuYap+ccUB+uL/rtY5qP5wC8vej7fwBwuGherltE+3PxfQ9mzoAni77/CIh6a+2/aSFtz8PzXwcwAOA/YtdezLHfCWCw6Fn/Vd/PyXcAfhUz++0fLbDtSjw/117nwHNuH4A9AD60iLE3A/hKUTvvqYLvHi7q80kAXyrz3GrWTSW5qhvAeFEbf63vG2Pvow/AxyuMvZr2f1NzsxM869ZUwXcXa+yV5KqfjY2xAPE2gHfqnp3qX6W9rpr2fwFAb1E779P3a0B5086ADxTdM2/71bSt6yrJVZV47nVF/fo+gA2LGHsl2aos3+m3t+vaXQA+VmkPuxj/XrAHv9D/QMCJgwDWgUL6DmPsomt+GTML+h0A/ln/rwdwuxZGXJl6AsAt4Mb3NQBvXGDb3QC2Avg0ig6Z2DVLAJwHUKfP/wvAO/T/vwbwS4sYe1PR/+8B8HX9vw5ASv9fDgoq9vkOANdjbqFt3rZ1XSOA7wF4DDPK1K8A+Hv9fymApwAk9PkW9WdOZarKsW/Ugmu1top+K/t8ANv0znpQebOrpu1P2HsDsAVAz1w8p/fxGv0/A276s3juAtr/FwA/r/+/FsBnquC7N4H87gB8bg6+m5M/9E5vBAWGYmXKQYoCWBH6cQC3lOHTP0Fl5Xi+tm8ret9vBPC4/m915erAHNEHoA091vaHULQJX2j7Re/nO2AOZ7FgWYnnLtbYW8ADbnUZfq94Lyi0fQPAkUo8X+3Yi679CQDfqTA3p1Eq+MzbfhVj/2MAf6D/XwHg2/PxnL67AcBnKr0bXbMcUo7A/WwfZq+3N4HnhAP3MOO7HwfwLfFcPYg826Tf/gEVzoQFtF+W7/W5p9y8gsrUby+27Xl4/nXihXLK1MUa+53x58/Hd6BR6QEANfG1cqFjL8fzc/EdgPeA8kCiUtsXMPb/DAmHADrA/TwzF9/F7v9XAO8u8/2c60bfV5KrulHdHvEUgDsq/FZN+6/BzNn1S9b+XHx3EcdeVq6KXXMNgIP6fwqUsdr1+Y8AfGQRY/8FxGRWfZ8p4ukGcO2vqLb9KtsuK1fNxXPi3SuL+OYfFjH2SrJVWb4DDdhHAXTo86cAvG4+/lzov0s5zO8mAAe894e891MAPg/g3tg194ITCNDy+zrnnPPej3rvvw9a5yNyzi0HmeAxz9n/NIC3LKRt732P934naKGoRPcB+Jr3fsw550Dh9wv67VMV2q62/aGij/Wg9Rfe+zHvvco+I2vf67fvgZvyXFTNvAO0+n8MpXO8BTx44b0/C1qQbtDnx7z3p+Zpu9r2/xOAv/De9xe1NSd575/x3vdchLY9gCb9vxm0gqESz+l9PKj/T4FWnJWLaD+aY9CKU+7dRHyndr/qRaAxoWz78/GH9/6s9/6HAKZj33vv/Yg+pvXP+HEIAMT/tUD5guNVtP0De9+gAm9juBIUMI3vvwvgJ4vbFkVrZCHti34VPKjn5bfi9hc7dgA/A+DfvPdHdX3U/jz3/imA363U7gW0X0zvBBXyOL0OFDCOXEj7VbRdvKfsBdDtnOuci+ecc0lQCfvduQbivT/lvX9a/x8GvQldscvuBfBptfcYgBadI1sAfM97n/Pej4LW0bvnam8h7c/B94uiKscOVOB57/23AQy/CO3PR3G++yXQ+z+pZ89aqwtoO+L5ufhObf83732hUtsX0L4H0Ki9owFcIzlUwXfOuSZQ1vhSmbbn6r9RWbmq3Fji5JzbBBrdHi73ezXte+8ftLMLMZ6fj+8WO/Yqz4x3gmczMGOkrNccNUEywULar0Te+ynjadBzaLJ9Ve1X2XYluWounisrDy2w/aqeVUTrAOz33vfq8wNgtNQLQpeyMtUFhoUZHcfsDSe6RoLUIKitzvXM4/M8s9q2q6F3YEbwaAMw4GcUnbmeWVX7zrlfcc4dBK0RHyr6/mbn3C7Q9fuBojaroXnbds5dD2CV9/7+2L07ANzjnEs559aCIZWrcGFUzdg3AdjknHvEOfeYc674MMk6557U95WU1cW0/REAP+ecOw5aa3+12oc751pAq9q3F9H+DkhZAPBW8MCN83wx3xW3nwbwLjAU4KKScy7pnNsOCl3f8t4/XvTb34PW4ysA/L8Xobn3gt4CgF6pVznn2pxzdaAnIeI559wfOueOgWEa/3WhDTrnusD5/qsyP1fkuYs09k0AWp1zDznnnnLOvbuK/t4L4IT3fscC2yz3zDrwEP3XMj+X8NxFbD/id+fcTWC4y0p9rsRzHwTDLasx3lh/u0Hv9eOxnyqtyR0A7nbO1Tnn2kFrevFe94fOuZ3OuT91ztUsov1iKuZ7gMLHN8UT749d+0G1/3fOudaFtD0Pz89FF3Pstzrndjjnvuacu6rM7/G9bhO4HzzunPuuc+7GRbRdlufn4Lv1AN6uveBrzrmNc7U9T/t/DhqKToLn+K9JSZuP7wAaab8dUwyK26y4V4vmkqvWOuee0dy+qszjzZNVUUmoov1iivP8fLTYsVeUq4ro7ZhRrqdBJfpZ8F1tAcO7y1KVY/8prZ8vOOeKz7JVzrmd4Lv5mPf+5IW0X0XbleSquXjufQC+KnnoXQA+uoixfwSVZatyfHcAwGbnXLdzLgW++wuVN6umS1mZuqRJ1strwDCXF4S893/hvV8P4PcA/Jei7x/33l8FhmT9vnMue7HadM4lwJCl3yrz89+BwsaTAD4OxvjnL1bbRZQCXdJ3glaiv5GiAjDc4wbQmv9x59z6i9z2O0FX9kpQcP+M5mRO0mL/HIA/894fWkT7vw3g1c65ZwC8GsyNiOZ4Hr77S9DCVNZquBjy3ue999eBgu5Nzrmri357DxiSsAc8iBZMzrnXgAfs7+nZe0AP6TdBJXE7iubDe/9h7/0qMG/sg4to+uMAfs+szjGqyHMXaewp0DDx4wDeAOD/cLQAlyUJgP8Zi1AeK9BPAHjEe1/iSXIsqH4PGIJ6sdv/KOgN2g4ers9A77cczznnVgD4aVyA4uqcawCF5V+vJITFyXv/TfDA/wG4rh/FDN/9Pqg83wiG3P7eYtuP873odu/99WD436845+7Q938FCvbXATgF4P9ZYNtz8XwluphjfxpcW9eC7/NLsXtL+E6UUru3gHlP/8u58l6VKt/7LJ6fY6+rATChveBvwPNwoWN/A7iXrQDf458755rm4TujSt7j+fo/H50CQ423gXlN/+ToCSqmsoa8hbTvnPs5MLLlj6vsH3ARxl5JrlKfbgYw5r1/Tp/ToDKzDXxXO8E1sND2vwLmqG0FQ+s+VXTvMX2/AcDPO+c6L6T9KtouK1fNw3O/AeY2rQTz5f9kEWOvJFuV5Tt50H4JzO97GAx9fCHkTQCXtjJ1AqVa5kp9V/YaCavNAM7N88ziMIlyz6y27fnobQC+KMsB1K8W9XO+Z15o+59HmZBBCZojYF5JtTRf24163kPOuR7w0Pqyc+4GuYF/w3t/nff+XjDXY98FtF1N+wAVti9776e994fVxkYA8N6f0N9DIEDDtovc9nvB3Dd47x8FQynbq3j2J0CX9McX076sUT+pjeXD+m6g6JI43wEAnHN/AMbe/2YVfV0wqS8PIhZ64r3Pg3y6YDe8c24rgE8CuNd7H61z7/3feu9f4b2/A0A/yvPcZxfTNniof148fx+Av3TyQs3Hcxdh7McBfMMzlLQPzFW8do7r14NgNzvU35UAnnbOLVtg+0aVBKU3Anjae3/mYrfvvR/y3r9Hh/C7QR4+FLummOe2gcLGAbVd55w7UOn5Ekb+FcBnvff/VuaSimvSe/+H2uvuAkNt9un7U540CQoYNy2i/bn43vpxFgTpuEmfz0hwKYBCfdn2q2i7Is9Xoos5dr37Ef3/qwDSsowbxfkO4Fr5N/XhCTAMf9b+XM28iyoqB2X2uuMA7FlfBHOqy1IV7b+naBwHQFCPK9RuWb7Tc9vBOY9HjVTTf6OycpX3ftL4z3v/FJjfGxl1nHPXgvnZT83X9jztwzn3evB8u8fPhLfNSRdp7MVUTq6K88N1et5B770HZYPbFtq+9/5c0Xg/CRrR4veehCIyFtL+HGOfS66axXPOuQ4QEMc8TP+8mLGjgmw1F99577/ivb/Ze38rCLJ1ofJm1XQpK1M/BLDRObdWFqh3APhy7JovA/h5/f8+MEl0rvj8UwCGnHO3yFr1bgD/vsC256MSC4n69aD6CfW7XNtVte9KQwh+HMB+fb/WFDbn3BpwA+65gH7P2bb3ftB73+697/bed4Mxzfd475+UG7hebd8FIOe9330Bbc/bvuhLoPXENtBNAA4551qdwkr0/SvBxP2L2fZRME4fzrkrwQXfiznIOfffwQPp1xfbvnOuvcgT9vuYbf2cZZlzzr0PtHS+01+Ylbkqcs51mGfQOVcL4C4Aex1pg753oBV57wLbWA0KKu/y3u+L/ba06JqfBPBP+ly8Ru5daNsA4L1fW8TzXwDwy977L1XiuYs5dnCfuN0xfLYOwM2gp6tSX5/13i8t6u9xMOH99ALbh3OuGfSEltuz4nvdRWvfOdeitQAwpOR73vuhSjznvb/fe7+sqO0x7/2GCs92YEjMHu99JYvqlwG8W+/zFgCD3vtTjiErbXrOVlBw/qY+Ly96/ltAwWdB7Vfie+dcvXOu0f4P4MesHWtf9NZy7VfTdiWeL3dt0XMv5tiX6ToL8Uyg1FhazgvxJTAMyfJ3MiC63AW1retm8Xwlvou3rfvKCnZVtl98znSCCIaH5uI70X0gOMMEytA8/TcqK1fp3qTuXQcK2sWGjTm9QtW275zbBuD/A+WKqvJTi/q6qLFXkqv0WwI0Vn6+6JoTALY4KhbQM8vuzVW2X7x277FnOedW6h44hu3eDioPVbVf5XuvJFdV4rl+AM1uJkpiUWNHBdlqLr4rOvtbQQCMT5Zr/6KQf4GQLV6Mf6Crbx+oiX5Y3/03cJFBk/0vYOzkEwDWFd3bAyZtjoCHuUFc3gBu8AfBuORK0OjztX2jnjsKbvC7iu7tBpk8EXvmOvXzgPpds4ix/08QDnI7qKRdpe/fVfT90xA8tn77HOgynVbf37uQtmPXPoQZNL9ucIHvAZMB1xRd90dqs6C/H1nE2B3oTt4NxgobQuJtmIFlf7Z4fGDs83EwifckgE8usO0tAB5RG9sB/NhcPAdasr3mpATudIHt3wdu8PvAjaOm6N5ulOe7nJ5XAjFcpu1Z/AGiE35Avy/T90MguMhxMGF0K2bgTJ/DDIRxQnP1rL7/LMogT1XZ9ifBzdvGUAwF/bB4YQeK0HxAy+9z6tdXAHTNMe9zth+79h8gxLJKPHcxx65rfkdjfA6lMNDzrmnMgWB5Ae3/AoDPl7m3Htz/mud4fsX2q3jvt4K8/jyoVBjSVFmeK/P8udD8bgfXpsHnbwfXX3H7DsBfgOvnWczsdVm9j92gQem6oud+p+i9/yMqQ+JX035ZvgfPkh2YgRr+cNFzP4MZqOQvA1i+kLYr8XzRmusFIYuPA3jDCzD2D2psOzTHt83Hd6Dy9I9q/2kAr13o2FGG5+fiOzAS436N/1EUwdgvYOwrQIHV5vLn5uM7/f4QgLvn4PlKe/W8chXoWS+WLX4i9uxDAK6o1PYFtP8AgDNFc1NcbqIs313EsZeVq/TbnQAeK/PcD4Dnu50zbYto///GDM8/aPMJKh87MVNq4/0X0n6VbVeSq+ba696KmfPvIRTJ4Atov6xshTn4Djw/rG/vmIv3FvvPqcFAgQIFChQoUKBAgQIFCnQBdCmH+QUKFChQoECBAgUKFCjQS0ZBmQoUKFCgQIECBQoUKFCgBVBQpgIFChQoUKBAgQIFChRoARSUqUCBAgUKFChQoECBAgVaAAVlKlCgQIECBQoUKFCgQIEWQEGZChQoUKBAlxw55z7snNvlnNvpnNvunLv5RW7/Tufcf7yYbQYKFChQoJcfpV7qDgQKFChQoEAXQs65WwG8GSz2O6kikpl5bgsUKFCgQIEuOgXPVKBAgQIFutRoOYA+7/0kAHjv+7z3J51zr3DOfdc595Rz7hvOueUA4Jzb4Jx7wDm3wzn3tHNuvSP9sXPuOefcs865t+vaO51zDznnvuCc2+uc+6xzzum3u/Xd0wB+0jrjnHu1vGPbnXPPOOcaX/wpCRQoUKBALwWFor2BAgUKFOiSIudcA4DvA6gD8ACAfwbwAwDfBXCv975XytEbvPe/6Jx7HMBHvfdfdM5lQUPiGwF8AMDdANoB/BDAzQA2A/h3AFcBOAngEQC/A+BJAPsBvBbAAbVZ571/s3PuK3r+I+rbhPc+92LMRaBAgQIFemkpeKYCBQoUKNAlRd77EQCvAPB+AL2gYvO/AbgawLecc9sB/BcAK+Ul6vLef1H3TnjvxwDcDuBz3vu89/4MqIjdqCae8N4f994XAGwH0A3gCgCHvff7Pa2Q/1jUpUcA/Ilz7kMAWoIiFShQoECXD4WcqUCBAgUKdMmR9z4P4CEADznnngXwKwB2ee9vLb5ugSF3k0X/z2Oes9J7/1Hn3P0A3gTgEefcG7z3exfQbqBAgQIFusQoeKYCBQoUKNAlRc65zc65jUVfXQdgD4AOgVPAOZd2zl3lvR8GcNw59xZ9X+OcqwPwMIC3O+eSzrkOAHcAeGKOZvcC6HbOrdfndxb1Z733/lnv/cfAcMErLtJQAwUKFCjQy5yCMhUoUKBAgS41agDwKefcbufcTgBbAPxXAPcB+JhzbgcYnnebrn8XgA/p2h8AWAbgiwB2AtgB4DsAftd7f7pSg977CTCs8H4BUJwt+vnXBWSxE8A0gK9dvKEGChQoUKCXMwUAikCBAgUKFChQoECBAgVaAAXPVKBAgQIFChQoUKBAgQItgIIyFShQoECBAgUKFChQoEALoKBMBQoUKFCgQIECBQoUKNACKChTgQIFChQoUKBAgQIFCrQACspUoECBAgUKFChQoECBAi2AgjIVKFCgQIECBQoUKFCgQAugoEwFChQoUKBAgQIFChQo0AIoKFOBAgUKFChQoECBAgUKtAD6/wEFJ9ZqJpES0QAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plotting Wave Form and Spectrogram\n",
+ "freqs, times, spectrogram = log_specgram(samples, sample_rate)\n",
+ "\n",
+ "fig = plt.figure(figsize=(14, 8))\n",
+ "ax1 = fig.add_subplot(211)\n",
+ "ax1.set_title('Raw wave of ' + filename)\n",
+ "ax1.set_ylabel('Amplitude')\n",
+ "librosa.display.waveplot(samples, sr=sample_rate)\n",
+ "\n",
+ "ax2 = fig.add_subplot(212)\n",
+ "ax2.imshow(spectrogram.T, aspect='auto', origin='lower', \n",
+ " extent=[times.min(), times.max(), freqs.min(), freqs.max()])\n",
+ "ax2.set_yticks(freqs[::16])\n",
+ "ax2.set_xticks(times[::16])\n",
+ "ax2.set_title('Spectrogram of ' + filename)\n",
+ "ax2.set_ylabel('Freqs in Hz')\n",
+ "ax2.set_xlabel('Seconds')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "mean = np.mean(spectrogram, axis=0)\n",
+ "std = np.std(spectrogram, axis=0)\n",
+ "spectrogram = (spectrogram - mean) / std"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(array([ 9.8497745e-05, 1.0179912e-04, -3.2110562e-05, ...,\n",
+ " 2.2454399e-03, 1.4861705e-03, 4.5785634e-04], dtype=float32),\n",
+ " array([22016, 66560]))"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Trim the silence voice\n",
+ "aa , bb = librosa.effects.trim(samples, top_db=30)\n",
+ "aa, bb"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAAEYCAYAAAAnAqu6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXmU5VlV5/vZdx7ixpDzXFlV1EiJICU4FIM4IdKP1u5no6jg0D5tcHqiqN2vcS2Xikpr62u0LRUatG2wUVuk7Se0CogIUgUFBRbUmJWVc2bMd57O++PeLKIyY39P5s3MyozgfNeKlRlx7m+453fO+Z2993d/t4UQSEhISEhISEhISEhIuFhkrvYNJCQkJCQkJCQkJCRsTCRjIiEhISEhISEhISFhIiRjIiEhISEhISEhISFhIiRjIiEhISEhISEhISFhIiRjIiEhISEhISEhISFhIiRjIiEhISEhISEhISFhIiRjIiEh4YsKZvZiMztyte8jISEhISFhMyAZEwkJCRsGZnbIzLpmtu2cv3/SzIKZHbw6d7Z5YWYHx32bu9r3kpCQkJBw7SEZEwkJCRsNjwHffvYXM/sSoHL1bufKYaNs4C/3fW6U752QkJCQkIyJhISEjYc/AL57ze+vBt6x9gNmVjSzN5vZYTM7aWb/2czKF3LysRf+R8zsUTM7Y2a/amaZcVvGzP6dmT1uZqfM7B1mNjNue7uZ/cT4/3vH53nt+PcbzWxhzXlebmb3mdmSmX3EzJ615vqHzOwNZvZpoHHuxtpG+PXx9VfM7H4zu2Pc9l/G3/X9ZrZqZh80s+vWHHvruG3BzD5vZt+2pq1sZv9h/N2WzezD4z770PgjS2ZWN7OvNLPXmNnfj+9jHvg51Tfj83/3uG3ezP6f8ff8unHbz5nZu83sD81sBXiNmT3PzP5h3EfHzew/mVnhnOf0b8zsofF3/flxP39k3C9/vPbzCQkJCQlXBsmYSEhI2Gj4KDBtZreZWRZ4JfCH53zmTcDNwLOBZwB7gX9/Edf4FuBO4MuAVwDfO/77a8Y/XwPcAEwB/2nc9kHgxeP/vwh4FHjhmt//LoQwNLPnAG8F/i9gK/A7wHvMrLjm+t8OfDMwG0Lon3Nv3zA+783ADPBtwPya9lcBPw9sA+4D/iuAmVWB9wN/BOxg1G+/ZWa3j497M/Bc4KuALcBPAcM132E2hDAVQviH8e/PH3/HncAvqL4ZX+O3xve2e3zfe8/5Xq8A3g3Mju95APz4+Ht8JfC1wL8555hvHN/zV4zv927gO4H9wB2siWAlJCQkJFwZJGMiISFhI+JsdOLrgQeAo2cbzMyAHwB+PISwEEJYBX6R0eb5QvHL42MPA/+RL2xKXwX8Wgjh0RBCHfgZ4JXj6MEHgbvG0YcXAr8CfPX4uBeN2xnf2++EED4WQhiEEN4OdBhtiM/iN0MIT4QQWuvcWw+oAbcCFkJ4IIRwfE37/wwhfCiE0AH+LfCVZrYfeDlwKITwthBCP4TwSeBPgP9zfM/fC/xoCOHo+L4+Mj6Hh2MhhP93fK5WpG/+JfAXIYQPhxC6jAy7cM75/iGE8D9CCMMQQiuEcG8I4aPj8x9iZHS96JxjfiWEsBJC+CzwGeB94+svA/8LeI64/4SEhISEy4BkTCQkJGxE/AHwHYw84e84p207oxyKe8cUmSXg/xv//ULxxJr/Pw7sGf9/z/j3tW05YGcI4RGgwSga8gLgvcAxM7uFpxoT1wE/cfbexve3f801zr3+UxBC+BtGHv+3AKfM7G4zm17v2PGmfmF87uuA559z3VcBuxh5/0vAI7pbnoJz79Htm3Hb2vtq8tRoynnnM7Obzey9ZnZiTH36xfF9rsXJNf9vrfP71IV9lYSEhISESZGMiYSEhA2HEMLjjBKxXwb86TnNZxhtJJ8ZQpgd/8yEEC5mY7l/zf8PAMfG/z/GaFO+tq3PFzaxH2TkhS+EEI6Of381MMeIcgSjTfMvrLm32RBCJYTw39Z+RXVzIYTfDCE8F7idEd3pJ9e7dzObYkRZOja+7gfPue5UCOGHGPVZG7hxvct5t3HO76pvjgP71txXmRHFS53vt4HPATeFEKaBnwXMuZeEhISEhKuEZEwkJCRsVHwf8JIQQmPtH0MIQ+B3gV83sx3wZEL0N17EuX/SzObG9KAfBd41/vt/A37czK4fb9R/EXjXmryGDwKv4wtJyx8Y//7hEMJg/LffBX7QzJ4/Tqaumtk3m1ntQm7MzL58fGyeUSSkzSi34SxeZmZ3jZOPfx74aAjhCUaRkpvN7LvMLD/++XIzu23cZ28Ffs3M9phZdpxoXQROj89/Q+TWVN+8G/hnZvZV4/v6OeKGQQ1YAepmdivwQxfSPwkJCQkJTy+SMZGQkLAhEUJ4JIRwj9P8BuBh4KNjisz/Bm65iNP/OXAvo2jC/wR+f/z3tzKiWH2IUWSkDfzwmuM+yGgTfNaY+DAjytXZ3xnf879mRFVaHN/nay7i3qYZGSSLjKhE88Cvrmn/I+CNjOhNz2WUkMw4d+QbGOWOHANOAL8MnE38fj1wP/Dx8bG/DGTGlKRfAP5+TI9am9uxFm7fjHMafhh4J6MoRR04xShXxMPrGVHZVsff913iswkJCQkJVwkWgoymJyQkJHxRwcwCI2rNw1f7Xi4WZvZfgCMhhH93te9FYRy5WGLUz49d7ftJSEhISJgcKTKRkJCQkHDFYWb/zMwqY4naNzOKghy6uneVkJCQkHCpSMZEQkJCQsLTgVcwolcdA24CXhlSaDwhISHhssHMtowLkz40/nfuAo75gJndOf7/IRsVQr1v/O8rLui6aS1PSEhISEhISEhI2BgwsxcDrwkhvOacv/8KsBBCeJOZ/TQwF0J4Q+RcHwBeH0K4x8wOAXeGEM6MZc3fF0K4Th0PKTKRkJCQkJCQkJCQsBnwCuDt4/+/Hfjn537AzMpm9k4ze8DM/gwoO+eaZiT0EUVukjvdCDDLhFHh1aeilJmRx+XIum0qhhOeosx44RhqOXn6dP1rPqlGuc55n1ShPB/ZTF5eU0Wr+sP1CvI+eVV5XoVcpuK21cQzK2V9dUnRdEno+l3L0rDhNwLdwfJlvhvIWMFvy/htAINB220L+ONLIZvx1qURpsx/nibUQlv4Yy9E5lEOvx8G4nv2hk23bVQ02oeag6Mi0JcXI6VYH/lMVbT6/TcMPbdtINYguDLfc+PBf6dkxfy0iK9vKNd/9VzUOu2Pg0ymJO+nYP4aruZ1D38N6g/8+QeQz/pqyhnR7woD8c4d3ZNe4xOuCs6EEC6mKOnTim/8xueF+fkLe/ffe++Dn4WnTIq7Qwh3X8TldoYQjo//f4JR0dBz8UNAM4Rwm5k9C/jEOe1/a2bGSA782y7kopvYmMhRyJ/fh7dWv0keNzecddvUxr9t/oKo0DK1OYcFjvjHDnyDsd1bcttqxd3ymv2hr9Y4X7/fbRuK42KYnbrDbfva4kvdtttm/SE8nb8yFL7HVv2299bv1ccu/uVlvhsoFfe5bdPFvfLY+cbn3bZef2Gi+5mu3CzbX5B/uduWNX/TcT8PuG0DseEF2Br8fljOnHHbjrc+5bbls9poavXE/Owcc9smRT6n36X7pp7ntg3x+68+OO23dU7Ia16J77nRkM36RtxMxS/dkbWi2wbQ6vnzs9X1x/RQGMjKQTVVXq+e4Rewr/Acty2Lb+ieHD7otp1e+bi85q7pr3TbKoIqPsQ39JcHesyeWv6YbE+4Gug/frXvQGF+fpmP/ePvXNBnc9mvaYcQ7vTazexjjOS8p4AtZna2GOobQgh/tfazIYQwVic8Fy8EfnP8mU+b2afPaf+aMc3pRuCvzewDIYS6vG/9tTYucpkiWyrnL3435/RGekfJ92YUhKOjN/Q9JK2+v6ntRZz5p9o73La2+Qt/p+BvDqbQHqaOOO/8zG1u24ON9/vn7OpNx1fnvt5te8FO30P3jKpvjO2vybFPIeu/UBpd/+X3UNl/1osd/4UK0Jv1X+RHlz7otmWyvtdvT8W/Zi1skfczqPjj5PTKZMbEl2b9Zwnw7K3+JqmS9efKvuaz3DY1NwFqed9IOd5cz3Ezwj8G37nQRnsoW3nfE3VYGBpBGEZqs7dr6kvl/dwUbnXblA+8VhARDx34olnx51hHRG4eMd/IPdX+J3nNwdD3LHe6J902FYFRnnWA3bMvcNtmbY/btmvov49K60TW12Kx4I+/5ZI/d491fQO5lPPH+408V97PTUX/2KKYn6davqF/eMZ3MgF8Wdnvv3zGf2ZLIry8Em6S1zwx669Dh4a+M2m5echtK+b9vgM9plX0Zj12xll0e6fkNRMuIwIwnJy58ZRThfB88HMmgJNmtjuEcNzMdjOq5zPptR4xs5PA7cA/qs9uWmOiQJnr+JLz/n7TtP7K11X9RaaU8Tc6811/tXyiKagbESZJJevf79Zc5E3uoJbX4fOVrhj0IviwVXikj0WMiX1V/7vcVvMXywPTfphgbk6HyIdDQZFa9ftgpuV7pLeUNNVkf+d2t60x5XuAZ/N+/tOBge/drEQobcPsM92203j14DTmstpY3Vv2+7aS9dt6wZ9js5Eo1HTen9ezef+8zb6/Efx0148agqapFPNb3bZMxp/zw6G/YOTQnuy8oGWptkrO7x+xXwOgnPPP2xv633Oh6xt47eKKvGZOePT7ZX+utEWktyfogAC1jO/0KQZ/vVDzs5CJpDSKd8fccJvb1i74EYa54Pf7vvy0vB31WhmK6amikQcyOtq2s+xfdCCv6Y/pihizANm276Bpm+9sa+d9tkAsypnL+GM6J44t5/17rWZc5zfZCGVyofeo29bszrttak2slXQUvd33+2+l8Vl57NVHgP5ktOEJ8B7g1cCbxv/++Tqf+RCjgqB/Y2Z3AOtayGa2A7ieUXFUiU1rTCQkJCQkJCQkJCRcVQTg6VNOfRPwx2b2fYyMgPVyHn4beJuZPQA8AJwbUvtbMxsAeeCnQwh+SHeMTWxMGBbOt4Jjj7Mgog8KdWF0NkSbYF8AsG/Kf0SCkSUTk1WEBWBeuJgWBP2nYNq7onCm7XuO57t+1KLW8r3gOeHlBjDRD+2+3++94WTeMICqoJjV8r4XvIrP/53NKdqQ5v/UO/55FbVDJTzvq2qv1raizm/w0Bn4z+SJyCn3Vvx+UKNEUSUa5nvKAJb6T7ht3b7vXZ8VPPquSP7MCG8rwECE2ZeFsEKz7Y+vdiTB+ljW74Ne8COHK4K33heUD9BUHYWM8MaWxBwD2DXw527H/Pt9wgTtKkKLWMr4fbSNA36byB8aitkQk35Ua1+r75/3ZN+nox4s6WjIlqJ/UXU/6t15TAe0eTT4/b4Q/PGuchVD0M+6H3xKwDPtq9y2OSFs0hPXbEfmWCfnPzMVPVVRCxV5AMhFxESubYTLRnN68owhfAD4wDp/nwe+NnJsC3il03ZwkvvZtMZElyaH7Hxu6GrvJfK4RUFXyq6bxzKCWriqopfnIvNDGiliAzUQVnBW7/XIibCzol3ZcDL1DIBtYnVXyiRqY1/v6M7NZ/zJHYLfB3rzKS9JSyiFKJpKJUy5bUVBhxCPEtAqZCpPYyA2tbElMy/mkXomJZFPsRgRDXpEJM0vC1rfA20/kXVxoCO/i/XJQu8xlSgPRxs6+R8h5qToByq5vRVRDQwDQWnL+FQvlXxcF3kPAJWcT+3oDv1NUL3tn1clrwPsyfnzs9H3HSXva77HbYslrxfyPrWqNuXTg/oiJ66Ov9mb7vrfEWCXcCapdUgZW8tdTQ1Z6vrjRL2v1Xrx6brOFXuo/dduW6/v50kVcr7jZqq4S15ze/YZbtuBnG9wKZrhipIlFE0AJfOvOT94yG1T6mXVvE/N2xS4zMbEtYZNa0wkJCQkJCQkJCQkXFVcxgTsaxWb1pgYDHusdI6e93flhQRoDnxLXiWKqURERZVbiKipLnX9g8+0fY/hTMF/tINSRL88SgZbH32VnR2BVrzyO3dBUKC6lxApUWiLMRJT51rO+J7c+tBPwM4IutLWnq8uVRaRpBhyQsNdRSZ2Rdhu1dxkkaacmGO7I9dU87OY9a/5YMvvdyXNCVAs+MmsKiKkogQ90e/drj9+AObzD4vz+jQnlRwaoxwFodjUFVSJTt8PJakEddCRlGrO9+abiI4W8aN0AAVBKx2sQ7d98pqXUDe21/Ofdxu/b1VybUF8z0HEXb3YnaymiKrz8hg6OjO94tO5cmLSn+n49/rIefTxp2JSueOWmLutjhZz6FX9Y/eF/W7bXBD1dS6Bw69qeGRFsnhLrFGrneNuG0B/OJn8/rWBy09zutawaY2JhISEhISEhISEhKuKELDB06bmdFWwaY2JQFg3EagdyZBVnuW86C0lfdcR5zwd0Yb9zOAxt+14zy8gd1O4y20bBJ+rDBF97r4ffehPWLgPdIJeR0QmGn3fQ9IVXm4AExGYvvAmLvcmT8CW3HRR9M+E97wvvkc3msTpc3y7EW66e86Ig3JVJLeredSbMKESdDX0ohjve3N+te6Hgub4KolSBZWI2On6kuG3zn6rPO+NHHTbzuT8hPBHwyfdthAiMq05P7pVyPgcfJUzMRDJqKNjfc/7FP7aF0TdmVgEQUWtZUQ7EmVRUCIIS6KGV04k5VZFHkvLdL8vmb+W5IKodyByJopBy0yXRbiyKxYTJTjQF0X9rhaWGn7Bzk9O+5HD2aEftcgHf44NRe4awOLATzRvisiNimg3BnotsQkrml8zSJGJjYohg3XCYqs9LfvSFooxlZy/OAWhfKMSnR7p63oiJwZ+EqdSdvlUdz1p4REWM37VUIBdA7+icksYDI2en6waw+muf95THT9zVO3dtxa0oTYQSdatgd+mjBtlFAG0zF8wVXi4JBKwlaJOXdBMAE7iV59VmxUFpSQGUBQvKkVzUmdtRpw+6pbUt1SKJzFjQSnjKPqPqkCPOO5mu17ez/U1n/Iw2/I3kfOi1oa/fRyhKAwGlcSJ2NQqZZsYqsE3DvsZ/92wEEm2P9z0+6iBv7Y125reMikUTSwIlbtBxn8m+RCpWSPGe9v8DXpHtO0RdS9AF6NUKooq6buY1QpSpaL/rK9Gxfd2z3c+KH0kZSArGiZAo+PvW5TBoBBTtIrd0zWNgPaUbQJsYmMiISEhISEhISEh4Woi5UxsWGStwHT5/OSsmbz2rsQqunpQlBmFuqCZAGSHvvezWvDD1So59PHVv5fXPF3wvYLTBT9qoWg6MTye9elc85073LaaCHOvCgrU6Fjfy6vaWiIBW1HEAHYP/ITBFfwq4WeCX3G0kfElB2NJ8UvNaGHLi8ZDyzr6N1fwqQsVIf+qulZJKAOsCOrVobpPeXgo4yctdyJheeXh7IoaCwOR1GwZv+9ODYT+LVBt+fUXlrr+M9uK7x3uZ/T4agd/fQvmRy2U1zRWnVf1bU9Savz1dEHQYgA+m/2Y26bGSRCy15eCqkj+nxJVpbcEvxbC3rxPWQPoDf3nuTDwqTiPZ/yI9gnTogL7ez6NR6EiqpLvytwsj31G6cvctqWKHws41vdpybF3p6rPoGrWKPEEVY8lRika5AXdeSDmX1+LVmxaJDWnS4OZ/Tjw/Yy68n7ge8a//xhwI7A9hHBm/Nk54K3jv7eB7w0hfMbM9gPvAHaOz3N3COE34hfPrEtDUAoPAFVBZaqJtoGgvijRhJZ42YIO7U1lfGWSqaL/wqjn9QKtFieFWJhSYVkUqQLfmNBceG3glUW4vyCoOMpIiXGrmyKkrxbhM/XPuW1DoV5zNaDUkUDX4ph0BG2NpCeoei7VvL9BX17wC3zNm29oACy3fV6xqiUhw/li8zkwTWnTanSCpinIEiGi8KPyP7o2IR0ids2ev6aeHPobOqWBH8Pu3DPdtp7YeNXzfl5St6cpsBlFixR0pRL+pj8j1q+pvN5gyho7Ld9QWwp+jYXTwXcyASx0fOMnI4iRq+Yb3tNDbTQVhDGrcjyUc2EoKHagKWTKEJnK+32r6hrF3mNt81UJ+xEnyxctLmF/tBEwuS5dBGa2F/gR4M4Qwh1AllHFvb8Hvo5Rme+1+FngvhDCs4DvBs4aDH3gJ0IItwNfAbzWzG6/UvedkJCQkJCQkJCQcFkQAvQHF/azQXGlaU45oGxmPaACHAthJA1i53vCbgfeBBBC+JyZHTSznSGE48Dx8d9XzewBYC/wT+rCw2F33ToTnby2DkvCqzohA0pGQ5R3YHTNyTTKVbh6RoS5AeYLflJgFZ9SU8/7yY3NiNDTdNb3oJRF+EFVTFZUJdD1DhRUxEOpiwCURHhdqdtksn4S+lB4f2PVlC8lmuShFikDPpPzrynKjdAS82haRA1BJ1kvdUVtCzHHWl1d/Vl5uouiaq3yNKroVV2o6QC0+n5l6PY6yndnsWh+hEUmi6MTgTs9n7oxaRLnlUK56NM7QVeozw/9NTMz9WK37UjHV9ECrZqz1D3stjUyfmQ65HyKz2LH/x4ATTWG8MdBTmxDYsn2Sl2waELpT9Dd/AodI3SECMmZoaCjCoGS2DrdEdG2oaBFLpk/DtQ60+vrXrgSdCWL7LAmFQS5NpByJiZGCOGomb0ZOAy0gPeFEN4nDvkU8K3A35nZ84DrgH3Ak3FgMzsIPAfwCapPfjZLYZ0NWCEToaGI/aWq9aaGSVFEh/cPb5D307eDbtuUCKmuCN6wCmUDlDO+UWBCMlXJOcbQD/4CnReb95JoU4YGQEHQnBQq4rjIPpoifohcvTgzNhkFwyLPJJPx72cwYbi6EJVp9Z/ZULxQyiKfQp0TYFHI+a4IzVklhzmM8d3F8MqYkMc1n/IwFBuAcvANTojn83hYbPlUk8FAewkGItcgiPGeFZSQGB0pn5ssF6MlpJDnynqd3pcVBoMY072B/6zzWS2LqtBVRpyg1uYzvrNjAd/hA1ohaVXQYnpijlUjMuZZ8T6qi/GVE/Mvlse4OvTpZ02xyW6LvIdhVKHMX1SHQ3/jv9rcODkKWSHDDRAEnXcwiOnKXQPY5MbElaQ5zQGvAK4H9gBVM/tOccibgFkzuw/4YeCT8AVyrJlNAX8C/FhwxM3N7AfM7CEzO62s9YSEhISEhISEhIQrjgA2HF7Qz0bFlaQ5fR3wWAjhNICZ/SnwVcAfrvfhsYHwPePPGvAY8Oj49zwjQ+K/hhD+1LtgCOFu4G6ATKYY2v3zrdWVnvYmKg+w8pAr75OiOR0s62SvhqiiV875tuDMwPc4n+ppZZKWoOIM8L0Dl6IDrbzyPZHcrpytQ1FHIno/ot5BU6g5iZIiAPTwx18l63vh2jmRyCoSNYcRFZpR0PDy4lI8FEqKe6WnkoT1s14Vx5ZExEN5nB8raepLT1B1VFSjN/CfiXqeJ3lE3s9M1/f2L2b88aWoVSpSAjBT8T365Zw/3mfN1/KPISO8uMoLfpRPuG2xpG+1/iucFhSyJSG6AFp4IZsRtEhRl0YlzB8uaMGBxtD3vE9n/KjGUNROiSUC50V7VzyTjIhozESiIQORLH2yfa9/3BWi7qlEfBX9u9YwVfSp2aALPC6sakrg1UfQSjybAFfSmDgMfIWZVRjtWL4WuMf7sJnNAs0QQpeR4tOHQggrY8Pi94EHQgi/duGXH67LJRxGeHdtUaxMbSKVgE1NKBlmI1zJnthdzXcmi77sK2o6xFzfD68/IV4YmYhk46RQNBRFX8mKUDZoHn1z4G9Ilnoi5CyvqDcdanMQpdRcQ4iIOVESNLGiyI850fZPvBidCpMt5Gr9r4k8H4BWxqd2qE1bQ9CKFOo9XbG8J3KE1OaqVvIVrXKCFgNwfea5bts2fONG5aqsRAwYdWwt6zuLbigedNsezmhDTTk1+mIQKeeMypMaHexvTosif03y78UK1hPUWdBFHBtDP1+gLqq61wp6g9kUa2bDfMN73vy8wIFw+AC0+v68roiCdgp94UAA6AgKnqL/bCSoKt+gqY8bAhs46nAhuGI0pxDCx4B3A59gJAubAe42sx8xsyOM8iE+bWa/Nz7kNuAzZvZ54JuAHx3//auB7wJeYmb3jX9edqXuOyEhISEhISEhIeGyIKk5XRpCCG8E3njOn39z/HPuZ/8BOE9KIoTwYSYSUjJsHc90JauzQxXloSZUaAbCg9kQdQlWhdd9dD++vVfM+OetD31vRS8SbiuIa5YHftRCaZvHUBaF10rikeXFyKhG1JwUbc3EA1XRq+WO9j6ohF4FVcjsWsNqxFHWFRQyhUbf7/e6oAMCTBdURMg/TtVmmAlaFS0vCsz1MiIxecIoiipsBdDJi2J4wq+kIo7rUUnXYrXoe3HzQ/+8U/h9pyIPoKO9am0bCnrUIOL9faQvqIbmj81G31dWilF8slmfIlvM+W0lkehqQgFpq10n72dH2Oa29QSV6XDRp0+dakvRRpZLN7ptKtrWDf78W2z5ikwA7a6voqUEL3LieSkKz+jEfnsQ7/rNhEkFQa4JpKJ1CQkJCQkJCQkJCQkTIxkTGxP5TIXd1S897+9bSvor7yn5D3xr0fcALHT98yr50r1+YVAAjjd9z2hb5HDsK/onjnHa6yJaUukJz4uomRHLp9gx8HnZewQte1/Z97bOFrQ3X0nHDoPPrZ4VtUq2lXXnHun4Xyaf8Z+Z4kArjfKh0H4HGAx93vWkCYMD5epHy7iqaFEtr84bqW0hjl0VEY+q0PqdavkSpAAdEX3oir5Vc0Xl1VQKOnFUYSv++KpmXui2PZDRKt1nBr6Xt5D150JGiC6oKvIAWfFaG/b8Z1YX3uo6fgQBYCcH3LaBSN5WWv+FvI70fknxpW7bTUV/LLT6/vr12aGfG3JdRBp2f81fMyvitbu7/iy37WMRddxdIlm6J2roZO02t222ovMejuT8ZN+Vxufdtm5UDCNh8yIlYG9YGEbOzl+JwiU80LzYBCkN/AiTSULRM6p5PyS9W+dFSpxo+Ruo1Z7/wqj2faqSCskD7M377TdO+S/cneXJF2jBYKGU9TcA03l/gz6Vi9R1EIw9VRCwl/cTEfs5vxiZSqgE6A/9jdnC6v3yWA81xT0DtgmjvJDx+32x64/3fKR+zI6if96pvn+sKmiXbUXvjZMZAAAgAElEQVQKajzNuDH/VZF2f+Ol6FwDYVhb9yvlNU9mfUpI03zaQiPrJ6gr9R+AoUhqXjZ/nVHJ0LmhntfbxXk74n57l7DB3J2ZddsOTImCbYJmeGTRX0tyQhwBYE68q4TwIEXh3Xr28A55zVtm/LGphDser/tbn7mg31V7cr6x0Zj5WrftEXylp1PL2ijPCKGD6fJBeayHRsdP6o4JfgQxbpXD44sWV4jmZGa3Am8Dvgz4tyGEN69peynwG4yKlPxeCOFNkXMdBN4bQrjDzF4M/DkjVdUMcAr4jhCCy+e8YgnYCQkJCQkJCQkJCV/0GIYL+7k4LAA/Arx57R9tlPz0FkZiRrcD325mt1/kuf8uhPDsEMKzgI8Dr1Uf3rSRiQE9VgYnzvv79tL51Ke1KAgNaeXRUbUQlgTbRiVuA2wt+h8oCFNwRiSLxxBEqe9l4R1WinqqKi3oWhxFQUfKibZYwd+ikMosibZm3582RRGhApjJ+h7OJ/CjBM2+n1wbVDhfaJADFFWlYSFNqShQlZzu+JxISFXPrCvnmL7mkqAhznf8Z/bwqv89H888KK95tP6Pbluv5z/Pcmm/PK+HvmlvYnugBCSEGMHk5VqoCC/vIr5n9FjTr/kQq4Ctko8V7U9Rz0qCZgjQyorzCk9tKedHF2q5nfKa6rmoIEJRTLIa/pzvRzY6KhKg5vViV1QBj0inCxYiRdE2nffXg8Wupsc2RQSrJ6rXh6EfoSrk/eR1gGrRHwuqXstKx5fA7Ylq3QmXGSFA//LLu48jBafM7JvPaXoe8HAI4WyttncyKiL9FEUDM3su8Nbxr+9b7xrj8gw1QBaa2bTGRAhhXT5qbPMeBA2lJ4qgtYTCj1pIG5Hx1RR8bssJxSGx8YpBCRKpcLWiCXT7WolBPZe2qPkQxDMxYWgA5AWVKSsNGFH3IiLWpOqcqKJ/faHm1BYqPqUIjz4fqRMwCW6p6UG9qyqKoInjtjR9AvWpjt50TIm5osaeel5KVx9gW9V3BKmaEEOhztLt1922BfyNA8DWgaLD+d/zZManKjVELQ2Asvmb8PbQXxPWqxF0Fr2IglSnJwrwifoeCt2+v+kHOF4733F1FgOxwWx3/ftRhj7A6b5v/BxpTPZqVzTgLSWd9yZSMVgVamttscluRmo+NIRjRyEvXspNUdQP4CG/XBYd8Z5r9fy5khXKb6DHgiqo2Or69T0SnmZceNRhm5mtHWR3jwsyXwz2AmsrYh4Bnr/O594GvC6E8CEz+9Vz2l5gZvcBW4EG8LPqgpvWmEhISEhISEhISEi4ugggGATn4EwI4c4reTfwZKHo2RDCh8Z/+gNGtKiz+LsQwsvHn30D8CvAD3rn27TGRM4KzOXP18VWoViAukjGVJV71VkFuyAaOlaVfZVHtSTi3N3ImFbXXOkKD6+gWcQ0opVf+VTHH6aVnO/R2Vpsy2t2J/RqKcSWC5X/r1SZVAShJRapbn9V3o/ygk+q5hSjepkQMuj2/GeyKubmqZa+ZlM4VRcFzakpquhOD31PP8AMPnXhmLifhZYfTVbUhFONz8r7mar6USqlxHZ64N9Pq6epEorGI48TEbVWRysrqT5SiawZQQkcRKIhJwe+io9Cq33UbYvVmTha8r3VpdYtbpsSgVCIvasafb9dHau+ZSxK0Or7Cnht8YL8ROew23ZaszlkzZGOWG/bHT/CF4OKWpfzvnBHueCvQcPgz812V8+xYVKmujgEJsmHOA9m9lrgX49/fVkIwRtUR4G1fNl9479NivcAf6I+sGmNidGzOz/8t9jRSiBKMUYViVOFzBRiR20rilwCsWlTIWdV/AvgwWWfq7M08BeRTkZsXCMqWor/uyI2kTZhgS+Alti4KmrVQtffCcYUDQpCdWhm4C/8y4JqooyQguCPgzYmJsVyT/dCRxhxiramEBGakQbDqbbfB/MZn47UD5rTVsLPE5oRMputvE9b63T94mg7q18i72fH0L/mipi7fTHne4J2BXpTkhUb+1ppn38/kfyr9YqVnoWSWC6IHKHVtt4IroqNosrxCEI1p9k5Lq+5kvc3gwsZn2OvjJScKFo3CJqKUxDrUHvgv3fn8cfeLqFYBTAjFKQEu0xCSXQDFET/DfL+mqCocjFnmzJEuoI+NVO5wW1T+XQZMYcAGu1DbpvK4fuixmVQcwohvIVRYnUMHwduMrPrGRkRrwS+45xzLZnZkpndNS4O/SpxvrsAXzeaTWxMJCQkJCQkJCQkJFxVXKbIxLkws13APcA0MDSzHwNuDyGsmNnrgL9iJA371hDCeqHr7wHeaiO6wLkJ2GdzJgxYBr5f3csmNibCunrjFZVBDFRFoqaiZ8yKolj7qr6350RLu1RVoa6KiEwolYtY3YuYgoaHDIK7EZGEafR9z1VF6JCrBDxVKyKG1sA/b1NESkSkH4DVge8uWxXJrL2u8gBPRo8aHeq3a5+zj04k+V8lt6vvos5biJR8GIiIh6qxkAmT15Lome+lbA992oxSFTJR0K5o2mNfMt9D3h3646Cc9+lcMRqTooTUO37S8krLp6FcigpNLut71wuFHW5bPqe91arQYFZ4eYOKrEb0+psiubZV9sdQEbEmiNtRil+ghUYKYg1vBVWEMDa+hKCFuN1q8KNQx4daVKDR8aOD7a4/plUU6lKgKEeqloRaa/t93Qcp+nCxCCD2OBOfNYQTjChM67X9JfCXkePvBdZKnP7U+O8fAFHJdB1sYmMiISEhISEhISEh4SoicDEJ2BsSm9iYCOtW/1X1DADyQvZzJu9blqo6tpJpfaCj7+eMyCHeWfY9C/sr/sCd1gp/HJjyh0Wm4Xt0ur0DbtvRvO/1A1gdqES7yA07UDK/AFlR76AsdONrQqM8GvnKimOHfn6D8nxmMv45YxV2cxHN/kkwHxnTKx3/mlkxj1Qkrhrpd5WMqTyYqk7C8lDnsymvvAluuuK0Ky/kjsFeeT/7q75Xvtn3n8mZvj93V9ep5bMWA5FX0u74/Sc99pcAJRs7KPpV5mPJ0HkV8cj4ESM1r4nw1lXtCxl9EGian79wquev/QBFkXOSF9G/cvCjPnMl3QdbhTqzkn/Nr/r9rp4XQNOE3GqkOvvTjb4QDsjl/PGTEc8SYDihxPIXLyYqSLehsGmNiRwFtofzN7exjXRJGBNqo6NqUKiE1F5kgO2rKgqLf+yCKOIVq7XRFOuhiZdCEJvz/kCFsjWERDmVnKgVIe4HJqdBVcRxpazenK/0Rb2IjKK3TJZkHaM5qfOaMMbUZm9vefJ+V3Sk2bxv4O0tawNmu9h0FDP+onBmyd9YbMv4yY0Ap4a+Koyqu5LP+s9MFRIso8deQWyueqKtEnzVoKlIgux8xq99sWgP+AdeIUpIEMaYUqbqRdavHSW/pkgfkagvDIayKFQGsDf3bLftgPkGYFMU7lsW5MaKMnyAllD9UBv7SvDH+4yqzArUJqwfUzPf+CuZru+hKD5XygieFMooyChHkijQmzAhkjGRkJCQkJCQkJCQkHDRCFwWNadrGZvWmMiTY6+dL7WpwqKgow8KyuhsCwd4zJNxpOEPwKLIDa3mfE9QLEm4K1w6s8JTtNLzvbhKHhFge8H3Tqmoz0rP74S5opbunCr6UYJiQUg2iqTvnPB4AUzn/H5YGfh64csi9K4qMUsaBZBViaMiDK4qCR+o6H7fu8MPvXfaft8udPzvuU08S9DPDFFjodH3++BwQy8mNZG/tlTwqRJnBo+Ks/rjfUlQVAAafX+OqfVrV9jutsX8l1nxijklEp4vRZNfYSioZy0hY1vIaW/1DH4f9fDHpkqoj0UVtw79WhzTgh6kSjfkBK2vIiiaMUwJRZA95tOc1DsOdHReCSuUsuK9MdARoVb5/PpVZzEY+rzkbu/pr0ZdEuIJSlhB0TABVsQ63RXzSM2/TY8UmdiYGBBYGZ6/qYnRUPZX/MWgkvM3mGqjM1vwB5EqLgdwuu1fs9vxDY0DVf9+Ypr8DRGuVpuHJanKoREEcb0gXhj94N/RqqgHATAQuSxVoboUy8VQaAwExSDj1xfoD/QG3T1uqDWZFD94uM78uRCc6eh+b7f89sFgMlrfXEnf686sPza3l/01oZT1N5HDiO4+YjqE4L/Is1nRf4LKfFPe39AC7K74fbskNpgzA/9++hGFn6owYCqiMN2VMiYUlNZ/tqD7dmroz6OW+e+UUkGMA1EHAHQhM6Vy1BG8/o6gl+WHeoOpN++TbewnX2m1omE1519zcagUkKAn6q5kM/6aoOqfXIrSk6SqCqOgnPWdV1GU9rtNobjHbZuv3++2Tfq+2RAIV0bN6VrCpjUmEhISEhISEhISEq46Io6XjY5Na0wEhrTX8QhlRFVagFrB90hPFXz3naLMNEQ15cOFiPc8+I9IeW1UdCEWbesJbl9J6IXLc/Z8r/vomv5N1Xv+N50RdC5VxRogJzzdW3K+92lb2W/bXtQqGNdPCepC/aDblBWKTacHfqLvbM73IAGUgj8f5nMPum2drt8HlZzmhuaFKpqq5dIRUYtDq3pebxFzV0WaVG2LbEQZ7pYZ/1kvikjmfR2/b9tCnWVuWo/3bcLRnRNe5QdXfc/6YkaruvQzvse1L8QIrhRUAruiHG0t6mT76/IigoVPHZoO3+K21SJR9IaInq70/H4vCm/1UNBup4WKHcAOoS5YFuu0eh+1ImohStxkSYiQqKl7cHiTvObDWd+Dvjw45Lap6IMalwADVXtGUB9rBV+h7IbhM922mayOih3O+LU2Hul+xG0LX6w0pytUtO5awqY1JsDIrrMRLwl5SYB2X4QF85MFXZVsbEUssgBHGv7G64mOz5GeEjx6pdITg9p01DP+/cRyQ+aKQtVEjNKiLNynN7VTeX8zkxWGRldEKzORnJt6V3B8xXPZPvT55fWsb6gNI1KFQ/z2SQsTHRM0JoAzy/6LsyCUnhTNUOdEwErPv6fHm/5cOdL0n8lcQc8jVQAzIwiDe9v+sz58CVK+amSqNrXBPNT7R3nNpYav2DTp+FJ0EYBqyZeorgi6kso96guJW4DVvqAHCRpKRSiJxYrEFYRRcMecorn64/Z+UQ+wF7kfqbonjlMb+9j+S70+FS2yIW522Xy6G0BXUEeHE9KVlLEQg4k1QeXEnTSfSngm6DX8eH+9YsojrDQ+L4/94kSShk1ISEhISEhISEhImBRJzWljIkeGucz5/pCmoEqA9khPlSYLy28v+TSBZ05r72ZBeK7mmr7G+/Hm5OHEYsbvI1X0b7rnq9fEvIk66VvUWBDRh6qoSwBQEDUqmiJ5uyHaVJ0EgJ7wxg6EB3hFRH2UQkZbadwDbXwvXK8/mfqI8ggCVAXlqCBUtPItoQ0fqRmiKG/lrP9M1HHHGnqOqeRkRRnJCM+xSraM1O1DBVaV02wgolfbCjfLa6r7XWr4NLpcVlCDyn7kAaCU8SlH2+16/7ihT0tbyPq0DtB06K6Y82o9KGU0bU21q+ep1PrqQ39uViOF8KZFpE5FkFXyf70XYRIMVC0cv60gEsKHkU3fUDyz7VM+daje9RO7Y+pJ24o+9Wrf8Eb/QPFVHjM/GXqhrRTloNk+LNsTzkGiOSUkJCQkJCQkJCQkTIQQQDhMNwM2rTExMgTPtwRrkeTQat73NirZyr5oU7UrthW1d7Mhcjh2iByp3WXfe74QUWBTdShUPtx0R3iOC7v0RQWUt78mePTqWYKOPgzFNdX95CasUwKwiB99yAgJXFVLIk+k5LuASuxTspT7yzqCN7fN10xVNPrBvN8HjUjOhBJBaPRVhXr/nIuRBOI5UVOk3hO5IUIq8/rwPLftZEtHZ2oiGqI8wBWRSzAVdAXsvhAAaOR8PXqFWK6FnA/BfybB/PN2gq7hIYJJUtBCSbEOBvp7PqPm5x7tEkGEVbEslkQEuRPx2HeF51Xlaax0hcT5lA63Haj4X0axEE61/Dl240C/q27O+UnNSz1/TciXRO6MmPOgBUqyInGkKaTIZ22v22ZlfT9tEWXZ1BKvl4CQIhMbE126PGaPn/f3R+u3yuNurvkvziA2kY2e35XHBT0jVrNALd+nOv7iNJMXSkWT53ByuuPf7wMr/mamN9D1DraV/MVrNu/3QlNtEkXSLWhjQyVvq/OWIwn+qsbHVqH6sojff9OI4l+m+705XJTtVwJDRU1QtT9y/vMqC6MS4ETT310dF4ppSqt+ENnUPipoYlPB3whOiYTKjqhZkFc7WmBr0R+bO0TJjF7w+y5T92tFAAzFBn256CdDL9U/57a1s7q+R0ZsiE9kNX3DQ9l8CidALTfZq7Qk1q9VodYEmra2IhTwjopCqGcE7fEAfk0M0GubVGwS3qtmpMKqKmjaFWuJEvXYKt5FAB1hs2fNn7tVwUPcV9VzV/kJFjuCmi3GV7HrG/oLAz2v21O+qtzplXvksV+0SNKwCQkJCQkJCQkJCQkXjZQzsXExoMdyOHH+34OOTKiEy5ygUix3fY/EfNc/blVQLADmRSSgLThHPeGVmYkwX5SDU1F8lEc1pi99pOGHh5895/dfUUQQYtKwKtLUjdSo8GARCVxVHaQkaklUBr53uG4+BcNkzXIomZ+smsv53thuz/e6F0VCM+joQ1/oxqsaFIqCCFoEQXk3e0N/TLf6Whv+dNuPcqoKvHkhctBs+lGobULnH2CLiPApB7DyqO4oaT36Xsv3cC7khNxxTiSrRsZ0q+frmw6ExKuiRw0zev1a7ftJsCrZ/sZp/5rbinqh1mVO/Aeqko+LggYWKasiqUwxUQYPjYjSakvMe0XJ3S1oYFN+gBjQtWeONCdLio/17ZTYqeWEyIESgajlhbhL338vAKy0v8RtqxfP33edRatzRJ53UyMZExsTeYrsRhefWQ8LgkdfyExWDn1JbJCakcXy+qriVvubgxOdyR9tUSz8KgJcECpQ0+WD8pqT0gSUcdMb6k3HQLwUVL2IjqJWRTa10wW/vSY4NXNDv39qnX1u2/JA81cPZ/yCd5MitmaqaK8yZJXxp1TYQNMQVU7TdYKTvb2on/W9C/5astgRql6igzLCGN2l2T9MC3WzVZGbpaheJcVtQRvIM/jc9NWCr4GfEecE6PZ9zf7Z3HVuW978DjzT0/Okid+3u/OqDoB/zkZ/8npAKgfmdEvUazE/n6k9UNUiYF7QbdR7Q815Rb8D2FIQ1FqxvisVQOX8A8gIQ21HSV1TnlZCrVEl8V1UHY6moJuqNoDssp9vMc9tbttq3ndQLdb92hUbHiHVmUhISEhISEhISEhImBAhqTltTGTJMhfOt4IjjjSp3nWmIygPwlutLhlxbsqoRl94ahWloRShoSgsCw+vomdUc36yJejqqirC0BFtKvIAoEpCNPq+V/m0GAeHGpoeVRflsxt9v01VIVY0ilJEJeRk3/c25rJ+W1ewPuYF5Q+g0fCpMSo5W1W5LomaIQA1pdImlLIWhJdysav7VojUcGDKP1Yptzze8k+qkkpBU01U1EcpWqm2GGpD30tZK+wR1/S95wAZQd8YIsaBUC8rZ7Vq1SkTtL/GTretkBGVqiN01JIQeygrl7RA13y6aSS/H8HYoiDeDafE2h8VKFFRzijldH0UIlFOJbJRE/OoLtY2lSw+gqKQ+ZNQsQwQdEFFERtdU0RIww1uWzMz77Zls5o2eilVwq86rlDOhJm9CngDowGyCvxQCOFT47aXAr8BZIHfCyG8KXKug8B7Qwh3mNmLgT8HHmM0UE4B3xFCcAvubFpjYsCQFTt/8HWGesB2xeZUFd452fFfREtdkb9Q0ANMHXu85R93k+B9RsQqJHWoIvpAKjL1/bAo6JeNCrkuic1eM5KPomR5Ve6MCp/H1JyaA3/TuzDwN0kFJXeppE0jikNKbafb95Vd5Dkja2avJ2higmZ4uiP4+VdIjVDNhdim4w6x/1wUqrJtYRflxAZAsFcAWBX9viooNep+FCULIK+K7InNe14USOsRMSbEXJnDN1IyymkRUUXr4i/G7aH/YB6vKyNOz13FeVd5LmoNGghj6+TQV/ABqDX8/BiVz6M2po2ImlNdrH3KnsqJDfgWUTgT9HvlqNgHKNraUld/T+GDYnfFv2ZV7PCUIyAmPKRkgPPBH5ddYRDkRY4eQDbj7926PZ8Wec3gytCcHgNeFEJYNLNvAu4Gnm+jKohvAb4eOAJ83MzeE0L4p4s499+FEF4OYGa/BLwWeKP34U1rTCQkJCQkJCQkJCRcVVyhnIkQwkfW/PpR4GwC5fOAh0MIjwKY2TuBVwBPMSbM7LnAW8e/vm+9a5iZATVAJo5dcWNibCHdAxwNIbzczK4H3glsBe4FviuE0DWz6xh9qe3AAvCdIYQj43McAH4P2M8oYPSyEMIhdd0+XU7Z+R8ZDH0FEYC2StoSHvKS9FKKAmgRmsBz5nwXpkq8UgmVMyIRM4bVvu8dnhcC3FNBS2QsCt7M8Zao/SE8tdUIp01FmtS8X+gKWkzEQ660449mz6+LchZt4RXc37/dbduV1aocWwb+fDhW8Klpq/0lty2mTDIQHmBFt1Ge9VjxR1WPZEHQlZYFzTD2PVXkcEkkqypPrUIsabIt+l1FJpYnTBYH6Az9NSEvXj87gi8q0MjMyWueCX4tiTa+ZzQrIhrNvk/PAOSbdF54VBn432VLXitlqboiuuaD/8y6GX/Q3pD36SsAt8yK6INSCFQRoYjmiaIHbSnpNcHDP61omuZRERhriMR3VeizLCJJoPtvSUQ5FyeM2EYCQsy3RRJ/xp9jGfG+7vb0HIspQl7zuPA6E9vMbG2xjrtDCHdfwHHfB/yv8f/3Ak+saTsCPH+dY94GvC6E8CEz+9Vz2l5gZvcx2qs3gJ9VF386IhM/CjwAnN3V/DLw6yGEd5rZf2bUAb8NvBl4Rwjh7Wb2EuCXgO8aH/MO4BdCCO83syl0LTcAchTYFg6c9/diZIOZFbSPSSkPiqu8tai/yp6yv7hvr/qrWn9CaVOAlsiLWBW89X0ippo1XQTnTMdf9ZZFCFgpINVyk3sCFN1NSQPGwvJBLCgFURysq1RWTFEstAKLoprkhNSvwj+taLL3lsKU26ZUS7Txp+e1oqapSrnHxMZB7LEBXYV4X0WNIf+4RVFl/lFRNBJgWsyVSZ1msarIQfDWVbXlgZAobYnxPjqvpkt4WMaXtDRB1wK4cehLZSrJ7GrB74OWyKGCiHpeQSmfCdWquq+wtdLTTqglYZRvF3ZRQbyqViL0n1rOH3/7Kv44Wen5zySWv6DWqJrY9Q+FUzGWO6mg9qiKoqhys5TsPMBRUez0JI+4bUuNB+R5NysCEGEcr8WZEMKdF3N+M/saRnvpuy7imFlgNoTwofGf/gD4pjUfWUtzegPwK8APeue7hCEch5ntA76ZUVThbLjkJcC7xx95O/DPx/+/Hfib8f//llFIBjO7HciFEN4PEEKohxA0aTYhISEhISEhISHhaiMwUve5kB8BM3utmd03/tkz/tuzGO2xXxFCOBveOcqIyXMW+8Z/mxTvAV6oPnClIxP/EfgpRnwrGIVLlkIIZ10cRxiFYwA+BXwro+zzbwFqZrYVuBlYMrM/Ba4H/jfw0yGE82xuM/sB4CeB2byVmeN8iofSTAcdYVCeUdWmWAuzEcrRkabv3iwIVaYDO33PQSaSJNxu+p7l1Z7fVsr6VCZV0Ai0Hn1ZRJOmRPShfAmqVcr7pK6pEsmBdUUBziKj1GSEt7Uy8GkU+YyOUBVFslwp52cQZzL+uLxpSo/pPVN+MquKqCnvuaIxQcSbKLybFVFcbndEPGFWKKo1VBKnjIb459xV1hEhFanLifmpipzFvLgmvbF+3w5EscBFdLKlopMsBZ8uaGL+hYhbcTXjF44sB5/KpJKslUobQFVxXwTUYXP4a/hLdmva1W01vzCkutOH6oI6G3lh7xTFKBXqgga8t6wjQuWsf08Pr0y2D1D0TtBUDJF/LcVWVKRkENnUNoUgQbN72m1TEb7YHMsKyu5g4BeqvFZwEZEJ/xwhvIVRYjXwZArAnzJKF3hwzUc/Dtw0Tis4CrwS+I5zzrVkZktmdlcI4cPAq8Sl7wIRcuIKRibM7OXAqRDCvRd4yOuBF5nZJ4EXMeqAASOD5wXj9i8HbgBes94JQgh3hxBuCiFsL2UmC3UnJCQkJCQkJCQkXBaclYa9kJ+Lw79n5KT/rXG04h6AscP+dcBfMUoz+OMQwnpVAb8HeMs4N+Jc6/IF43N+ilHKwU+oG7mSkYmvBv4PM3sZUGKUM/EbwKyZ5cZf9snQSwjhGKPIBOO8iH8xtpyOAPetyUr/H8BXAL+vLp4ByutwcmP6yQq1nO9xnRY69qpOQkwf/3Tb99osiXoH52eLfAEmvLQAOeGpVXr920X+x5m29rycFAldKyLxViVgqxwXgGVx3rzoI1V1dVtJT6nyiv88O+Z72Uoi90HJhS4PNb+8ZX6uSk8cqzxMsTomJTGPBkJUIC/G+zZxTtA1KhrCS6m0/JVsM8BHTvrjpD30+31WVEw+2fc9ggezOjFZPxf/eW4TVX1nBecfoCMqt1fEocdFvZZ727FETaG7HxEkcM+JXqcrwZ+fc0X/ec4VVTRE39OOsv9cbqyKOSbWxbyIOM539Hg/nPXXtm1F/37UHItFCapi3qs5r+RdVdQQ4KRYUpVkqorOR8oByerZk9YUQdXhUIkswN7ubrdtWdSIWWn54gixOiblwja3rd669iMT8Uzfi0cI4fuB73fa/hL4y8jx9wJfuuZPPzX++weAi/LIXzFjIoTwM8DPAIwLYLw+hPAqM/vvwL9kpOj0akaFMTCzbcBCGL0JfoYvyFV9nJEBsj2EcJpRzsXaTPd1MSTQHJ6/8VWJfQBzeX/x2i5CqopGoRa1lmgDuG2LT1fKCkrW8rL/UqhWhPwD0Gj6fbTU9V8Yyz2lo61fCl+au5EAACAASURBVGqeKXUbpZUdo2BMC0NuX8V/1qrI2WNZ/Txns4K2NvRpKkUTNTwK/nG5CO3qTMcfC6eyvppTq+Av3rFiUUq9RSVSTxf8e90+owsatdp+H6maIh1BtzkVUUr5ih1Cb108a6XAstzzx08lsqlQWyQhQsOsWDJjc0wl0ColO5XsG6NDKDR7PgWjkvfHeyHjiwYAVEwUn4vtkhzsFAn8ALW82rj6bUpAQiXs3rVdD/hbZv26NOp+Hlr2DTxFgQJoRN6fHpRB1YwoSCmRjTmRSd0SxykjBDQlSY0uJf6iCnHEHI4lQVGcDb4xMV/wCzj2RZ0l0PTFax4hEK5MnYlrBlc0AdvBG4D/28weZhSeORtheDHweTN7ENgJ/ALAODfi9cBfm9n9jObO7z7dN52QkJCQkJCQkJBw0Rhe4M8GxdNStG4cMvnA+P+PMiqoce5n3s0XVJ7ObXs/8KyLu6ph63iEdke8PcoiV3SljvB0rIikZRWmBahN+d6gvAgdLy/6YffFVd0Jy4JadbzluymPCMdCTFbwDH4E5qD5IdVZ4Z1TkQfQXptl8cwuxQJXFYFnsn7fKj3/tnLxRrxsq0M/ArPQP6QPdhBLfM9NmBifz/pfJkYJKYqqtnurflRD3em+yFrSE2vCow3/WasE7IGI+kSk6iXNSc2FnUW1Jmqv+2lRoV55wQ+JytCKinMp6Ad/rR3GNO5FN0wamVASwQB3zvn3u1NIih9rCsqkkLGdF88S4GjdF4JQkQlFM4ytteq8KihbFe+GXYLWB1ARCdiP+Hn4Okoc8VqrStazQghC56+reS1vh5Wu/35sNPwI38mi/y5fasr8Xlqd4/qmrmUECJfCsd8A2LQVsHNm6xb9iS3QK6LGguLRq7DpkjjnybamXT38kL/wH6j4L5NtJf9lEqNWtQd+u9ogNcQKtDjUIcys0JxXnFAVku4F/T2LYgOVE8+6Lji1aoMEsFXIa2wRIXL1wlAqPaoII8CnF3yKwULnPJv/SShN/sXIpsNEv9emfeOmL3TsY+iLZ6ZoawqxnJwzHb8fFOuvK146yhg91dIvqx1F/362C8dETWy8VD0WgNOCUamUbx4cPuG2DSPuO7WWVHP+RqdoPpWpE/xcFYDtosCcUl1Szq1batqA2Vry139lv6i6Kqdb/rM+KsYPwE6R/1ETqoVtcT9fOqvfGzfv8PNnFLVxsOzTwU93tCqaogQqKJpTNUJRVFTDnUX/mVVE/qOyX2J1MzOiwGPG/D3LSuPZbtt9PCavaWJebwhs4KjDhWCDP52EhISEhISEhISEaxeXQxr2WsamNSaytn51ZBUuBF1GXnnhlMe+NfDb+hHv5kmhgrTQ9d1az51TyXl6VHeEp6gl2pa7vidNVWkGKAShNd7271dVgY15V7YV/Q8o7W7lmYrRPuZEPqFKqFR64WrsnY6oaLUGQnFIaIm3B36yZcxbHUQf9Tr+F11a0dW8FVQUoSvHu38/imIBsEN4+w9WhSJY0R8kHz3juygjAiwySnVMeHF3C9qHUsUBHQlWVZprDd9zfLi/JK+pIhPznYf8a5b8xNEduZvlNXdX/X545rS/fm0R9Lvj4pkAHGr6UcU5UePkeNu/19W+iHaIOhygE7urYqrUhOhJLPqn6I1KoGSHoIH1I2v4J5b8CuJV8ciUkEhMPOFAxR8nN0z50ZuMWKNOtkUldBFVBTghXueLHf95rppPZ1bzD6CS2+q2PbH4V/LYq45AikxsVAwDNNcpvBKCXhBVSF+FalXIUG0wlTwp6E1kva/O6z/aLUIVB/TmdFVcs3d+HcEncWigy43szN3qtnWHfvE0VVtHUFujx4oaeppWFKE5BWFYZgSHVbVtF2HuLZHCViWhSfjZM/7mfSbrL/zXVXUhqazg7jeFklhB5Be1I9S9lpgPx1ticyDyNJ4pKBYAs1v9N26n4d9P/wlf8eTglH+vMWWlquh3Na+PtwVdK/KCXJI0J7/xaMbf9MdyJgpZwd3P+IaaUmyqBL+YG+jCmmqTPSvW4j0VTfFR6AgjOJ/x5/UjQsb2iYY2nis5fyetDO+YA0ahWPLXhMqU37e1gb9GTS1r1aqM+e+jh+v+/FSU+ZhjQqlMKqg8T+UIOCEMToDH6/79LPT8/mtl/KKRMdnmbULw3idFXhsIpMhEQkJCQkJCQkJCQsIkSJGJjYthgNY6rudyxF09J8LOhYxvjSvFJhWq3V3SSXYv3u2H9JW6zZmG731Suvqgk49V8Zy8qIVwIPccec0OmgblQSUaijp4AJwQk1vR4VQfrEZEX4KIMMwLL66iwxWE5rfUGUerfVSC76mdD4fctlp+n7xmUdB/uj3fc9wX47YuCtqB9tAphkFJzLGVpu+FBFht+d9lURWjFFEUNQ5iCizKMxqLqHloiIgGwGJHKEiJZPKp4FMaGvi1IgD6oiBgJeufdwq/bcV0UayHlv1o0kAIQSz1/Dm2vxxZwAQON/1rfnZJUaD8aMhLdvkRH4DrBBVHiV2osRerWdMVdJyM4KO2Wv77uiD2AADXz/gUzwWhcrQqIgGzkciDWoeWuv7atyDEME4ISumiJi/Q6vv3cyJz0m1b6R9z22I0usWcf+xGwHDCNXajYNMaEwkJCQkJCQkJCQlXFSkysXERCOtq8yutdYC5oqhyLbwrqhKn4oTGxtdpoQleFhxyda/dSJ6GqkKsuJ3lnDhvxMk2HXweqoomFURS27RIaAaoiNEvq8SKhxaTHlayn8qzrGQ/T4rwgpKlBK2Bv0twgx8d+JGkuojSgZZsXBZJgUrSeCqvXWn5jN+5J0WU4B5RryWzpBPCtxZEbojInTnaFDr2K37oa/+UXs5VZEJFZ5SQQSwaMqmyegvf+7s790x5rIqoZYf+GhWEMMUwUshkqiTmoMix2lMStVNkbWON/RX/vFkRyeye8eff/QvatXpG5NbcMSvES8RamxeefoDlhn+/ZZHjqCL3Cwu66va2kr9HOCiSoZXQg4o8ACx0/HtqiIhtQ1xT5ElH6/a0gt+3K3bKbVtuPu625bJ6PR2IiONGQMqZ2KDImjGdP//rqURWgIYqMJf3X+TTBb/ttKBgPC4STgE+segvInvK/ui8teYvarHQ8aooIrTU9Rf+gchCr5tWYMmELf6xPX/VOy1yfUVOJABTYqO9S+R4qgRspdgBcLzpL8IlYTTNCQ33rUJtJ5bYtyqoAM2hP6ZLGT9Z7oTYnANMrfovjaWuf6wsfBUxYLpiE9kXdSa2CINgRijmAOwo+i8/pXgVgr9BenRVFXOTt0MpO1k9koWOUKpT8nfoQl1qvM8OfdpQPug1MyM24fWMX1Vs69CnOeUi5dOUgo161hUhgLAnQnNS82FB1GRRa+bpru8kuLnmG2kAt0z791MRTrwjgoozE3GGdMW7StEiG31/vYjVmaiJfcCsqP2xKuhISnUJYEU4UpRAQksMoQWxN58X9ESAevDHSXPoC1MMRb2p3lBTnYMwYDYCYgbaRsemNSYSEhISEhISEhISrioCcAmqZRsBm9aYCEB3eL51PYyEjiuCOrRzztfdX171Xdl5EVLdV9YZuxnxiJScY0lJ3EakYVXIdVkkDK5HKzuLStCyb6Xg919BhBjU01QUKNCRCx2BmeycAHlRF0PRUI40/Gf26Kr/vHaXdZLwrND6r2R8D12j5yfBKq8owLLw0NWFp1H5hlW/gh4nKlJ3fdV3320VlEjQVMNjSiBBvHTU+NqhH7Wscq1eBUpCMlbbYkVEvk53/b5V60EV/UVVYndx6I+9Uxm/qnsmkhy6K3vQbdtfFZFesfzfc0aPaRX1UdFKlfA8k/Ujg0qmHOIywR5UBeeYbGy95z9PVS9C1VKKiVY8tOonos8KOpKSj1dsgFG7f7/qeao9wqrgKCo6LugIX7fbcNtUdCHmuO/1tBT3tYwkDbuBEQL019ncPtbQIcznbPGHdFFs/OfEAnSjoGAsisUH9Itc8SEVyiJMCzpnYl/Z39Q+d5v/XapLWuGnIdQh+mIVnu/4i1NOST0BFZHjsUU8FrXOzrcj4eqe338mtryqHsS+ir+5mhOF+S4FM0KxKWZQFQXlIZ/x+0cZ+jEozrGq9aKU2BYFPQPgc6uCSiHsEBUOV5S/4y29IcmbonaIdUZQmWIqUKqWS0UUc1kR51VGLuhClh2xzuTxx0hRUM9AOzyWu37/XSeYQ3ftjNSIEe+codiaHW35/fN43X9gDyxrGspUzjeQtxb8flf5aWVBzYtBzV2lcqSK6IGmbH1mRdTJEa/rWK6dgsqtUXN3RRgTiu4GsJrx8yImzW1Q7z+AQsGnPna6Rya65tOGYAxFntxmwKY1JhISEhISEhISEhKuNlJkYoMim4HZwvlf7/Zp7ZXPCYqPqopcnfY9qluavpWvVGYAnn2dH3rPFf1jG8vCQyLpDlDu+X2kKgnP5P1rqpA86GRM1UPTIrqQiwRuVNValZxdUYmskUhAUyT+TQqVBBtT21np+WPhaDjjti31DrttGbtTXlPRiiqKnlf051hfJLkC1ET7NpHcfkzo0SsPL0BBeI6VkpgoDC09ziK3f3ysqsQsqq+LCJ+iNgK0BCfwzMCnQxTx1xKpGhfBsvkqUU3RFk36FtO+KyKrn/cLArO7oseXouMcFcWzD9f9sFhPrLZft0ur7dw55z9PRZ19uC4UCyMqR0rFzfDnrkqK/9SS3hZtEXNFRWVVFC8WzT0lIplqHHTFNdXoygqqIEDO/EhdRkRA8zlfaKXX17Vcen0xWa5xBCCISNlmwKY1JjIYZaV36GCq5C9OucrlNy3nhJQcwFDJyorNw/R2f/XptyMLhVCwqQppSsX1rkb20CpUq7imTUFbUDQmgJbYmB0Q96uKM20t6r4dDP0p93jdH3tKWWnR/EV2t/kKNQBbi/4XnevPuG0ZYVnHXowql0Ax0xaFbGxMpW1KqK2ptl1lv392RYrWKZWolZ7fdqjhj9sjDUGniSiwtAUtUhmdSjUoxqPfJ/IFdpR86eGHV30HjFKNA72xr4Wa21bHn0chIuKt8rN2lP02VSD0iYa+5ozId7pZpKjNFfx8lIeWxfoeobSdbPsG1xZRCG4q53/PVqTA6orIv1oW9GIlER8iyl3qPbdTOPhOd/3zrvb0otkRRrnKDVGGrIJSRAMw0Uc94SSIGQzynjIiH2Xo53BcEwgQNnkC9mSk+4SEhISEhISEhISEKEK4sJ+LgZm9wsw+bWb3mdk9ZnbXmrZXm9lD459XX8C5Xmxm7x3//zVmdnp83s+a2bvNTIYmN21kYhgCjXWURJRHEODwou+NrQvPy0CETU81fU/QrqqOTLSWlQdYJPbt9T0Aw0jidkfpVgua0w1V36s1GOrQxDFBGVkRCYz1vu/x6qyj5rUWtZz/XZaEF6kqkqFPC01+gHlVKUiglvXH3r7CbretFInOKRn3VaGUkuv760qstoVCQ4yvbRXfW10pavriGVHbQkUQ9s761Jc9M9obdmLZz659XKg5FQXl72DNfyaLkciEij70RQheDdlmpM7Egqjw2BNvzgNVP+ozLTzyELnfVb//KiJq0TfNIVN1JpSIxsGa33aL/yoCNN2yKjzvPVFzpSeI3YtaBFAmPO8R7zkVXXhQzFuAVRF9UFQmpTgXi6yuiqWmJ+vH+MctiXccaNGPhpjYSthkceCzFzroh92QtSQmyyY309tRVdRObAOuGVwhmtNfA+8JIQQzexbwx8CtZrYFeCNwJyOW1b1m9p4QwuJFnPtdIYTXAZjZHwH/Cnib9+EUmUhISEhISEhISEi4AggBhgO7oJ+LO2+oh/CkmVrlCwq73wi8P4SwMDYg3g+89NzjzeylZvY5M/sE8K3rXcNGVl4VkIbIpo1MmK1fETamIa08Cwp94e2v5n2zOebFVZr8TcEn3df3K07nS9qD2WpOZkF3xESYzuvveaItqtYKOUwlmaqSukF77VVl6EOC+1jXDnL5XfrCK1gX3p7Flu9hmstqXv+0KBTQGEzm7pmLSCtuq/heShXhy4tkzGxEyGBGVKZdEbKxSw1RCj2CQw1fj/5Iy196TwhVxjOCuL63ovnl24oqUV/JjKoEbHlJtpeUPv5k9WNmRAIswLKoEVMV0ci9/e1u2+pQ1xTZXvb7XuT3c2jVH7ex5Pa8FLXw+70r+Pd7K/775gdv9mvLABy4xX/nmMhfP/mgP0/qIlIJsL3sP5eCWC9m8r6Xe7YwmbQpwKeX/GQV9TYqRN5Vh0Wu1BYh+tESUbGekAFe1PtGMiKaWy3680jVmYjlU7Q7x2T7tQ27YgnYZvYtwC8BO4BvHv95L/DEmo8dGf9t7XEl4HeBlwAPA+8659T/akyb2g08CPyFuo9Na0wMAzTWETlfEpryAHvFA1ebjsWOv1peCu3jtDjvMUFH2nfST26cEqo4AIstfwO6IqgvJzr+/TwSyY9SCZft4N9vQShHtCJWvipMp1RNpoTOfTZS20K15zL+2Fzs+0ltZ7LH3bbi8EZ5PyqafdT88660nnDbTolxALBdUHyU6stMWSitRZwEOUH7KIn6FYdXfarSQldT99T4U5Qjpc51susbYnftEEULgL2iRsyK2LQ1xfdQxbRAGwXKwaCSfRuiEBfopFOVKO3PMGiZ3mAqKub1NZGcPafqU+i+3S8EQVQ9IFVX5dGGf83Ftq6JVDvivzeUkMjD83Nu25GWVtHaVvKNiYx47xYyojCrcOCBXqNmheNQFaabFknoAGXhNFvPaXoWai0ZCmM1L9TUYqi3/ffGpSRg53L+nqbf95UHrxWoOXAOtpnZPWt+vzuEcLf34RDCnwF/ZmYvBH4e+LoLvM6twGMhhIcAzOwPgR9Y0/6uEMLrzMyAtwA/CbzJO1miOSUkJCQkJCQkJCRcCVxg8vXYvjsTQrhzzc+ThoSZvXacFH2fme15yiVC+BBwg5ltA44C+9c07xv/7eJvfUSj+gvghepzmzYykTGorFNoIBaWV97GKVE5Wulhq8S0Vl8/ghnh6agKTf75ju8lqggpTICSPK//XS7FMlX6+X0lyxj875JTsXUgJ7S0i+Z7gsqigIWiDYGWtVRjc3vJ1+eeyvvyr8oTC7AoPKqHGqJWSc5PVo1VZleev4aqzSDGbUGEzwFWhVf1fiG6cLrjP0+hognATVP+Pd24xfeoXieoJn9/2u93FXkA2CfoZWq9aInnWRPeVoAnBJ3rcN0/Tk0jwSiKoiiyaxWVqScqs4OmTM6LoMaukj/e75jW1KqaeDfkBO2vM/SftaKe/dkRoTcL7Jn322+f9iPPdTGGFiOCKUo8QTEClJjD58R6AFARkcybhCjDcRGRXY3sA/ZX/OdySFCg1DtFUYS3D3QfBPyId6Pk0+GWG37/5HL6mjPlg27b6ZVrOzJxuepMhBDewihKAICZPQN4ZJyA/WVAEZgH/gr4RTM7G/b7BuBnzjnd54CDZnZjCOER4NvFpe8CHlH3tmmNCcPW3UjVIuFERU04LTYkaslripfx7rIOn9+225+YhZK/qC0v+gtXM0LPUFDTQaQZyFAswJa837dzomBU/2K11NYgn/FvSm3Cq+LLxHT3h+K8XTE0Vfc9URfjoK93vB2xCa9nfQ50u+tzavMRWp96GQ/E5kApiSmDHWBJ0AVVEb39Fb//XjQldsPA3h1+3YKBoAe1j+5w23aW/T6YjuSqzAh+ucoV6wz8zWcsB+3Wmr++3TLlP7PP1/3n1Y54hFSBzJMtkZdkPtEpVrROKQCpNeEzS/6Bx9s6X0fVqFA9tCTsooeW/ef19Xv0e+OOGX+DXhPF5Vb7fs5EjNLWFobI1Jw/3odivG+JONuOCxrwDWJtqwlnpMp/BNguCs02BpO9z7eKmkdHm3ot6Zjft/8/e28eZGl2lnc+5+55b97ct8raq6t637S01hZqEDBCwmiwzT5mCUBjj8TYE2OQcEzAjE3YAiIm8AxiYjRMI8AehA1YyEhoYdECElJ3S71Wd9feVbnvmTfvvpz5I7Mgqcr3d6pTqq7M1HkUFeq8537LPd/5zved933e50mCH0QiaV/rVsCUbq02ge27HTepZuIfSfpR51xTUlXSD2xmEpacc/9G0mOb3/vX3vu/xzHz3tecc++W9HHnXEXSFyRtjVZdrZlIaKPm4sfpRPbtYiIiIiIiIiIiIiLilsI7tQMZ+x3t1vtflvTLRtujkh4NbP9JbdROXPv5hyV9+OWcy75dTHS831YDfTWQNs2BdncaqC8UoaOi71ySowrPT9vKCINQfJaFCEk5kJmoQZTkpYoddaAia9Jhl6Qq6GFTTTMlJkgdSZJKbTtS1Au+DjkIQ1YDiZKQRr4FUvG53LKzBCOOU8cHcnaUrVk9aLbNZuyiSUq7S1IhZUdceyG6fqCwM4+OEKgwMuHsY86DI7cktWdJ9cu+B59ds/c7AbY0k0CPkiQnonPZ29L8FRKXSMKcSea8pMi0GtTkt9tLoKbWcHb0PAsZM0kagaHweqC09YEYxmWgxUjSMGzbk7HbLq3b0eGupD2/pwOKaXQ9Vxr2fmdBSGSxtvMsZwpYCJWKfcwsUJYlab5uX5epmj0vEiuiGSjO7c/Y59STgncPyL6TglsWxEAkKQtUue6k/c6yogtmG2UtJKk7O2a21Ru7O2uxQXO61Wdxc7FvFxNyG3UTLxf0yPBA8tmpzGE1kN6cBDWLArzY39dvpwyTAWpCGdR4iIpD5jkvNVnFIQs0ggEwq1kGnvNAil/2UpDqrnXgpQO2oweqJB0HagcwWFD28+HUkH0+fDqarNi/Zb1p8/NfcrZR3kBACKQbHqrUf0RzCo1pNJOC7R5bso/ZBJqAJB0u2IsmmhOIY79QBeUpeEGSpLaHhSO8zIzn7EU3KdtITO2gxdh0jaS28ZCaLIOJF8gdt0CxKRNQt5mD8gZSFTo6ZFMJ771rFo9JFPMmKHsmztrn42S/0L0Ahn+S9Ll5e9vhLNVwQHAmQGlbAoXFNNRwMK2Pn8mjcD9cgDozMswN0YCJxrlTejHV+dAzTpJ663bfzoHBYy5t1/4122zgmwksNnY7OjdJGna3YP8uJiIiIiIiIiIiIiJuMW6Wz8Ruwb5dTHgvVbfxmQhlAobAEIkKs+qwki9A5CBUNFmBQs3Fhv1bqJA1lK4m9RaiHOUh0tEK0JzyIioFKUjZbSHTugyEbRodu48aEC0bDRiHnSraY4gKgSerdjiWgnehwmQqHE1Caq8DxlcBqw1EF/hBYAFx4L4mOk4OshrUf9vRKLeCspVp6CPyoGgGqHsE6oPujL3fEej3AmQeJPbwGID9trytKX8WirMlaQEMMJvenocGvF34vp5go5x1uGhfXLQzq/mUHak9lVjEYyZX7WNOzdlpCzJWu1Kx76MpDhxrPE/PTvtcF+A51kUTlKTFHYqJ9AINLPSOUAZaZAMec22YT2nek6Q+uM8KkB30kPFfhPskpHqZBCXEA/6k2VZLc5E1HlM7F4651fCKmYk9i6bvaL5x/cNqsc6pssMgoEF1EQ4IJZTmbgW4kiVQs7gMLkskOZuDWgtJysPERi9X5PQ65mwuqSStgzEdycbWZU+y1RabLCVg8dMPP4a4j/QwCYFoeatNu/GldfuEegKUowLMALW2/WMyzr5RyHBsox2kRuHlswp1BiHuPvGgF8AcjGhXxDmWpBMF+z46VbSVoFZAOrcnbfd7iGJHkbGRLPH6bfpPFuRJJZbkfWHVfqklh3Ca9yRpsmL/lsWETbcsyX55r3T4xX48f9RsO5K3x95XlmyjwT+btWmGkpSB51EFnhtrwIu5sm7Pp28ZC6g5gfwrPTuXm/aYDgVDqAbyWMH+LTRfzNZ40qRnch8EI8+v29sV4VkkST0QyMyCAV8T6VFgtBuomeiq29csAYuU6aS9yK00Wd51sXoO23c1fMxMRERERERERERERETsCC64MN7r2LeLCS+/bdQ6kDXVOlAT5mp2ZOZIwY6G9UJkrx4wfboERdb9EHivQ/SXlJ4kaRjoB/N1uw9mUvZwGsxyVKsDqh2kztLj7CLOEM2J9ktpXmIylagaTlzoerjb5hHkIbLem7b7YAyKBSXOhlTbYC63dI/ZNlXhPkiAwk8xZbdRATapI0nSlYrdR8ugHDTeZf+Wt45wCuYgGGP1gBJPBq710bx9059d57lkBoqa7+6154T+XntchhRKuos7U5yrztlGjCtZfmwtQWS50Bk32y62odg+YV9Lie+j0ax9D76q3+7bkKhAMWc/Vxxse37RppBREXVobju9Zker68DimYauDWX/hrL2vUKMgFko/qdMpcR0rwF4JgMzVBMghCFJdxRBfQqUnijTOwjOkPOgsCVJ05C1XpZNCWx5ez7IpexxKUnr9Rls3834ZqA5feOFbzfhnDvsnPtL59xp59xzzrl/vvn5gHPuM865s5v/33/Ndg8551rOuX+85bNf2dzH8865/8O5r4eVHREREREREREREfHKwHt3Q//2Km5mZqIl6X/23n/VOVeU9IRz7jPacNH7c+/9B5xz75f0fknvkyTnXFIbBhyfvroT59ybJL1Z0v2bH/2VpLdK+iwdPK2kRlPX81H7AxzyPPhMjObsaGIhZUefqOA5A5EVSfrh19s8QZAE19IVO0qUBedsScpm7HaS1FsBKdGQ1FwaXDOzkE6iYuiQNPAK6Nx6DLmSvCsflAJtFJE+2W9LSB6CqFUIq8Bpv63b3u8yaK1TwXwIE1BoXmnb/PJcoICRWslbhtyLV8F/QZKml+z7YRz8PQ5AZjADc8lyne+xPpj7+uGYxTF73gtlJsBgXeM9djHmXTAuq2271kKSJspQA7ONKMdVDLXtui4X8Jk4vWz30UgO7rHeNbNtbNxuk6RUHkQi1uzzza1wLYYFEhSQWMb1OKiQkG/PRagzkLgwmeoisIg6oHEwUbYHr19ybAAAIABJREFU9Txk/4ZzdltIApeYBnmop8ikwCcHvGXGICO7cT52/9VKdoah5G3vopXkJB7zSPcbzbazS/8Zt90NCNW07XXctMWE935a0vTmf5ecc89LOijpXZIe2fzab2tjUfC+zb9/RtIfSnpo664k5SRltPEWl5bEAtySkonti2hHczxTFOHmI4MhKkQkesapO7joKHcXaNXn7P2Ojti52PUzAaMp8AHIr9u/cwwWKUsB1Y2QaY8FMsPLBDht9HpQg8mdhKlIBUqS5sDD40jTnty7YewtVe0xcn4dFAXE/X4FUu9Ldft8jnTztR7O2n3bB+pmdG+SVr3E17ofiianq/aWX2PrFI12kY47UMjgRedK1W4D1oIk6e6iTYsZGLSrmhNg1+Ky3O/1Wejby2CiBzQUKoCV2K+FAgiX3WWzbR2KsyWpr22/oH8O2BmLdVtB6tS8rfQUwjwoJE1AAfsLqzbnqC/D9/W3jdnX5VCXPV9MAS0tTFWlQnParz0ODndxgC89bA+wry7Y26bgp6QDka8aBOOSEGDoztv3/El4L8mBt5MkNWH+qgA9tl0+Zrat+lE85oGEHUw6i1veevhvggLsm0Zz2grn3DFJr5L0ZUmjmwsNSZqRNLr5nYOSvlfS/7V1W+/9lyT9pTYWJtOSPuW9f944zrs36VPz6+2dS5BFREREREREREREfCPQkbuhf3sVN70A2znXrY1sw7/w3q9tLXfw3nvn/jYX+WuS3ue972z9jnPupKS7JB3a/Ogzzrm3eO+/cO2xvPcfkvQhSRpKj/vtpL/nA1SAAShmakP0c7lqR9KI5hQydWxN2JGiFkSYMiP27+wa5eg5qLTKQaSR0soDEP2VpDWQPoWsMnohrDc5wpRJ7GwtTbSrUISJGEA1SB1PrNmRzzUoPu4CCo8kDQGlbR08Th4HJ+FmZ+d64JR9GAZJ43KLj7nUsKc6Hns7z00X4ZQqMKbrQJUjR9sDnIRSL9Ah2nCtWyUocgXhBElKQYCTospXqpS5CXmn2OdUgAL/vprtJN9KspDBW0ftify2gn2x14B29cQyp5qIsjsI2T/KmNU79nPsdYM8n97fZwfwHFyTCbjWqQBlcg4EQQZgbhuCTC9lTje2tY+5WLf7j+ifPemdC3e0IWuRgEL8IvRBErLdElPBMuS6DZKz6x0e76UW34O7GV4O3x/3A27qYsI5l9bGQuI/eu//aPPjWefcAe/9tHPugKS5zc9fK+kjmwuJIUnvcM61JJ2S9Dfe+/XNff6ppDdKum4x8fePvb3vAenqS3zThl5YLBAfuR3QTK+t2ie8sGin/Y4VbY59Ah4mkuQKoEffb+vjP71kcyVngUsqce0DXbMyvAiC3LUkTqEf6gbOMSwm5qr8UKjCS+QCPBiHYeI/CQ/xoX4eYCmgFY1O2Io6k1X7WoemzKOQeic9elJgSQV8JqiUhWgfi8Bpm2nY94Ik9WdtGs9dPfb50rmugvLUUOAliHjX6yWb15/rtgdtK3CTpYBWOjpsq77cXbFfZlYa9rwn8YvOXN0ee01nv6wMdpiCQYxKeqk9UbTpqA+yNY9Gu+2Bm4FjLq7ZC5+/mLGpVTM1ftlLgW8IPVcngLoXGtP9MH8NgDEd4QqMPUmqwH1Ez6rnV+xrcrKHX0yo/1o7XEx0gcoYqUBJ0ljOflYtwLN+tmXPmdNJm2YoScNtu95iL2AvZx1uBDdTzclJ+n8lPe+9/9+3NH1M0o9t/vePSfpjSfLeH/feH/PeH5P0B5L+B+/9RyVdlvRW51xqc3HyVknb0pwiIiIiIiIiIiIidhM26ibC//YqbmZm4s2S/omkZ5xzT25+9q8kfUDSf3LO/aSklyR9f2A/fyDp2yQ9o41i7E967/9r6OBOTqltKCfZgHZ3HxRSHyjYkSBK2VPhTXWFL8HKis0TmFy3I0yHSnZmIjMUyEyAkUJXnx3tIYrKANljS6pCBn0RqBSUOiZKgyT1QD72ZLcd3uxJ221dSb6eJNpBY+++w3NmW3HcjjCFslDVKaKJEX3K3i6kWtEDCiwFUmeBezdU3Eatd/fZUfk50Fv/1i5WFXrTsF2hPTZkK/WsrdkZmOaUXbDbC+NSknKgFlYG1+3+ph09d4Fw1MKkPUel4HyIGhoqwG6BCMKcswupF2RHRvOO0wSXy8NmWy5pX883QvT8yCDX/XUV7G2bIPTQoAwVBKQvlAJZV/DpeLDPzgjdDYIfC3WewwfBw2kQGAHTZXtcXirzHE6F1CTmMAjPwJUG962HGYwoZOmsfUFJaOVgIOvaAnWzuZqd2TmQtrOKA5078ZgF6L8v4Za3Ht8MPhM3U83pr2Q/w98W2PbHt/x3W9J//3KP3/Fe5W1MdioBeTuyn79csm8EGihDwPWeW2SZvtPLNlXi7Lr9snfvvP1ykEhz+jcJb4NEYSXZSpLclaR1oEPWwe2HFhN5mvXFDwWqFyAqTiiyQIZ3tCCdnLPHQWbJfikLTWALwI2dBi7zHCzwjgTqgEqwSMnCC2bCgRQmvCBJUhnqUdLQRff12vfK0QK4V0nqK9j1TlSjkIKH/DiYEOZhMS9JB4r2C0KjBYaAq/ZiqyvPPGZSmvn85QNm25WqfT6hFy+iHCW9vd9Sc8psW3dsmPVkx663WKjaC5H5mn1fj4O0sMTcdOohMkh7bNEe0we7QNZL0u3d9li4HaiY6yBROg39I0l9YNxX6LLbOhCI6w7ULzy7Yg+wg3moi8jYbbNVDgTsVO0wCb8lnbcXGsWm/c4iSSl4Fzqct+ehyQrJjXMfkMnsXgAtCPcD9q0DdkRERERERERERMQthY8+E3sWHUmV1vUr5BqkYiWOAFAhHUWVl+p2ZK9WYT3nZ1ZBsxkG5zRkPFIZmwIlSemKHVmortjnUwJ9/IU6r8op6tAL6c2psh05nm1wEdntRbvvoQtUh0LEeTsYJkk6BuZNpCV+Yd2OBC2DpvwBiGRLrJCUT9n3CkXz5ziopXkoNB+HaP9A0aYZdgKmiCXQnKf+I8+HCxDdlKSvLts0qALo3A9DYSQp39zTy8X2VJTbhMxNHZSwanAtJSkNBbIHwHvg9Jq9XzaU5Id2Svbv7M8cN9ta4hv73i47M3GyCFRCmKLOrPGceQTq0PuA8jacszvorl47U0miAZL0lsN29qbYb/ff1NTO7hNJSkHmi8btKngstAJZgLWGPaZrkHEchrruTEAFkIL2Vcj0tkGgJAnGdJmAsW0v0PMWgTJ5AFLzI11fRwnv/M43fSXg5dQOGF/uddzQr3POvWXTnXrrZ6++OacUERERERERERERsT/Q8Tf2b6/iRjMTn5L0mHPu+7z3VytBf1PSrl1QtL3Xeuv61fUKRCskaaZmr/L7IbKXSRDX2z4eycxJUiFljy6SQFwGvesDEImVJA+RmSr0D2VnQqCCXuKaem+fz1rgd5J7NhVvD9qJJhVI11PSNmU8f9cG/V4APvxrBmwu/JHxZTyfbNHeb/cFW/71EhScrkA0TJJeqth9e7wbCoG9nbUI1YY4YJHT/L3StO/Ps0t87/ZA+mYcopRFMpMAzNZgYErKQKaE7t1hyBY1IKMhSWVwvi9C7dbhvN1BIS+XKtTFnWjZ0qf5un3MRIDv/JCtoqw7IKOWg/t6MiBR+poxOxw7dNA+ZhNqJp65YEvghsYXZQIE09AC/M4RKCCWpHzOHkN0PjRNk8CGJB0s2GN+uW7PJj2QxOsNqM5TnR7Vi1XL9nyaTNvZolRAkrcvb6efBxr2OBkGlsEqzLWSVOOSsF2Pm1kz4Zx7SBt16D/ovf+Dzc9+TNL/svmVX/Le/3ZgH49I+pfe++92zv24pF+VNCkprQ0F1R/13n4I3+hi4sXNHX/OOfeT3vsvKiwnf0vRkVfFX08XGMhwEdkwTF70QkITLSlIkcGSJN3dE+DNGFgHegYpPEhhhRYLA2CKlQ2oHBVgMs1B8Ta9vHcCaUVapJBeOBWTZwN91w+miENAb3nNSbs4tOsAFKj3B55SMBSK0/bYO9hln2sTFniSNJixz3cVXj4nV+yXYdJal1h9ZBTuhyn4LfnAwvFEt32taeE4VbWPSUpG/TCeJSkBc00DDKNIKasL1Lck6XLJLj5+DlSrFoEW2QiE74gFRd4y3Ql48QqYp63BdanCguuu8QWz7YEjs3jM9CG7/xK9diCgPWcvNEZmbNGAiQo/O788awcYjoIYAT0DSdVLYrECmtzIm2cQDGglqTdtt39xwb53iRo6An4sEislUh+RzwTd1+3Aa0cS6Gdd4FFBpsAUuJHCniO7GRtqTjdn35usoV+W9Oktnw1I+kVt+Ld5SU845z7mvefo4t/H73vv37u5v/9P0g9I+i3ryzf62ui9938i6Xsk/bpz7r3igF5ERERERERERETENz063t3Qvx3gZ7RhDr1VP/6/kfQZ7/3S5gLiM5Lefu2Gzrm3O+decM59VdI/3G7nzrmUpIIwv3jjmQknSd77s865b5H0qKT7b3DbW4K22lpNXB99WGqw3N7dAR8KC5TCmgXN7zeN2LrnknT0np05WZcvQ6QMUp+SlIboweK6XbT8UsXOzpQD2vAl4P+UIPg5D5bSrUChZhtkIo9DcSNFskMSfnmIpBFVrgFSmemSnepvUedJWpqwr+cXJ23KwwXQYg8VYKch9dUN9LJy2T5XkiWWpF7w8CDhgNOr9vUMSRlSrIYyajmYg2agb4+ylgMWqwooBNNQaJ4POOUSPYO8ZZZB/nWd+J2SukEz9VLFjspPJq+YbYfbR/CY0xU7Ij0Hzu25pB3NvzfJmYnsmj0YGlDZXYKM0DNLdkZjCjxXJOkE+F4c6bczAW2g6czM2YXtkrS0Zg/6gR6bnlcE2dgMyFNLLF+91LCzp1eA3kliKhJTpSmz0wbKXwdu3VaT6Yulqv2sT+wwzlwIyMfvdbyMXzfknHt8y98f8t5/aLsvOucOSvpeSd8q6aEtTQclbZ3QJjY/27ptTtL/ow0ft3OSfv+a3f+Ac+5hSQcknZGE/m43tJjw3r9qy3+vS/p+5xzPrrcYGaV0UNdP1MRblKRpqAmglw7yryA+MnE+Jam+DHr08DKTAqWG9lrAfwFMn2iioJcgKE+QJLUgB1hp2W20YKi1+aBtb1/PNUi55pP2diFTxAbQceihcGHWpousXCGlooB6GYzNeTCM+tiszdd+c5/9giRJ3bCgqoAaCqmpwRCRJF0sA6WmYR+zD6hDlcAC+SBQ3k912y+CdE2a3r7W9R1q0UucgidfkAr4U0hSNyzijoEe/UTZviZdAXoZ+S80gfqy2Lpgth1LHMNj0jk1oXP/4yV7kNy7YqtLSUw1HAfDtnlQF3xi2b7Wd/XwfHoEamt6B22aUxPU8dqzfK17gLvfe8heMJRn7XH73CwvYAj0DLxYsvsvVCdF9KCdogOLODLCk3jBtdKxx1cJFimXynytyxy32NXwXmrdeNZhwXv/2hv87q9Jep/3vuMCVMxtcKeki977s5LknPsPkt69pf33vffvdRs7/qCkn9WG6fS2wCeBc+7/FC+o/scbPeuIiIiIiIiIiIiIbzZQjcqNwjn3Hkk/vfnnO7RRE/GRzYXEkKR3OOda2iicfmTLpockfXYnx/Tee+fcf9UGnWpniwlJW1Mt/5s2Cjr2BDqS6v761fMEm9aqBqv1gaw9GCiuMAaazZUaU45mLtp8G8p4HB+x6W0hXl4TovIdoHPNg3pSqGiyBnleSvFSRqPkmW/T27ajcA2I8oYKxQgDoBRCRbB1GJf1QPExoQtSyxQA7kCMgRyIJaa+9IIvwUDWzuJR4bbE9+dtQM/ogkLDZj/3+10D9j04NGIrcJHjdMePmG1zAc+HFfK7gSJhctYugV6/xMIURbjWJ4r2+Zxd47lkFWhQc8lps23E3262DadZyejOoj3H52AMTUEmHBickvhZtYjX2t7uOPjgfO9r7cyNJBVeDdxQ2VS58uM29awYoNEVinb2Aerp1QDq8UpgTJcgezoI2dOHR+xrfaaEh9RRcNZOBbw4doJMF2dCumr2nNkGWiSd6QC/CgVZJbsZXvzbb3g/3n9QG1mCq/jb9KVz7sOS/sR7/9HNAux/65y7Smn4Tkk/f83uXpB0zDl3m/f+vKQfgkM/LOk8nRveNVulpJxz/yIkLbWbkHJO/anrR+dtXDKhIlAw5gPGaxYOQspwOSC3N1W10+AToPrSm4NJFo8obdTbbI8q0BqWoH9C/PKQ3KOFSsdO9VccrxzLLZtvO1e1X2boJTvHVFOsmZgGQ7KTIC95ZNiuqyE+siTNr9oTf6Vl86cfyNtUppDyDS3UhrP2uC2AclAFKIgb57SzxepYl03P6AIKj8SGbbWyfe8SxaAH9kkvppL0EqjxUGDiSB745YFalaeW7WMSTWwNaqhCqig0/t6QucNsW6zb46sB1E+JFefu6LXfFO/oxd0ibrvLrrdLAsWuMm3PCS9eBopigEbXWbXHiQcX0LkpexFC5nKStA71H826fX/OrNgvArTYkqSZmt2ehmcnzUGhObMFw4/UnJIwLpsQ/KO6GklahZqJJgS3iFK6HqCN0j22F/BKekh475ecc/9G0mObH/1r7/3SNd+pOefeLenjzrmKpC9I2npjXK2ZSGij5uLH6ZgvxwF7b1/JiIiIiIiIiIiIiFcU7qb6TEiS9/7Hr/n7UW2IJdE2n9RG7cS1n39Y0odfzvFfzmJiTyEhqSt1/SqYtJ4lqQkRAKJvUESaNKJDNTNUkHoeUqMPQ9FkP0RbJakG2YekszuIFFgWaqwq1J+1j9kNxWmFpP07C+JCOiqkJtpVCi5aEUwGJakPoutFaLv/dXNmW+YeuzjbNzld3fuEHd1svQDp/Kwd+lwM0G2GwU+jHwpHSYElHUj1U7SMsAjmj1Uw/5KkZ4Cu9G2ja2bbwT67rStpR1v7A2ZbJ7rt7NYS0GLIs4ZUsiTpVLfd/skpe785SP+FPP2yMFHnoC3p7Mzg+Yp9TSTpU9O2ik8+aWf/Xn3IVmwavI/nzNTtkEXY5tl3Fclz9j3fP2ffYy+cY2GFldN2/51bt++jNTC57Aq8ocyt2X1L3jIk9HcIMnGS9NyaPfedBbrg8YI9F5MRqsRUuVCxtIUmFEM3ApneMrxf0FxLBeqB6TSoCLmbcTN9JnYLQgXYJf1dRiLvnLs6ozpt1GXYM2hERERERERERETENzmISrofEKqZCFQY7F54SY1tosuhugeSMO9GV2S7LQcyagErBM2APOc8CLUvQi1GLlDUVoZiVoo6kAPvappDTNtdq6sAOwjkmrYDnUtZoVD00wJloSSpBFmfgxA5bthlEUpcsjXcPWSLJGlpyq4bObNmc5lJvnQVsmkSy62S1GOx344YtgKRNMr6zIAPwMWKHW29uB6QrYQETQoyfF15+1xHG/YYuQAeMBILL5A79irIC4cekMQTP5C3x0kZtH6X6zymL5XtMVTzduFoA2Rjexz37WiX/Vseg7qRvoydVcxdsLORkpRdtuWZ25B8Xpm1I+uTUDy7FBA5ID8lypoVYX4nUQ9JmoaaQpqFRiE7T2IXkrQC488DG/wwFFGHMtpEkVlvgHN7BXyNoP6qAFlgSUpCnUYO5tNFGENT4KUkMfNht8P7b/LMxF7Hdi+LmYAPANGVSL+8BO/ni3Czu0ApChmA0csw6erT4kaSyvDCSy/DZLyTCUj8IK1ohy/2zUDR5EzdfrHIp+yHak96Z8W8kjSQsV8UC+A5sjBpv9i/+Iz9QnJunfPnpO19Yc0+10+Wf9ds+4nhn8Bjpp39QFmHImGS1ruyynGPkB+ChXMloGAExvSJgj0prANNYB2u2XrdnktCKmO02KhBcS39zCtg1iaxkt1t3fY8dHqVFhoBUzFnT+LPu+fNti5nV0P3dY7hMQvwMkhX5VMzdnL/XGBxeAhe+OjlcwLMRSkQEFKXIkrSKMxtZPT5Qonv26QDKuGYTefqK9iLiVV4XkvSoQIJB9jb0TvCSJbH9E5fRGnBkAcVuwx4wEhSeg28gqD/ChBsOwjBBUk6aj+SN8qDdzluds3Erca+XkxERERERERERERE3ErEzMQ+Q0gDnyLLVXC5TkE6/8WSHb2jzIMk/fnaJbNtoGNHpCertqzneBdHE6tQRHa5Yg+Z2aodrQgVMA6m7Cgc+S8QlaniuYBxMvmS2TbWustsy8MgOtbNcrQtoImdW7SvJ01EJJ+4AsWNEkcbyUviQP5Bs61MOoaSyqSPXwWpxx26h0vSGmQmKL1OsbJ8gJpAc8k8ZBj8kn3vXoao8lSVI3vkKUJ0Jcqe1gLGvI8t7ewR88wquCknOXJMBakJKMrtyP4xawHPmnMgpUmUyROQUAuZXE2APGcZMgyXK/Z+aZ55w6AdyZakbog696TtbckTI/S8LkBh8kDRHkMpkOgORZCP5u1tz67bz6orZbtz+wLKMKEsqIUcuKTneu3JvxN4bhAo6zMMNKcXS3xf77ALdgW+UT4Tuxn7djHhtT3tJrQ4JCoTmW0RJ5S0leeg7kGS7kgcMtvmOzZ/mnjFIdYQGQV5GDIFUGDJALVl45xAvQVVtOzJe7bDLwCl9ozZ1kpcp5b2t1gAHi/5cEhSf9Y+p0yCTP/sNnqRrge04ZsdoLTBIiXbsBd/LvAwJn5wFih4/bBQ64VaC0m6bXTJbFtas3/LX0zbimDLDf6dbG4FZnhwzbIwBxWBfiexPwqUKCgPL2zHCvyIrIAx5Oll+0XnYM7mwo90cb9Ple1zOlm/x2zr2caX6CpyWZ41v33MHrd3gc8EmQXOA/dckpagloVwsMu+2KTl/+ZjtuGfJBXH7QVDC+qLTp+zjRjv7uHfOAZ+Sk2oo6JyuofumMRj3rMGNQoXDpptVP+4GqAoDmftZ/IgzIvFcfseS42C102oaPC0fa0rM3AfwYKTgrWSNFPd26H9b4QD9m7Gvl1MRERERERERERERNxKeHHAZj9g3y4mvN++AJcisZLUBxkGivJerhAVxz5eNUAJIbUiogZNV+xIxiroS0usaT0DKiFPrtmSQzNJrpC6o3PKbCPaVRvy8lnPadNicsxsq7XtPlgAoYuQug25Jh8atVWZ0jnwKoEg0pFJLky+vWhHgL+Ws7ddnTxutpGiiSTNgoPsLKiz5KF4nVSgJNZUp4jRPT32gCe9eUnqgvvotaMLZluh2x5g56cHzLZLZVbqLoFOeweySWsQ4e0JqJdRtoRcpQfAdybkFkweFfd32VWcJXDdJn8KSTpRtGmcJ0/Z17rrLso+2POBJFWft8f86py936WS3QenV+wxVA04rCfn7OtJjsqXy/Zz7MVAATap502v2qIVx0eWzbYkZG4kqbW0M7pl6eugDmVBPalv0J6jkv32vetgTHdWmSLchDm8De9JJaA5haiqpBa5F7DP1xL7dzHRkVetff1EEyqCma8DnxuoQw14+UwCefqtYzxBP9DHHHwLz67aLzpzAXncEUip9sP7+TAoIK13bB64JNU69jGJbrPSsl+8yo7N+Ubadkq6K2NPwhm4nqEJkRYbtGAoPGg/jF3eHkNHLoCzoaTU0/CQAjWZbxmzB0KIR090m3kwvOuFhUYIdRhD3Vk7ZX98wF4gnxq21WIkqf+Q/bKXPW7zxKnUZ7RkUxtfDQpREtfWUIBhBl4cJA5MFIA2c0efPYaGQIQsJBE5nLPPl+pYyLA0xHe+ULLvlVFQYjt8lz3vJYZJvkbKg8xd6oL93Gie2ZnU7wvz9kJWkmYn7PHHwbad1XBIUg3qqFZAVSibt/u9FXBPu7hoP8uGwJBzDO6xSoDi05ex56hsvz06EwW4kUgmMRGQ7gLMgrzwFNT5dPFUok5IR38XY8O0bm8vhkLYt4uJiIiIiIiIiIiIiFuNvbsUujHs28VEUy1NuutNf4prdjRakvqgAnsIIl5UdFoFntPDw+BGJunkMTv6mQBK1u0LdiT70gJnCZYgotObtsMHfRl7OB2p20V2klSSHXmpgq58E4ymDicG8ZhpCFMeIBdCAGm4S9KxPpu6kBmA6aZu/87GZTsDs3KJz2cKjOnmwISqDIEr0lqXODpMhnZzNXtchiKY/VCoOTSybrYVTkIWapR9AFzRpon5ij3e/YIdVc5C1nAsz5m4NtBJZmr2tc7DUyKkINWXsS/MIeg+yvAtBDKr9NiegeLsHpj7V+ucmzi9ZkflFxs2nfJNH7Png8Mj/GzoQDT7/Kx9zGeB/kOiAvNQQCxJM8A0JJoYZYTIf0hiJba7eux7Jd0Nak6BoHyaDNtAQGIMTKwugzmmJA102Z2bAEECl7P7p7Nqz4m1K9zvM3O2Jwv1DyllhTLa9MzZ9YimdXsXbbVU0vUv4rW2PclKkgPDI6LN0kAZhPc54oFLUnkVlCOAk50DF11SVJAkDw/rAVCh6QFqUJtsrCUtVe0XKDImImoVSZuGQK9IpHhyIiANOzBi01QS8CLdnLWv50vP2IvDZ0BmVGJFmAoMk7Or9jhYafKYfvWgvdCld7YVoOmQ0prEqjkHmiRbDG63Ff6drSv2IqU+C2pr8M5WBxnNz8/Z0sKSlIM+IkfzAQhaJALacLM1e7+jOft8SNI49FAmIZoWbLwEbzMho7zRnH2+w2BI9rUlu0bhhYARI6l+kQkh0dbIebwWeJmD91aN5ewxRNfzcWYSSvBy+vCw/QKeHqCHOR+xDfLCz4My3EDG7sBukKqVpN4iBAroFoRnsgO+aSKgDFeG2odZUCGjutNagOqVCFCIdzOiNGxERERERERERERExA7hguIsex37djHhJCW2yTKkSfpG0gK4eK2DX0QG0hbjYBN/eY2jTz7QbuFUv50iD9UxLUC0ugGRBcrcNALp6tGUnXqnDMNSy44+EQVKkrKyoyt5SOn3Z+0fOltjWtHgpJ0eLizZaee1ih3teQoKAs+X+Ran6CaBFJ2fAAAgAElEQVSZED7VvGy29XTs3yhJC9BHwARA07pSi/t9PGdnEWpAlXAv2tuV1pj28fTsEbPtWNHOWowN2ZmSMlAQ1wNqMf1gtkVUTJI0DAgrabpiH/OFlZ3xFk72cqF5CRJGC037HmtA5ftYxp6fJGkwY2cfyKdjCuhlL7J2grrh1iYq4eV1+3zWm/bvyCYDlDYIkZO5HEWru6hIWFIPDAUSVqAwcSfgZ9DaoQ/McNYee72g8idJScpcQNLMr9jPx866vWEnQDlCKhO8NC/BO9QUzBWSNFdj08Tdjj1cP35D2LeLiYiIiIiIiIiIiIhbiUhz2sNoq6X19vUF2Cu6Dbe7u9fm4FNx6EKNXIjtttMldjklX4cBqNnqz9rczdAKmZx7E5AloCK7UASz1Lajgm0PbsGQfeiGWgtJqkKl3VrTbqu17Y5vAZ9WkhrA3e9Lg5fEDvmix/IcYpqFDMwy1c50bH5+IdDvNKmSO3YPcPerbe530qPHSNqiPR98bnoYj3moy46krdTh5l2wefRzII9bgL6TmJtO0WGqQaCouyQNd4F8acJ+/IzBdsNQayFJl+2yJK17e0JdSNoOz/kmPzfa4GlD9SjjOZCGDTyeAzXhJkahb8n36HiRM3HjXSAzDfUCM+BfEcpoJ+DBkoToeX3W3ufcFLMBZjCzah+TovlDAfEEmqMcZMp93Z73Wsv2+dRAUECSkpCBKZHzOOyzHXgxSUB9zF5ALMDeo+h0mio1rn845KhKTEyzoOK0Rbhpqah7BdQzJGm2au/3pXX7fF7db08GxTQXjlJKegF8OFZA/51ezjeOCWoySbv/ztftNG7Fc1o07+wXgELKPiZNCikXMCGEBwqlsulBtNggTww8HeWhmJw4nhlnj68cXC9JKsJzil68arBgKAYKGAkLa/aCod6xf8sQKCtJ0mGgMpWArvQS6LTPwotXGUzpJCkJFM9uWIjQQiMbGF/kSzMP70+HgJIV8nJZgzk1Bb4YPR3bR4HU+iTpdSN2pfDh223FplbF3u+TL7JYyOPLNvWK7utx8LMZzNr982DA82i82x7vVfBAuQJKRke7ud+HsvbvJF3/lXl7Uf7UAqsALsF8S4XvmYQdODw4QCIQgWASTH1+h7bLSKsKnE8XKFr1AG0tZEbZk97br6v7fC0RkOKIiIiIiIiIiIiIiNgRNkzrbuzfy4Fz7hHn3Kpz7snNf7+wpe3tzrkXnXPnnHPvv4F9HXPOPbvNfp92zv2Zcw71/W/aUs8596ik75Y0572/d/OzAUm/L+mYpEuSvt97v+yc+xFJ79NG3XRJ0j/z3j+1ZV9JSY9LmvTef/eNHT+hTPL6CB85LUtSo0MOjfbKuR8iOqcgaxqir5xdheJjKCacBwlJKs6TOCI9bx8S6VOhfqehSBGJkaTdubMdOyIoSSvObh/SIbPNQ4xhDeRLJWmuYtPPKJLWm7czMN93p10MXQnol5NbadPbdJuBrL3dEjjFS9IBMLIm+VKiEFCbxGP6XMmO8FKB+ngX3AySitBO1/pK2e6gaZD1DKmF9MC4Ja1/YppQ1kKSyK7lzl57W6KlTdc48/Uq8Gt587A9pi+UbeoeFZJLUhZoPKlhyBxCmu4NR6+n6W7F68o2Lau5bG+3AI7cfzYxaraFXnSWq3bknZ5H5FVSCUTWT3bb42QVJEqr6/Y8vQ40X0lahMwXzRen1+w+eHAsIIsKmSZPFwYeu5QVq5aZ5tSG30nvF5NwrdueKbkhdsOuhud59OvEF659L958Z/6gpO+QNCHpMefcx7z3p3eyX+fcv5P0Hkm/aH35ZuaNPizp1yX9zpbP3i/pz733H9hcKb1fG4uIi5Leurmw+C5JH5L0+i3b/XNJz0uynwTXIOFS6kpdn648lmejKaI50UvkbbBgONhl04po8pGk4S77EiWdPVmugrLL4QCPfhy43hfL9oTYj11rv3xK0jLQxAZBwz2Xsl+Wc3WbtiBxWo4mRKoNGc0xtepwj53OLuTtbQfvs8dQohdqOGZs6oEk6Rm76XWw2RRw9y8GHkSkfLMMFAJiMrtAEploYuOZnamE9IORlMQ+MHQ+B2ARQvPFpQpP50R9WWnadwO9q8yDj4Qk3QnGYaS7T79zO5W+rTgE8y29m5JhaTWggf/07JDZln1qxmwbfoM9DlLHWBXNN+z7KDlnF4701Wy60gPrtoRUAyh/EivZTQE9j2oKwSZhox3uozWgEr5YsuevVCDAd1vBHrcvlOzf+RJMxVQTIUn5EXpmw70CSpIO6EihGscVWBzSfEEeTQfgXCWpNwOBMVg87wZczUy8gnidpHPe+wuS5Jz7iKR3Sfp7iwnn3GskPbr556e325Fzzmnj8XuODnjTaE7e+89LWrrm43dJ+u3N//5tSf/t5ne/6L2/Ohz+Rvq7sLBz7pCkd0r6zZt1rhERERERERERERE3A/4G/+0Ab3TOPeWc+1Pn3D2bnx2UdGXLdyY2P7sWvyXpZ7z3D2zT9hbn3JOSLkv6dv3domNbvNIVLaPe+6u52RlJ2+VUf1LSn275+9ck/Zw4MClJcs69W9LPSupLuIxS26jKdKd5yU2FdpSZoOJHKhwNURMK4FJ57Urt77VBKpYoFpLUBRHVMRCfWoW6bvKgkFjJAYxpMaMx1WCh9jQM/+GMHbkiSsgSOINK7OLZfxJoM2CL3LxsR8ir8xwvuLBie1SsNe1jUvZhPVAIfKgLikO77KhfDqKQI4EswWi3HanNgQfFOmTizq9w5HgAFJsoM7EMY6gSUK0iEFGHIvaU0QCbBEnSPKiFEdYgUzIMmS2Jo9XTFaB/wj6J4ipJX1my91vvHDDb7ivZfkAjI3ZbCIsLNpVpGqiNREcK0X/OlOzBMAeeNYt1+/67q49pmqSet1C376NvGVsw2w4dZnosiAvqvis2VW4C+j2E1CAoJO1QeyIBXZsKFGDT/NUNFEV6dqYC6ZCQ2tNux8vITAw55x7f8veHvPcfMr77VUlHvffrzrl3SPqopFM3chDnXJ+kvs3AvyT9rqTv2vKVrTSn90n6FUn/1NrfLSuP9957d03BgHPuW7WxmHh48++rNRdPOOceuYF9fkgbFCllU30+sc3jATLDkqQMcLbLQNlbAyWjnrQ9EXw9L9mlln1C01V7plgBZY2NcyKlBrvtfIkWVHwn9UI+uwpvOjMNO3c8k5zAYza9ne7Pt7ZbqG+gBvKuwQfukv2w6TwNHPJue6GxuGqvs59csI8nSWfW7bEwWQbDsbL9onM0G2Ij2sfsSdvX+u6ivWDIJvjGboBcYT5h05zaYJQXCgTQAzcFC3baL6nFhOaSOai3oOd4qMaKcAHW80/Y73NyoIr2zu3ia1tQhvuT6EpNmKLoJUiSWjBPn4d77KWKLS/cuszSwyQNS+ai59bs5wZRvbKBATZVBjovvPGutu257dnl0BuYvfjpy9jbvuMN9vyVe4DnLzKCO9lnh/gOztvHJAlqSerAXOwgQEq91yrb24Vq7U6DAh69Q5HM9E5NLPcCNrIONzyRLnjvX7tdg3PuPZJ+evPPd3jvp/72GN5/wjn3G865IUmTkg5v2fTQ5mc7xcck/SF94ZVWc5p1zh2QpM3//9sKM+fc/dqgMr3Le39VZ+/Nkr7HOXdJ0kckfZtz7j+8sqccERERERERERERsTN8I9ScvPcf9N4/uPlvyjk3tlnTIOfc67TxTr8o6TFJp5xzx51zGUk/qI0FwdZ9rUhacc49vPnRj8ChH5Z0ns7tlc5MfEzSj0n6wOb//7EkOeeOSPojSf/Ee3/m6pe99z8v6ec3v/OIpH/pvf/vbuRAjfaaLq/8xXWfV7IP4XYjYOhDFJXLYE1/bg10qQMRe0oBL7Rt6kYSlBoaEG2VpEEoSO0HisEQeHhMV3lVvlC1oxIFCGcMpuyq72TrGB6TDO96svZvITWikIkX0VRyWSgchYwHqaiErvUimC1SRDoPxnQrTfYxmYaxeeeoPb5Gu2xjgoMjTE3IddvXOmuzUDQ4aEchj8/xMRuLdt/mX2Nnk+5O2hHM9oQd6p96AgampM+BUs8MKCSNwLgcYX9CDWftqPyZEhg4QmB0NMcGXy2Iyrc8UMggMBqiWGThZhnK2mOaMr2hou8ZyDSVIM1ShPmUaKOUPZak0TzQRkFEw8m+2GCzJEk6DH4k5JeUKpIJHL8WucM2NTSTB8fEhN1Wn935q1ii274urUX73k3CvUviEZL0toO2699c2c5aJECIZS1ginixFBgMuxheN03N6R9L+mfOuZakqqQf9N57SS3n3HslfUpSUtKj3vvnttn+JyQ9uskSurYA+2rNhJO0Kumn6ERupjTs70l6RBv8rwltSEp9QNJ/cs79pKSXJH3/5td/QdKgpN/YXGS1rDRPRERERERERERExJ7ADjwkbmi33v+6NlRTt2v7hKRPBLZ/QtJWTvfPbX7+WUlcFHgNbtpiwnv/Q0bT27b57k8psOrZ/HGfvfEzcJK7/ufN1rhQMwUulVSEl4bIVLlFbq4cfWp07NV43dlc06WWfWlXm8zP7AMOJhXBkrPxakB9k6LglJ0hkOOvJHW8HQk517AdbV8L3i29aY6ejEF0fafIUcFbYAJrwAzH3gN2Y+fr8PqkcUC1Kk2QlJWkXMIeQw5cWV3RDt+lj7D0cPoQePzUodh+xuZdJyFzM3yUZYDfKjuaeHHJjraugndKFuYDiTN1w+DN0w21M/VAETrVnBTB6Xu5Ye93PXAjjefBBwC2oxeMcuB3kuhHD8zFkEBQBfYZqp2h5A39TjrXkMM6y5DaY698BVzS51hnNH8vFPH32u8PiQyMy4BnTXsdMsjwypeEaD9JCxf7+D2pDjLUBZDkzWNhN8/hEw12Cd/tIAGf/YC97U8eERERERERERERsUtxC3wmXnHExURERERERERERETETcI+X0vs58WEl/fXUxtagUtKmdweSFNScRpRSUhuVpJ60nbKMNO2aRazHbs4dKXJlh3DQCeh1TW1haQVe6D/1qEyMgVUJqLiSNL5hG3/3PJ2mnem+m1mWy7BsrtEcypXQeMdUsfPrtjXc7LKqWOikxC1owWuBUdzTKM72WPfR13gyjqUt/uuCg67krR4wT6ne98KGz50j9nUGR/HYyoBYg5nbTPRxsefN9uawMCggkqJC/yTIMVKTJM0yECGQDK3J7L2Pb8K/ieS9OSK/VibAonNlaZ9zw9CIbkknSjY+yW6zRWQ8F4LsDtJjpZotzloo3kYVGMlSUfgti8CvaWxQ4lbSSoBLesoFGfXq/b1rIJkqiT5p21KUtdh4PPCbkO0ovK8Paa7MyDJu2IfdHrC5ketgpu5JM1UbbGHaZiLz4B8/MUSD/guKNTfC4iZiYiIiIiIiIiIiIiIl42bqOa0a7BvFxPOpZXLjF33uQ9I/CUhakPxCtrrACyoyd1ZkmYbtrFaN1lYAkLHpCLrGkiNZiFK2QwYfM1U7YjOLHh9dyBCnnbcPwf8SbPtYMI2e8vAGDnUxZXmSeijbMaOxlJmgqJ33VBwKkl9VDTftPd7dt1uo/6R2FxtHlxrhyEaFsJYj12c7MHG2a3bco5ubs5skyS3BGmEs7ahYgsUZ//66cNmW1+Wx14ZCqmvVOzC0QpIlPaRC5WkAogDnLJNmpWCTMlyK2S6aZ/vaN4+32bZ7p9mIKz4mmF7jjpwyC4cLa/Y9/WFOTacpELzmZp9PZdBrKCQsvd5Xw9Hz4/12LLFlCN+ac3OrC43+BVlBbJUxbQd6U6DxHmtysd88YJtJniqbTsxdt9uj71MT+ChDLXHyQKM6TW75+mZ0pVmysRtGfuEah1bzCGXtO/dQoozjmkQx9kLiJmJiIiIiIiIiIiIiIiXD89qZ/sB+3Yx4X1D1fr10b8ns5/lDUuPmE2r9Z2tjHtBAnEoy1Hcbx2hqI293cHWkNm2yCp0WoEIJiEHBkyhaPVQ1o6SNGt2hC4J0bl2oD4mn7B/56GCHUGhvTowNpSk3pwd3cvn7QvqIfvwjj47IjgD9RSStAbRqTMlOxMwlLbvhSJIC0uc7l1pkqEW1A8FJEop69OZgxviM0+bTe1l5viWJ+z7fnXZ7ttm2+YyYzQazAslaRa4zN3AaS/AmF4MSPKeKNgR1/6M3e+XKzZnO2Tm9rZRO5tLGY9z6/Y1eXqFMzBdUI+SvxP6fdQuNBip279DktqTkG1r2dds9aw9733qjJ35ItNWibMPLajDo6tJ412SMpDpHeyy59oE1LFUa5zRroDs+sKcnW4r3mvXfGWP8zO3fdp+NjSX7D7owHyaS4FRbI6znPQ8GoAajmLK/p19gaKc5Xqg8HIXw4vvj/2AfbuYiIiIiIiIiIiIiLjViJmJfYb+1FFsv6NgR4oGIYtAfLihrN34rmNTeD7jDwBnG9SlSmfttr85dxCPWYeoA1BqNV+3o0+h4qMCRLMHO3akaLJuR+dIcUiS+pI9Zls3nM/tRTuiM5TltE8GTO16b7P3O3jUjjr7mn2uha/Z5nuS9Dzwf+8o2pHRYsqOHFOgX5IgaIrqZhfL9jEPdXGWoArqLc1p+4SbUBvy0SdP4DEf6LeLH6h2pgVmZTSinwL+vSSd6gZVNAgKUoXCdJUjx19dsa9Zf8bug7mafUL0OyRpMGtHpCmqTMnTHCdgNLVqZwCHp2yzwOwJ+752t7EpYuo2iB5fsut5crMrZtswZFgmQG1OkpYa9kgptezreaVid24t8OA4DGaBfd12JiAJKnbVJtfkzIDSURUyMEfX7WdV6l6+1oW8/R7QmrTb0iP2oD6SsWu6WnD/SdKT5w+YbWdK9pim+St0rWfq33jD11cSMTMREREREREREREREfGy4eXV3ucV2Pt2MeFcSunU9XUDJzq34XYtuOAJUAkpgGrOEeDCH7jbjlZIUvpOiFjk7AhK36gdrXhL7goe88JF+5i1tj1kekA9w7k8HvPL83b/XanbNQE5UGxqeQ6RP9O6YO+3Yo+Tg6AI0wlwfNeBjzvqIfICYdP2vB2JnZ/hmolp4NkTX5lUvUoB7xSaUwcgWn2iYF9PUm6RpKWKzYfPTtgn3GxRto2v9TLUWDmovCFuehOyhrVALQHVRRBy4P0xkuMI5l/O2G2LdXtezCfteeZNg4EBBpgERTDKhlQDh3xq2b7PWo/b+32gbGemu07ZykCScE6ovGDfK198xq6LeHHdHrOLdR5fafBVIQsB8mEKZYRGc/bYTEJdRL1CXiT8rCKfkylQhrvvaXvuHz/BNQpuyK7FSCzb87+D2r/Usv28abFwlwah9m8IatvK8P5wEFSpJKnt4bqAAt5uwf5eSuzjxURERERERERERETErYRXlIbds0i4tPKZ6/ngaXBMlviCrzTsRhBU0HeNQ/Yh4CrafMHmNVLNRHLQjjAlgC8qMZ87Da7Sax07ChIQ+EHH1tGUHZXpwHq/3eJIbG/HzsC0YVP6LY0Oh9LIWbRTAx79BTs7c+VJu3+eX2KteuKJnynZ13MKkiihQrMj4C/QBYpg3QHtc0ISov1Xlmz1pAbUL9zba18TSRoq2DUnc2W7NmsNuOeUDRnOBdTLwPOhBRkPGiPpgMIPOSrnoe7mUME+aG8moHIEfbQO3H3KLmfIHEXSRXBNLrftAT/xxHGzLfckz18NyA6ugorPUsNum4X7uhLgtD9Xsmsx3jBgew+Qt8VslfuApviJBfu+rkNtwwvA+ZekFDwfeyD799WpUbNtdML2nZGk5BH7t5Byl6vbc6aH6ZRqSiSpJ29nJvogC1wBxaaO55chqmPc9fBxMRERERERERERERERsUP4fU502reLCe87anauD7OcKLIixT29xGW2ow4vle1IR1/BDve07dIGSdLSFVDxgQjc+MM2STV3gtUqxks2AfFrF20VhwVwLyZ3bEk6VLD7bxEiVxNlm2u6mLBdaUPozw6abbeBSsidY8xzLgzYXGYHd2MHsmJ1UKihSKwkLQH/l0DZh1xgVqH4Ui+oXRVS9pjuBU15iRVaJtZsLu4KOPCe6OYIOZRYKQ2+GKSKM1u3zycU+aL2EtSGHIb56zXdXPN1oMuOyj++ZEcwXztgH3O0mydNyvqUW/ZFWWrYbQs1jpD3ZwMpZgPk4KzAvUn3EQ0FundrYMRcCNzX9/fY2YdRDPZDdjlQl0TtL4KzNilIhSqLinhf279lAeaS+gQ7YHeN2mmERBd4eMBknLFLZ9Q+xzVoJVD2qkHWh/qWfLMkaXgPG2BHmlNERERERERERERExI7R3udGE/t2MeFcQunE9ZGv0PVswNKZIjMnuu3IQi6ggU9IQKTjzJzN+T/QsGVUEmNAWpdUGLczE0PTdsRwDSJpk6ByIbGT6RE70KgkqDmVV+3sgiQ1ZUd7jkIXkbpNB7jnkpSxg3dK3277Xvh1O2wzOmVz94/UOJwzt2T/0EWIFPUHnNsJlH0YhwzDcK8dBc9kObLXLTsjlAUn2KcX7HssC+NAkhoQ7W8C351qFKj2oxwYexWIGFagNqQF5zrQw9kZctmlTObRnjWzjZziJSkHdUlFqIs4W7L7rxkIKw5CwnsUxiaqcwWu51AWVMhgWyfwdYBrHYqseni4DmTsByuN6VANWh5qFEgxjdyW6XwkflaRn8YAzHurszxP59OQfTho11OoBgqLw/bcn5q1fUokaRoUrzKQdR0FH5MG+ElJ0kzA+2K3Y5+vJfbvYiIiIiIiIiIiIiLiVsIrmtbtWXR8S9Xm9UpIk5VQlsCOlh0HsuSpbuDCQ6RjfZZX409M2goQxMF8/awdBckE+OUtEKmhqGl/xo6UFWpcp+GAAbzWtNtWG/bvXHcBTjuoRxB3eAF0tLtXIY0iKT9rR1VTI/Z1aS3Y2y0s2umOXJIVkGiCo7jodMXecijgPUAO6xSxX163o2HV5UDmK5BFsNALClLnSpzhE9xHFMEkv4grFbuNFNEk1scvw/k8B2N6OM/3WG/RzmQ+cnzSbEuAqtc8ZNMk6allO1JL0U0ozVIuyWN6OGufbwFUtEgNqwyZJEmqQTaJousrMJ+WQRmIVJckqR+yM1QzR3Vdi2wVpIsJ+7lCc/jDQ3bdzWDg+UiYAyWjr67Y89fkkp2VlqSxJnhJZOy5z4OakwPbex+oXzhUtLPEC9AHhJ5AjdClgI/Obgdl7r4eOOcekfRr2nh5XfDev3Xz87dL+veSkpJ+03v/gcB+jkn6E+/9vZv7/GNJF7WhOTon6Ye992bKam/njSIiIiIiIiIiIiJ2KzalYW/k38uBc65P0m9I+h7v/T2Svm/z86SkD0r6Lkl3S/oh59zdL/Osv+C9f9B7f7+kxyS9h768bzMTEREREREREREREbcSGzSnm5KZ+GFJf+S9vyxJWzIHr5N0znt/QZKccx+R9C5Jp7du7Jx7jaRHN//89HYHcM45SUVJ5+hE9u1iIp3I60Dhges+H+liuk0vGMH1QQEVpatbkL6rVvl85kAKsgWyeGvTNhVn6CQnpEg6tmfSTreWQNKyGZD4oww6rdYzQO04kmLDNkfanYAiFJUePmAbN0lStt+mB/mm3daBzHs3GAiFpBX70vYxiUZB1LN6wNyKsr1zdZsrUQYJ3OEcUxO6s3beniSW+wr2fnMrtvSkJL1UttP9hSRca2/PF+PAIFhtcr9X4XoeLwBNE/b54jIoCkh6Vc7u90LRPubqsk0JOb/KlBCa3YDFoyGogU0GKGTvPG6bjo2+iuSg7f0uP8Pz9JOXbQos0QXvKNpjbwAoM28aYantsRG7aJ5oa3Oz9n003gXFxZKWgOpLz+Q3v9MuME6+6hAekx5Id37NHgf3PGnf109PjvAxGyCHfMoWGnFZ+5qoDaIxD9nCE5J0pG2PhYE5MOtctq/1VJWL0IdY1X9Xw8u/HDWnIefc41v+/pD3/kPGd2+XlHbOfVYbL/z/3nv/O5IOSrqy5XsTkl6/zfa/Jem93vvPO+d+9Zq2tzjnnpQ0KKks6V/RSe/bxURERERERERERETErcbLKJlY8N6/9ga/m5L0Gklvk9Ql6UvOub+5kQ03KVJ93vvPb370u9qgRV3FF7z337353fdJ+hVJ/5ROZF8iqbT6NX7d58e4PlaDIOPXgMLRBkSCVkt2OLEMZlqSVIWio8WGfcyZJTsCMNSAylBJykK0B4oJFyGqHLqR1qFOuAUbl1t2lO1y6/oC/K2gzEU33Bl4rZe5+MxDiiHfsTuhA7oB3X129HetEoj2QNF8qWVnt9ag8L0IBoSS1IFYN2WhjvXY43ZkkMc0ZR9y3XYfpHvsE/JnOFpdSNsXbajHjjTWQDL1+SV7zD6zyqG7EZBlPNELEUzA38yx/PInLh402w7k7POhTOa5dZ4zD3fZ1/N1YIZHks9nSnamRJIGj9n7Tb3hhL1hzr7HBjLn8Zhv6LYL2Dvw3Kit25PbVy7bpqSHDnHWNX8HFAKD5vpwx7531xssUFJu2cX4x8BUMnnf9e8GV+EfuAePqQ7I3Jbt+b2vNGu2DQYqzTurdnsyC300CFm8S/b5CDJUIbSgoJ7mdxKIkKTqzjQ0dg2+ETQn59x7JP305p/v0EbGYdF7X5ZUds59XtIDm59vtSU8JMmeMML4mKQ/pC/EAuyIiIiIiIiIiIiIm4ANB2x/Q/9wP95/cLMo+kHv/ZQ2FJceds6lnHN5bVCZntdGwfQp59xx51xG0g9qY0GwdV8rklaccw9vfvQjcOiHJWF0Y99mJtJK6YAfuu5zUEOTxLKVOZC3o1X1aZAqnIcopCR9DWiq5ZYdgbu/147Y3LmwiMdMFu3fkkjYQ2YwC9GTgBHQ6ZIdVSWpzIMQBS+mr7/+W7EI2oFkTHTPiN1//WMslUlzRfqgPRaSrz1mbwjXumeBszOnnrhitp35nB3VurfHjtReLHM2hLJtRE3vQLR6bpHrF2pQb3H/q+yIa/KIXRNw9Ges9c8AACAASURBVCE8pDQC9QTFw3bbzILZNPanl822w2c4S0DIQ21DJmPfJ4dKHFH9nYv2WOhOU+bLjv5+72HWrTzVa0e6EzAP0fjKBzJ8rXUYuGvAd4d7N/GWu/CY3W+EUC3w4Yvnps22N/25HbwsLXPmy521x0KrDvfuHNfAEEi6+dgwzH0pOzPhpm3DV0nyA1CLd//tZlOmYI+he9P2fS1JtUsg2VuFerEEyL+SbGyeM0K5U/Zv6ZN9PrOr9jxdDki/Pru8t1MT/iYUYHvvn3fOfVLS09pQev9N7/2zkuSce6+kT2lDGvZR7/1z2+ziJyQ96jb8C64twL5aM+EkrUr6KTqXfbuYiIiIiIiIiIiIiLjVuFmmdd77X5V0bfG0vPefkPSJwLZPaIMWdRU/t/n5ZyWx+sE12LeLibY6WvbXR4RWGsxpP5S3V489oHxDCj+zNXuVP1nlVMlQzj6frpYdlT+7brfV5wJc7yF7274jdvTpcNPmXfdDH0jSQoPUI+zzacMdWg9EOhrAfV1p2rdGIgGc2YBfTwICnK4LbscuiAoWgM8dEK5ODNpR8N6CzQOnKG4JsgCSNAMGhgMZm0dPxnNVuF6SNJC3f0vyNojo33fKbPLU75LkdsYidWn7t+TusK/XkXXOQq0s2eebStljuueQnQl4MMNR3La3OfhPrdo3y0rDvuePd6/iMYtd9hw1vRowGjQQymh/5Xm7NuT2eTu9fOANdpYzeYIVdVSEyQbmC9djT0LZot23swuc/bu0aEfsn1+zx96pbvve7M1wFioHqmi9lMGie3MCagkkuUU7k+nvtjMTutduS1c4w+e/AvfZAtwPB4fNJgfKlp0rXB/TmrPPt7lu9+0g1LH0LXOGKr1D9cXdgA01p/3tgb1vFxMRERERERERERERtxo3yWdi12DfLibaamklcX0U7/wa66L3ZSAqD+UNc1D7QPLvIzlerc7V7FV+IWXvmMQhQtzXfBO4lJBgaIOOfQikgT8PlNDVht0HZ9eBqywpCdGptSbwuYE/nZ0FWSpJmS7ifUL0/C+fN9s8iOe7DF+T0ml7/L20aGufX1i3I41TNVblGM3ax1yHbFuFfExAYUuSHNTA+IV1e7sJOyLoSEVFkhYgugeqL6Sk0pqxt5uZ47ltat2Oyt/TNW+2pY/Y4733ED8g76nYmZRmxx5fvZChOjDIylOkhrUEinNUT7EEmRJJmqra12yhDn4Q/9mOtoa8eV49YI+v2+95yd4QbpVLF+xsyCr0nSQtw/1Zgfn9y0skscjyiw8P2fUxmbsh0l2ArE6J695aT0yZbSl4dvq77Syn7jqOx8yU7Pvez8P8BdkrqplYfozrE7KQpEp32/N7tmwfM/T2cKCwd/WCbqJp3a7Bvl1MRERERERERERERNxq+JtWNbE7cEsWE865S5JKktqSWt771zrnvk/S/yrpLkmv894/vvnd75D0AUkZSQ1JP+u9/4vQMZJKaWCbyNdw1861jEnpqR/csWsQNT1T4ktAqkL5HV69FwPa8IPztqKHg2MuVSAKEliUj4Pm/JPLdgT4/DpHkQjDGTvSdhtEV0iZitzOJYlon1nwmSifs4/5wkWbF3sFXJglyYPnA6kufXkB6lgCF3sM6oByUI9Cbt6NDvc7ZZNKX7ZrDdxXzplti7McNb0MTs33HbOjyt3H7T6oTNpzydcWmGM/lrPTlXVwElbLvjcTxwLHfLudHXzoL2xVIcrgpfL8UJ4/Y2dgLpTJ18HeLzmWS1KtbY8/ymosNuwxDUFcSVLb25mos18C1RzI/pVa9vlQJlzieZHm9xpkLWbrfF8/+ABkDo9DJgBk4zoTXC/wwl/btSHHJm1Vpu4++5r42zgz4d58v934Z0/Y+52EOirwCuoEWAYJuCztqt23U0v2nHh6LZBFB6+l3Q8fMxM3Ed/qvd+aA39W0j+U9H9f870FSf/Aez/lnLtXG1JXdrVbRERERERERERExC5ApDm9gvDePy9J7prQrff+a1v+fE5Sl3Mu671H+YOkEupx10cj+zLMQz2QA011UAnJg5oTKd9sOKDbuABupRNQEgClH6guJUm1RTtCkO21I3TdoLyxAFkLSeoBt+BDoHmddHZ0eL3J0cTutP07++B8WpBpSoIqjiTVa/b1bF+y91uv29tNQt9OgXKSJLXJ9wIijTkYX6GI6lrT/p29cE2I7z4AHieSVINo7MyUHS1brNoZjY9OsrrNINxmAzk7qnwkbUcTy+DHQplTSSqAJn8TMmorX7X7dmCU1XbcETsLOvROu/ahdclWqGnYlHVJzO0fy5HjO2Xb+Jh3FG1OO/qj1O3xlQyI1zThelPGcQnuP4r+nijwtabMRDeMPcLxgPhW7i7ODpqYsmt5Sl/j3zlZtjPBSy/YY+9NnzlttqW62MfE99pzlBu355L2c3bmJtFvH7M4xn1QXYJM3KJ9TZbh3mwFWEBFfpTtcni13c7ugb2CW1XR4iV92jn3hHPu3S9ju38k6auhhURERERERERERETErcbVzMSN/NuruFWZiYe995POuRFJn3HOveC9/zxt4Jy7R9IvS/pO+M67Jf2spL6sy6tnG4fVfJIvVh64scTZLrfsZXP961A56s/Y50sKGRRJuwLKI5K0OG9HFvqatuLQas2OOszUOPJCmYA+6INZ4Gd2BcThyyCzRVG/JvR7roeJnYl1+C2g414GpZRpyHaEuN40pufBtbYMClK9gezfiYIdC0hDzcSLJXsMHQXOuiQNZO1I2wpEyy6VbdWqEIc3C7zsSyU75JqctPtgBs4nFD2nvu2Ga1KD+aL8V7aHgiTlHwJluLR9zTplO0N88VzAfwFA93UjkNkhFCHyXoGMR1/avmgLcP9J0hLUWyScfczRrN23+aQ9t60G6sFGoC7i5Kjtp+FhDppcZO8BX4No71m7JqfyNVsBaXaGVdHI2+LFkn1/pv/cVi97w+gLeEz34Am7EeaZ+pR9rXPAJKDaSEmanbefVeQHRLZHofJkEJ/aE+js8wLsW5KZ8N5Pbv7/nKT/Iul19H3n3KHN7/2o9/487PdD3vtT3vvhfPJlmfdFREREREREREREfIPhbzAvsXcXHK94ZsI5V5CU8N6XNv/7OyX9a/h+n6SPS3q/9/6vb/g42p5zehB1/qWBzM6Wv0d7WPvcwkVQfJGkF0HtibIsVDMRiqjOrtuZCYoikTfDhTITHk8A9bUX6hCa3v6hIc4xJS6obbiX/SsIWDMBtRgd4EBT/1AULYSV5s5IqsmAUyllQ5qQYSAH+okqn+sSqBUdA6fvDETz7+zhSG0/zCVzUAPTAzUwpBpE/SpJIz12NHb49fbvJB+TyS8xZ/3879nXpQfUpdZqdq3FRydYje5Y3p7j7+y1+6AA2VHKJEnSqTE78p7K2OczMGlnWZ5e4WfDVNWeLwbgmMcK9vxFXhvHD3IWKgVqWDnbCF0OMpn1J1itr3beHkOduh15/9yzR8y2RfApkaQ0KCxS3chXl+0xdPeX5vCYvUfA5Ro8M7Lj9nzRmLTHe3qUXw2P32crXi2cs88n5AdECD3PdzO8pI7buwuFG8GtyEyMSvor59xTkr4i6ePe+086577XOTch6Y2SPu6c+9Tm998r6aSkX3DOPbn5z84XRkREREREREREROwSdG7wf3sVr3hmwnt/QdID23z+X7RBZbr281+S9Esv9zgt77XYuD4yUe+wiycpetzdb0cHUhABJv+FfIozJQ/12yohVDNB0ROK0krSS+BNQJGrNeDUBoSVMHPRA/rmIzk7XDFb5YMSf5P8DhrQf7NXOJpY7Lav53CfHTVdLtnX5C5Q2Aqhr8s+n9GcHUmbq9ltuUBd0nrLHrfk+ktZsVDUCoLrWoJ6lHnIINQD3U5qWA3INBEo8lkBXxBJSoMXTmIMlKlAZqVQsMesJM2t2ZmLM0u2Xv8MKM7d08NKMw8O2RH0wSH7fKvgQTEXUKPrO2lHeVNH7D64f9rOaIw9bbs7S9IyuNDTXJIBRasmjPf+dw3h+ehAoN3CRbu2oXgWIvKSJs/bdGaaL7rged0TUJ6idwTKnlLs9rmLtku6JL3xsj1O3CGoIYIUe33ZnkscqFNKUm0evEFW7WfDLGR9RrisMlgTtpvh5dXWHi/6CGDXSMNGRERERERERERE7C94dcSB472OuJiIiIiIiIiIiIiIuEnYy8XVN4J9u5ioq65LiUvXfZ5O3I7bDZOEJEifkjHR0THbhGrgnQHVqTvG7LYElLy8eNlsWvyYfT6S1AYayirQbYbydiFrSF3rBZD9vFi2+3axZt+giwEtuZ60Pfzpth8cBwoBqwpq+YI9hvJA3xh9J9AsRm26g5JcJKwVu28PPmbTD/qfslPrZ1fZzK0XaATlln1NLgANJSSjmQeqXG/a3jYDdMFcgFu1BnSI2Zq97d09UMgKtMixAH2RjOmUgrZB+3r23s7CE0NrdgEtCTZQ4fvb7rTnNknqfcQ+Xzc8bm83Z/+Wnscm8Zgepho3Zs99qdtsesv4A/Z8KknjpBLRZVPItGoXYDe+YpucCeZLSdIgTH70rFqz59N0nou+5yv23DfQZfffAShCrwREUWZqOzM3zMMt9vgSF/g/+JQ9F+eL9jMlMWg/NxpVm+I69yzT+kgGnqRhD+TsZ9yVCvOcQgITuxleft8XYO/bxURERERERERERETErUakOe1RpJRSf+f6grCQ9CtF/nqytgwdrcb7H7ZX8f7b34Tn40dAuGqbAvOrcAfsjMbg0ZfwmJ2vnDPbuqEgrrJoF1cNgzGYxIW3gxl7mF6CiGpPhiX+1hpQIAsSdmkIXCWKnAlIgoxr12GIvHRD/3VRW6Cqzdvnk+iyzweLxSFqJaHHkhYbdr8XoO+cY2E6ks8dyNjFszQOLkHGTOIC7R4YmjQHEbKBwncq2B1ftaO4bsyOcqduhwi4pLFlu3C0c87uv7tG7WvS+2bIxElyB+GcavZ+Xa8djc0McjF0ZRIM5J6xo/2pIzCZFPg+2rEYY7c9J6SGwXz1rzg7k4TfmRy2+7azaI+9K5d4fBVS9vWsgLDCEjyPLgdkpnvBaJBEEMgElMxpJensi3Zx+3132HNxot/u955D9vtD5YydNZSkfhDuoKxFCTLPZCgpsajM7off9zSnW2JaFxEREREREREREbHf4eXV9s0b+vdy4Jz72S2WCc8659rOuYHNtrc75150zp1zzr3/BvZ1zDn37OZ/P+KcW93c79POuT8LWTLs28xEzqV0R+56c6PeNJvg9OfsFTdhcNjmYLoH7zbbOgU2fXJztpmNe+mKvd+TJ+yd3nYcj5k4P2W2ZdDxzm7zs3hIDUHWZyBjR1Da3u6/dCBavQYKkyTB2SSaeIejyg2QxuvU7f5rPmmPg/qs3ZYZ4GhOomD3Ubtkbzu3bPPSZwOZCTJzI658BwwKc4GoVR2iXgWo4RiGjNkzcD6SVIehcKzXbkyTLDHIQc+CIaIkJZ3Nyz51zs4gZE9B3x6Fmi5JmUV7vh0q2XNm8fV29sEdD9gMVe25pPkVe24TXM7mKo+vVgPqY56w7/nzn7IjxzQONo9qttxzm/07C7eDXOhle5/PnGb50nLL/p39ML8PF+3fWYbsgsR91PI7k06/p4drVSpQC0WysQWoXwvJnn5l0a5HOfn8gtmWf8jOMKQP2fN0/TmeSzIgHdsF8ynJsYcyq5XW3q2ZkCR/E2hO3vtflfSrkuSc+weS/ifv/ZJzLinpg5K+Q9KEpMeccx/z3p9+Gbv/gvf+uzf3/e8kvUfSL1pf3reLiYiIiIiIiIiIiIhbC/9KGNL9kKTf2/zv10k6t+nrJufcRyS9S9LfW0w4514j6dHNPz+93U6dc05SUZLNf9c+Xkw0fEdX/v/2zj1Gzqs84887s7M7O3u3vV6vvbbjBDshF3JpCFCgDYXS0NLSikqAUEuQKKIivfxBS1VVpSr9A5Ve1UaqUgjQUkGkUrWpShug5d42CYQkxvEF3y/r9d4vszv3efvHjssS+30+e4g93snzkyzvztnv+8583zln5jzvrXChKlauczWR+fsdzccq+FtuJcV1siTbwrHjtD/+xP6wrbg3vmb2rbEShJFhek1svdCic57Uudg/s7wYKwvXj8XKJwDUieI6ORMrqtcT5bji3Lf60GJ87BLJfHPgUKyMMlUmCT8Q96dILBr/fS72p2WF0wBgT3/8PAey8RiaJfNknmUNQlI2p/jY/eR5dSY4bN41FF+zg2TZ2EwywrxyI3+fx0n2qR4SFzFZiNXqApkn8xWu3I2QAo8TB+I5NjZ0NGxL7+GFylJb40xG/WPkoZE4KT8VK7EAUH4uNh0ujcfziGWxqyf4c8/n42dWJH7ix0mB0OcW+aBuNu5mZynO5jczGz+v0wmF+1gx1BGm5hPrA7s/AJAjsVD9RD1//Ztjy036xoTPx0ps0q7sjcfm+LPx94cDMzw2pERitw59L+7vrZvi/qT64+e1ZSvP0nbyVNzfxXK87jGL/2iWf9mer6xfr3zHZaWG3WRm31rz+0Pu/hA7wMxyAO4D8EDjpW0A1rqunAbwiosc+gkAD7j718zso89re62ZPQ1gI4BlAL/L+tC2mwkhhBBCCCFai8P9kt2cpt397su8wM8C+Ka781zKazCzQQCD7v61xkt/D+BNa/5krZvTBwH8MYD3Redr282EwZC1C9/edIm/5SpRoMaJTzJ1z58gSlqZK9nV47FCsHA6Voc7/utg3PamhCwhA7FKaYNxJpDukbiv5Vmu7FWJqlqqNDdMNyZk7rq+L1ZQmMo7T5SXpEw8RaLQdRNlb5FkH2FD7/gKv3fFepxNZmcujh9i9SCKJKMJwFU25lNbJre2mLBO39gfZ+O5+ZWx1Sy9IVZNb+3k8Vcskwr6SNtSbA0p74s/K159hit3BWIpmVmMVdMnHovXg5v2T9FrDtwRj/fUcHxNL5AsPd+JrWkAcOxIbFntImp1hmTkK5PxDiTEWJHxXiSfN0l+9Kx9jqwXQwvxGp4na1tSnv9F4tM+3GQiHnZfAWAwE4+Tm4bjuZK+e2fY5ruvo9e05XjeZwZia/jOl8Zr0Mi34/hHAKiTUMXSQjzHxp+J59jWl8UxS10b+X1Pn4lV9gViaWKxKrk0V+7n1rFlAsAL4uZkZu8H8CuNX3/a3c+b2N6O77s4AcAZANvX/D7WeK1ZHgXwOfYH6/vpCCGEEEIIcY3icNS9ckn/6HncH3T3Oxr/xgHAzAYA/DiAf1nzp08C2G1mu8ysE6ubjUefd655APNm9prGS+8kl34NgCOsb21rmaigijN2YZabU4Ud9Lgi8UlmO6/Cubg1/Z3TYVt5gkuqJw7FWRxYHu38/8b+7jfsSdig3rAtbLKxuPJxx1Ss2BhRBAGgeDRWtVaIKjhE/PpZVXIA2Nodn5flC2e5skskrgYARokPfr4Uq4KThVhNnCKZZJI4tcJ88GOVjVkCkhRV5lt9thC/lyI5cSZBFtmyIVYFM7cRv//tJHNQLqGGR4Y4tbMaKET57CR1VdJD87Q7XadjS9PsEo8vivj20VHanj8U95eplOxxzld4NqdZUqskSzLG5EgbywYGAC8lsUfMMsGU980kxgUAFon1dLIYj6+NZC2ZJ2tQUiwUi1va1Rur4J3EmsssoABw/WAcN7j1teQzJxdbbmw8IfVgiaQB3DUWt+0kle27j9FL1o/HVpbMbPwFdCEOj8Hkc/E4yPWS9whgoCf+HBshngRLpOp9uc5rWwxm1nOdhisagP0LAL7g7v8/ydy9amYPAHgMq3nqHnb3fRc59t0AHjYzx4UB2OdjJgzAAoD3sE607WZCCCGEEEKIluK4nJiJyzu1+ycBfPIir38ewOcTjv02gNvXvPTbjde/AiDOxnAR2nYzUaov4nuFL1/w+kThXfS4FZLRI02EonMTse95+SJZpc4zPs2zOBxeiv2VWXXeynzcn22PU2sVsqzyKonxqM7EbcxyAwDzi7EP+RTx/50lPr5nClzpYBVJN5KKpDt7YpWNZUACgHItVvfKJJ5igag9LGPT1h6+gI1kYwVqiVzziVkSw5GQDpz5XjPtZiNRarsSLtqRie+Ds+rPZVKXIAEvEWU0Hc8H64zHQfVwbH2Y28+X81Iptj70dcfj1snzOpGQbWeSxKgtEIt+mVgC+jq46WtjV3MKYIFYI5+d5+vXjlxsCWDWBzYX5rg4jMlC/D7vGIyvyTLO9ZBsh0nxC8Od8RwbG4nHbRdZowZnec2HLT9DLAy3xfWdUCW1EJ6gGTBRJ7WWOsZIDNEOkiVqOPZAAIAUs6Qcj2MyB0/F3z3Onou/Kx5J+F7S1xnfg2ItnvMnV0jl8RVu+fru3JX5Mn51aP8K2G27mRBCCCGEEKKVOAB3bSbWJV2pfuzuft1lH8esD0yXOTAf7/K3Ej/UCZJTHgCemY+PrXrco+li3HbrMzyP9p23xlmZbHNs8ciMNFfdGQAGirECtYeod5PLsdraT/zLAaBUj4f/BqKy9XXFkmFvD7dMFIkvM6v2yjJdZInKvT3Hlb3NPbFyxe7tQGc8LisJaybTeHPkkfGIAE6V+HtXz8SWpvpyPI+O7eNq4pGFWN27eyz2y954O1FNS/HNnZ7n8TqbBuP3OXRLfM3NM/Fxgyf4+JokWaIWiFVxlswFVqcEAMb64vgFVjE52xWvUXcnxJRsHyXKe1+8ltw8QzJsLfBrfnc2Hl9jZN73ECsUuwc3v+TCGMS1dOTiudIxHM8/NscGu+M4HwCwYRLvRKwPmIyDCcpH+TWXp+LPjfzj8TVHrv9e2JZ9eRyLCAAYi9+nbYznWGd/PHeHK/E8sQQr1Lnl+Jos7rSDfL9idVMA4PYN8Rh6hCeVuwbwK1IB+1qibTcTQgghhBBCtJp6vfmCtuuBtt1M1FHFsl2oFp1Y2kqPO0bsDzViCcimY4WJ1bY4uMR9cU/m4wFYqccqW6EWH/fvZ7mi+rKzccXbjhvjTE+p18bqSnbfCXrNDlJPo5O0DVdjdaXvHPf77CKZl4a7YvVudCzuD1PnAKB+OpZmrtsSq2V33BLXQugY64sv2JeQcYhU1t5xIFbPX3o8VinLpB4LABRILMs58kxYRqsiiR8CgBPT8ZgvfidW78YX45ilMwlWxTmSZevIZDxXek5MhG21HyLXevdgbFHruHkkbiPn3JzlmW96xuN5NDcbK+9bSBafHbtIihoAPW+I3wu2EAV4KbbSjTzO6wCk+uL+pu68PmzLkVif4ek4UxEA3ARS58SIBFyJxzSNH9rBMyFiE19vQwrEEjCRUINrOR5ftb37w7bqTKwSL4zzOkwLS/G8P74Yr8V7p+L6J3ee5FafrffFsVvMW6D7LhJD+1Q8voaN13LpJDVZOkhV8jlSKZ7FhwLAQkI2sWsZv7LZnK4J2nYzIYQQQgghRKtRzIQQQgghhBDi8nG/YqlhrxXadjPhcNQuUk3wXI2b73bnYrMgK4x1kpy23kNSuCZsVpcqcUDcWYtTwq2k4iJd/XN76DXzh0hA3J2xSwi2xGZc28hNmH4wNrl29sf9qZMbuLnAn3WzpLoSqrIRJuZjM/jul8RRZOmtxFw9StzWergrDoPFw+VKsdtVtshzWnYtNOc7yoJnF0kwLwCcIilM50iChDlSYO/4Cl8+F0nOgd6OuD/bJmJXL+JpSZNAAMDWEnGbqZKFaCB2R8rs4EHCWZIWe6QnXqO6xmKXho6X8AQS1JWph/SXFBnsuD52bQQAZ/ePpS3uIuOWvY8k6s2tUbaFvI+kcy6RzwZW6K2ffDYk3YPxeB2qLZB00ORtdvfxZCEsicYG4h5bJml3T8xy1+Oeb8buhAP3xue1LHG/Iwt8fom7x1ZJivNOkoZ7uRpflKW6B4Be4j61HlBqWCGEEEIIIUQTuNyc1ivVehGTxecueL0/y1WtuVKsCmaIwjRACk0dJqLWsWUSRAfgVPpk2FYnqcaG6pvDtokE68wTh+Mg63seOR229b88VtZTw9wykdkTB5GlTsX9XToSP5OePp6mtZOo1fvmYpW390issuVIETgASFu8oFRI0Z6Fr8QqbjpDAsJ7uJqY2UxULSIUzRyOlasZkg4UAJZJMbw6SQN8NB+ryrMJwXnZVHNK7RSxTBxc4B8O5RpJlWmkCGEqXqPypKjmf0/xwn039MUBsjv/I1Z4+26Px1dqiFu+uu8iynsHGWCd8f3xPJ/XtS8dDNvqpNBbeii+Zi3BmrZ8mlhSvhnfvzoplJfJNf/lo16Jz8uSRKSI4aY0ycfXyVPx+BrqjT/nhsbi5BzpBMMqK4Z64HgciF8hKvhCheconSCWiXmSIGGJPJPFCl+fXrkSr7dvqMXJAQZui8/ZORbPzdEs/46wdCKeK4fHYw+F7o54HvUnpHw+kueB8dcyDqDuyuYkhBBCCCGEuGxkmVi/mCGdunAnu2Lc93WlHquCWcTq02SRFRWLj8sw+RfATDVO01qsxIWSMtl7wrYauHL8qaOxFeGp+RvCttedjO/trTfxFJLdu2OVhKVd7NkaWwKWTvHhvVCKlY5hUphu/1zs35rkVsyKSZ2biuMpWAG5b0zHz3Mgwzt011CsQG0bjK0hRZJS9plZ7rtfrMcKHdM+zxTiuTKcEMfC/G3PkdTNE4W4RwXmJw+gM0VU0/nYLztP0qKyGKtTK7yA3OPTsXJcrBFLwPH4nNs38PSlG3fFaT/TffH9qRKrz+wJ7s89PhcX+FqsxOuMkbTgmxOKP5aJD/n4SiyvPz0fr0GsgCoAFIlVo0CsYl3Ewp4hFrxcwreF5SqxEneQ+XmouXMCwHU5kuKVWPGemY37M1Hglq8sSYtaI+pzsc6O42vJvoX4PsyWrwvbXj8bewts3xPP3Y4h/r0k2x+/TzsbH8divpxYpQGe7Xg9oM2EEEIIIYQQogkcUAD2+qTD1S2VngAADfBJREFUOjHYeWGRnW21nfS4wc5Yueoj6Zw6idrDhtAyUU8AoFqLFbH+rrGwbc5jP8rZhB3yVDWO0zhyLi7AdGghturcM0cKqwG4+2Bs1djcH2cJqVRilfL0Er/mIVJ8iJFLx/dvucaf51I1VjCHSBaMSaKeTxMh7SvneEzOAVJkaXQybisT68K2bj6+duTiDp8mBe1YUpxcmlsmlsg8myzGbXniy5zr4HEapRqJjyFz8GQ+tlos1eK2bhKHAQBnyfucn4xjlk6TJD3Lh/kcy3wrbpspxuO9m8RTZBMk+0VivlmuxorqJpJZaUuOZ636kaH4udSI4jpF6rXNlfg8qhIz6HB3PDanSNzIaZJ9q48UZgWAIqnwu6s3XmtZMdhKgqm3RCxCU8Rb4AwplHfQ9tJrzhfjz0cjngYX85Q4T8p4nMao3RS2PTa+JWw7sBjHTv74bGypvKEvtkoD3IpwnMS2scJzc2U+r6l161rHZZkQQgghhBBCNIFDqWHXLYY0uu1C3+3tWR4vMNjJFEyWPzlWZdLE2S8pZmJDZxyjUEWs8PYgVh0ma8RJFUDV4/MeqsXZnE4hzgn+1TPcj773TJwBgllZelKxf3Qv8VEFgEl7Omx7beYVYdvLhmJ1Jc0fJwzxH5wlVo2Di/EYIgI4etJc8dq/GMdMHFsiOcrJmL55F1fsN3cTP3pj6lOs7C0l+FbXSTQGcS9HD7l900T5BIAieTBsTdiWiy9a8bhttsizhZxdifuzRNT8qXK8HiT5eq9YbFlNezy+8nWujDK6PVbB8xafN1PeHrbdMsTn0VYyppllYntPHJ/Wk2D5YlYzVhNpYzbuT7Yj/nwsVrkyXCGWFOrvTk67WOZreG8mPjHrb97j5zVgsdIPANVMPB/YZ2d3Kv5MZp8LALCEONvaSSffWRbiuXCYZN27rpfX93jVpvi5sLibAonzmSRWOgCYKq5jywQcfpG6Z+1E224mhBBCCCGEaC3K5rRuSSGNnHN/3ouxjbjGbsrGStHp5VgdYMpnUuaIAYvjEIqInZlLiH1fM6mE3PBEQSnYXNjGMllUSH8AYN6IlYVYH8oenzeN2NoBANt8d9jGnhlLCV5PWC8WiYK+QHxGme/wNLGYLdV43YtFiy0TacR+9F0ks1kS/aRKbCfJlLKfxLgsJYg+XaS7RfKwya2lfv0Aj5Via8kOUpKFCbwnEmIm2Ptk/XGPLULjZZ6Pvo9kjpsjmfUqxOpaJtYOAChavC5uqMU+5Oz2lbhAjjRRYzNNujcwywPAnyebD1tyzFIeH3euzC1fLGaiVIvjLbpJDExvhq8zPR3xsSukrbccx9oVnY+vQYvrMI3Xng3bcqn48yhjPENZyWOLWopYJmpGMkgRk9CGLm7pHSH1lHId8TVXavEXrGJCvOFEKcF0cc2jzYQQQgghhBDisnFAlolrAzO7D8BfAkgD+Ji7f4T9fQYdGPULFW0WEwEApJA1zSbAfAEPLcQyUVeKKy9b6rGaUfHYgnAifSxs25SKMzIB3H9zrhqfl2Wr6MnE/sgAsKMeZ9laqccq5XR6ImwbSrBM1YkyU6zF6spZUqm6l7tWY67ELAwsi0+sBOUtts6UUtzyxVStWcR1TO7qHg3bKgnmmYViPE5WSI0FFk+RT4iZGCeGMebPTQT7ROWY3YdlUil3thS3LRM/8Pkyv+9jPfGb2dIdn/e2QWJNq/BYqJMkE1S5TrK+lGKL7HyFW9u60/EYKqdIvZFqbGWpOvchnyxwZTlinlgjDyyRmweg4iQbFjGzdKXjvjKLbFKe/8GO5mpmsOxbLLYIAJys4SyeIpeK788OxGMPADpJYNx2j9fFCRL3MO1xhigA6LLYXFkgHgoFxNa/BYvn38alPbQ/I9l4DLHvSaxW0HeW4vsDALPpSdp+rcPGarOY2QCATwPYgdXv83/i7p9otL0LwO81/vSP3P1TCee6F8AH3P3NZnY/gI8COAMgA2A/gF92j11BEsJFrw3MLA3gQQBvAnAzgHeY2c2t7ZUQQgghhBBJ1C/x32XxfgDPufvtAO4F8Kdm1mlmGwB8CMArANwD4ENmFqvPF+cRd7/D3W8BUAbwNvbH68UycQ+Aw+5+FADM7LMA3gLgueiAGmqYxYV+hlmiKgPADFEFmUqSr8T+orO1WBbtsVjNAYACiUOYScU7+UI9jm3oJ1mXAKCT+EiPdt4WtuWJ8rJQO0OvmUfsy9xrsa/8plqceaMIrmAm3fuIx/PjYVvJuF/nAmJLSgYkloVs+1nKuUGM0P4wqhaPvUliRfmfaZ6PfqIUVxBnvunEwIcV7s6NGXJipnRnieWQVXMFeAXsk4VYTSzX43Ewmov7c+MA14ZGsvE9YMrxcFd840cSfKvL9XgssOrGuXT8PrtK3AqwUiWDiDyTnZk4RuiZGb6WnFmOTZIZUiBlohCfd4VkBgKAudR02DZQj9f4fD4+b4Z8JaghIXCEcDYfr1HsfdTIGgQA2WIck5Mii2beYqtrzuNxAABbK7HlYpFkiZq22PqwAXHNKADIkHnE7hH7bDhX2R+2fakWZ1AEgM8fjy0em7piq8ZgPf6cL6Z4XOVoLb5HB+mR1wJXLADbAfSZmQHoBTALoArgpwB80d1nAcDMvgjgPgCfWXtww+PnLwCsAPjGxS5gZh0AegDEXyqxfjYT2wCsHd2nsbrj+gHM7L0AfgvAIIDK/87/dRwN9SLmNL7U6i5cwAS+3uou/DBsAhB/IrYhz7DG2avVixctL7rxJlqKxtsa6NrXJPyr+/pifpkX/bsEmhlvvBpx63kMqMaZZH6QrJmtLff5kLs/FPztXwN4FMA4gD4Ab3P3upld7DvzD2QOMLMsgL8F8BMADgN45HnnfpuZvQbAKIBDAP6VdXq9bCYuicYNfwgAzOxb7n53i7skXgRorImricabuJpovImrSTuON3e/7wqd+qcAPI3VDcENAL5oZpeqzN4E4Ji7fw8AzOzTAN67pv0Rd3+gYfV4EKtCfRirvC5iJrAaBLI2gnes8ZoQQgghhBBtjZm938yebvzbCuDdAP7JVzkM4BhWNwkv2Hdmd3esWiV+jP3detlMPAlgt5ntMrNOAG/HqmlHCCGEEEKItsbdH2wERd/h7uMATgJ4PQCY2QiAGwEcBfAYgDea2VAj8PqNjdfWcgDAdWZ2Q+P3d5BLvwbAEda3deHm5O5VM3sAqzcjDeBhd9+XcFjkYybEC43GmriaaLyJq4nGm7iaaLxdOh8G8Ekz24vVmqYfdPdpADCzD2NViAeAPzwfjH0edy824oz/zcxWAHwdq3EX5zkfM5HCaszF/awj5kkpSYQQQgghhBDiIqwXNychhBBCCCHENYY2E0IIIYQQQoimaLvNhJndZ2YHzeywmf1Oq/sj2oeksWVm95vZ1JpsC+9pRT9Fe2JmD5vZpJl9t9V9Ee1F0tgys3vNbGHN2vb7V7uPon0xs+1m9mUze87M9pnZb7S6T+LyaKuYCTNLY7W4xk9iNWDkSQDvcPewUrYQl8KljC0zux/A3e7+QEs6KdoaM/sxAHkAf+fut7a6P6J9SBpbZnYvgA+4+5uvdt9E+2NmowBG3f0pM+sD8G0AP6/vbuuHdrNM3APgsLsfdfcygM8CeEuL+yTaA40t0VLc/WtQfXFxBdDYEq3E3c+6+1ONn5cA7MfzKjaLa5t220wklhAXokkudWy91cyeNbN/NLPtF2kXQoj1yKvM7Bkz+3czu6XVnRHtiZldB+BOAI+3tificmi3zYQQreRfAVzn7i8D8EUAn2pxf4QQ4oXgKQA73f12AH8F4J9b3B/RhphZL4DPAfhNd19sdX/EpdNum4kXrIS4EM8jcWy5+4y7lxq/fgzAj1ylvgkhxBXD3RfdPd/4+fMAMma2qcXdEm2EmWWwupH4B3f/p1b3R1we7baZeBLAbjPbZWadAN4O4NEW90m0B4ljqxFEdp6fw6rfpxBCrGvMbIuZWePne7D63WGmtb0S7UJjbH0cwH53/7NW90dcPh2t7sALibtXzewBAI8BSAN42N33tbhbog2IxpaZ/SGAb7n7owB+3cx+DkAVq8GM97esw6LtMLPPALgXwCYzOw3gQ+7+8db2SrQDFxtbADIA4O5/A+AXAfyqmVUBFAC83dspFaRoNa8G8EsA9prZ043XfrdhBRPrgLZKDSuEEEIIIYS4erSbm5MQQgghhBDiKqHNhBBCCCGEEKIptJkQQgghhBBCNIU2E0IIIYQQQoim0GZCCCGEEEII0RRtlRpWCCHaCTPbCOA/G79uAVADMNX4fcXdf7QlHRNCCCEaKDWsEEKsA8zsDwDk3f1PWt0XIYQQ4jxycxJCiHWImeUb/99rZl81s38xs6Nm9hEze6eZPWFme83shsbfDZvZ58zsyca/V7f2HQghhGgHtJkQQoj1z+0A3gfgpVitJLvH3e8B8DEAv9b4m78E8Ofu/nIAb220CSGEED8UipkQQoj1z5PufhYAzOwIgC80Xt8L4HWNn98A4GYzO39Mv5n1unv+qvZUCCFEW6HNhBBCrH9Ka36ur/m9ju+v8ykAr3T34tXsmBBCiPZGbk5CCPHi4Av4vssTzOyOFvZFCCFEm6DNhBBCvDj4dQB3m9mzZvYcVmMshBBCiB8KpYYVQgghhBBCNIUsE0IIIYQQQoim0GZCCCGEEEII0RTaTAghhBBCCCGaQpsJIYQQQgghRFNoMyGEEEIIIYRoCm0mhBBCCCGEEE2hzYQQQgghhBCiKf4PEYO0W3aVCe8AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plotting Mel Power Spectrogram\n",
+ "S = librosa.feature.melspectrogram(aa, sr=sample_rate, n_mels=128)\n",
+ "\n",
+ "# Convert to log scale (dB). We'll use the peak power (max) as reference.\n",
+ "log_S = librosa.power_to_db(S, ref=np.max)\n",
+ "\n",
+ "plt.figure(figsize=(12, 4))\n",
+ "librosa.display.specshow(log_S, sr=sample_rate, x_axis='time', y_axis='mel')\n",
+ "plt.title('Mel power spectrogram ')\n",
+ "plt.colorbar(format='%+02.0f dB')\n",
+ "plt.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/reza/anaconda3/envs/dg/lib/python3.6/site-packages/scipy/signal/_arraytools.py:45: FutureWarning:\n",
+ "\n",
+ "Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwQAAAEYCAYAAADicDErAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuUbGdZ5/Hfs+vWl9PnknNy4yQhkSRiUEFzDAKiCOEiouHiJagMI6xBHBRdXkYQBmHUGZaCFwYVI2EIoCgCEUYQIVkD0VncDpKVq4EkJGOSk8s5SU6fPtVdXbX3M390JbTJeZ9d3bWrT1fX97PWXt1VTz17v3vvd7/Vb7/7Yu4uAAAAAJMpO94FAAAAAHD80CEAAAAAJhgdAgAAAGCC0SEAAAAAJhgdAgAAAGCC0SEAAAAAJhgdAgAAAGCC0SEAgCGY2W1mtmxmex7x/lfNzM3sTDN7b/8zC6umn1z12Z8ys/399w+Y2T+Y2fetip9rZn9rZgfN7LCZXWNmv2JmtY1cVwDA1kSHAACG9w1JL33ohZl9h6SZR3zm99x926rpb/qf/RVJfyTpv0s6WdIZkv5U0kX9+OMkfVHSv0n6DnffIenHJe2TNDfStQIATATjScUAsH5mdpukd0u6yN2/p//e2yQ9IOl3JJ0l6c2S7nD3Nz4id4ekOyX9rLv/bWL+H5C0y91/eFTrAACYbIwQAMDwviBpu5l9W/80noslfWCAvKdImpJ0efCZCyV9ePgiAgBwbHQIAKAa75f0HyQ9W9KNWvnP/2q/ZmYP9qeD/fd2Szro7r1gvrslHai8tAAA9NWPdwEAYIt4v6SrtHKK0PuOEX/bI08ZknRI0h4zqwedgkOSTq2umAAA/HuMEABABdz9dq1cXPx8SR8dMO3zkjqSXhh85gpJLxmudAAApNEhAIDqvFLSM9396CAfdvfDkt4k6U/M7IVmNmNmDTP7ITP7vf7HfkvSU83s983sFEkys7PN7ANmtnMkawEAmCicMgQAFXH3W9aR83Yzu1vSGyX9paQjkr4i6XcfmqeZPUUrdyy63szqkm6T9L/6nwUAYCjcdhQAAACYYJwyBAAAAEwwOgQAAADABKNDAAAAAEwwOgQAAADABBvJXYZ2nXCC79172ihmvW6m9V887bIwXngtiMW5ZnG5MivSMaVjUrzOZesUxUtzPd3PLNsL4ZxLtlW0vnGJpbhkcXYerO/KnMuXnpJF61SyPaJ1KitREe3/sjodljleblyn4/WNt3PZMTxMnY0/UbN83bnxcRjXu6hedot0m9WfeVKWxWVuZOn1zZSOSVLmcTxSWNAOl2yrqE4Pc/wOKzrGh2nTRtkexnW2ZKkj2g/R96gk1UrrZTq/dJ0sXffK6mXULo3S8avxsRuvv/qgu594vMsROT+b9fk1tGM3q/OP7v68ERZpYCPpEOzde5o+/HefHMWs162ubhiPGt6uN8Pchd5sMtbuxbnNWurhpCtm60vJ2LS1w9y6p9c5z+JdH61z1xthbidP5/ZKGrh60HDXs3hb1aJci3OjP0TzoMMnxftfKl/nSDNY52YW1+lh/hBdDvZxt4j3f7TcehCTpOlsMRmzkg5wHjRnZfuwnU8nY2V/PLdq8X7YXptPxhq+HOZ2LX0sLXsrzD3c3ZaM3Xc0rrN5sKnnpuJj6aTpw+ncLL0tJGmquxDGI0uN9Poe9XRMkpaDOl1Wd8pEf+SWdeqjNq9W9g+hYN5l7eEw/0yK2oe85A/gbh61O+vfDzON9PeoFB+jkjTVSz9WpHR71KaSsQWfC3MXe+ncvOQfM5HSelfSgTpevufxJ9x+vMtQZt5z/VH9sQN//gW9r+0ZYXHWhOcQAAAAAMMyyRpr6KzFffMNRYcAAAAAGJKZKatv1pOuYnQIAAAAgGGZZI3xvF8PHQIAAABgWCZGCAAAAIBJZZmpNs0IAQAAADCZ1npR8SZChwAAAAAYFqcMAQAAAJPLJFmNDgEAAAAwmUzK6BAAAAAAk8pkGR0CAAAAYDKZZDXuMgQAAABMJBOnDAEAAACTy8QpQwAAAMDkMkYIAAAAgEllxm1HAQAAgIlmGRcVAwAAAJPJTLUGHYJVTK7NNWTSUyOMm/u6513PesnYtkYR51oexjOl8/OS3dez9DoXRVxhc9XSMY9za1l6naasE+ZG61tWp5aKVjJ2JJ8Jc7tFen2LIl5usxbvw13N+WRszh8Mc2tFum6V7f+upbfHkk+HuYu9dG671wxzM6WPpUYtPh6WsvRyZ+vtMHfa0vGmxce3B0O89Wy4ZvJwviMZyyzeHg2l93/d0jEprnfbGothbidP7+Oi5Phv5+l9uFzsDnOn67PJ2FQWlzlU0rz3ivQ+7pWsb9n2aAbfD7O1uE5H+zhqoyWpU6T34VKe3s5lpmtLYXy7pdu0Vi9e30493U4vaHuY2+6l27Qjy3F7t5TFbdpUPb3ssu/wqO6VfZc2a8vxvAO1oG3peVx3yuo00qzii4rN7HRJ75N0slZq0yXu/sdmdoKkv5F0pqTbJP2Euz8wzLLY6wAAAEAFLMsGngbQk/Sr7n6epO+V9BozO0/S6yRd6e7nSLqy/3oodAgAAACAYfVHCAadyrj7AXf/l/7vRyTdKGmvpIskXdb/2GWSXjhs0bmGAAAAABjamm87usfM9q96fYm7X3LMOZudKem7JH1R0snufqAfulsrpxQNhQ4BAAAAMKR1XENw0N33lc/Xtkn6iKRfdvd5s28uw93drORCuQHQIQAAAAAqUPVtR82soZXOwF+6+0f7b99jZqe6+wEzO1XSvcMuh2sIAAAAgGFVfA2BrQwFXCrpRnf/g1Whj0t6ef/3l0v62LBFZ4QAAAAAGNpgf+ivwdMkvUzStWZ2df+935T0VkkfMrNXSrpd0k8MuyA6BAAAAEAFquwQuPs/S8mHMD2rsgWJDgEAAAAwtJWLisfzbHw6BAAAAEAF1njb0U2DDgEAAAAwLDNl9drxLsW60CEAAAAAhrSO5xBsGnQIAAAAgArQIQAAAAAmlnFRMQAAADCxOGUIAAAAmGSMEAAAAACTzRgheJjL1C0ao5j1ujWybhivKV/3vJuWnndhcU+x8DjeCOZds17JvNO3vsoV3xarW6SrhicfmrfC5OkyKV5fs3RuO58Oc5fzdJkzK8Lc2XonGatn8XbOgvWV4u3VyeJ1yrJ0uTOP62y0H8r2YR7UnU43rjv1Wnq5043lMLeWrf847KqZjJWtb6RucZnKjmEF+WXl6hTpdVr0qTC3Fix3ttYOc2frC8lYPsTXhik+DqN9OJ9vD3Oj/RBtC0lq1ILvh7zku6ykbYnaj57H2zJqp6PjW4q/lxq1uE0L610e17tFpeNReyZJUfUoa8On60vJ2Gw9zo3aO0nKg++tvOT4j/bDTO1omFsr0vvJS/62iOpO22fD3M4m+/ttnHCXIQAAAGDCccoQAAAAMKnMGCEAAAAAJhkjBAAAAMAEY4QAAAAAmFBmJqvHF6lvVnQIAAAAgAoYtx0FAAAAJpRxDQEAAAAwwcb3LkPj2Y0BAAAANhOTlGWDT2WzM3uPmd1rZteteu/NZnanmV3dn55fRdHpEAAAAAAVsMwGngbwXknPO8b7f+juT+pPn6yi3JwyBAAAAAzJZDKr7n/t7n6VmZ1Z2QwDjBAAAAAAwzJJmQ0+SXvMbP+q6VUDLukXzOya/ilFu6ooOiMEAAAAQAXWeJehg+6+b42L+DNJvy3J+z/fLukVa5zHo9AhAAAAACow6rsMufs9Dy/L7C8k/X0V86VDAAAAAAzLTKrwGoJjL8JOdfcD/ZcvknRd9PlB0SEAAAAAKlDlCIGZfVDSM7RyrcEdkn5L0jPM7ElaOWXoNkk/V8Wy6BAAAAAAQzIzWa1W2fzc/aXHePvSyhawyog6BK6a5aOZ9TqZfN25RcnNmDreTMfyRphbs7hc7byVjDWyeBtPZZ0wHpmttZOxsm2ZK30w5B4fKO18OhnLrAhzZxuLyVi9pD5mSs87Wh9J6pWsU+7p+lO2PSyoHzUNsU4ly42O322t5ZLcdJnLBlKj5datF+YOsw/LjvFItI8kqR6Uq4xb+j9N7uv/L1S7SB9nK9LxvIi3ZXSctrK47jSsm4zNZUfC3J7SbW3X43Y4VPLdXgTHtxQfa2W5Ud0qaw8bwfFSdixF3x3R950kLfXScQvqsyS1aun93wzqhhSvU9l3Vlm8COqPa3Tni3tw6klU3yWp4+m/HTpFvA97Bf8rHsraLireNNjrAAAAQAVGfVHxqNAhAAAAAIa1ARcVjwodAgAAAKAKjBAAAAAAk8sYIQAAAAAmlIkRAgAAAGBymYy7DAEAAAATrOT2upsVHQIAAABgWCaeQwAAAABMLmOEAAAAAJhkXEMAAAAATCozqVY73qVYFzoEAAAAwJBMPIcAAAAAmFw8hwAAAACYZCYxQgAAAABMMO4yBAAAAEww7jIEAAAATCgb31OGxrPUAAAAwGaT2eBTCTN7j5nda2bXrXrvBDP7jJl9vf9zVxXFHtEIgSn3zXUf1qWiFcYzK5KxuuVhbk3p3F2N+Xi5Qa4kFUGfbdmbYW6nSMfNPMyN9l/X42qTF0FuEJOkRpbe1rUgJkkz2WIy1vSlMLewdLkWirkwd6kX74fC0/uwVeuGua3acjIW1VlJqim9vVpZJ8wt6umGyntTYa57OrcXbAtJqoX1rhHmNiy9LcuOsylL149ccZ2N9q8kudLbIzq+JWm5SK9zdJxJ8baul9SdSFnbEYm2RZmoPktSw9PHylTJcjs2nYwtF7Nh7nwnnSvFbZ4p3pbbmunjdEdjIcxtWjq37nG7E6ln8fHfaPSSscU8zo3qdKfkvOwiOE2jaem6IcVthxTX+bK/dTrB93Qnj787wra0WP+fb2XH8FTwvYMBVDtC8F5J75T0vlXvvU7Sle7+VjN7Xf/1bwy7IEYIAAAAgCqYDT6VcPerJN3/iLcvknRZ//fLJL2wimJzDQEAAAAwLLO1XlS8x8z2r3p9ibtfUpJzsrsf6P9+t6ST17LAFDoEAAAAQBXWdtvRg+6+b72Lcne3Yc7jXIUOAQAAADAsM6k28j+t7zGzU939gJmdKuneKmbKNQQAAABAFSq8hiDh45Je3v/95ZI+VkWxGSEAAAAAqlDhXYbM7IOSnqGVaw3ukPRbkt4q6UNm9kpJt0v6iSqWRYcAAAAAGNpQ//l/FHd/aSL0rMoW0keHAAAAABiWaa13Gdo06BAAAAAAQ3JJXuEIwUaiQwAAAAAMzap+UvGGoUMAAAAAVIEOAQAAADC5OGUIAAAAmFTGKUMAAADAZGOEAAAAAJhgY3rb0dJSm9kvmdl2W3Gpmf2LmT1nIwoHAAAAjAUzeVYbeNpMBunGvMLd5yU9R9IuSS/TymOTAQAAAPS5ZQNPm8kgpww9dDLU8yW9392vN4tPkHKXur65zkZqWC+M1yxPxoqSflMexMtya4rL1VQ3HbNOmNutNZOxpWIqzG3nrWSskzfCXJMnY/WsCHOn60vJWKtkfXOle9uHij1h7mIvvb5FenUkSTubR8P4CX5vMja3cHeY22vOJGOHpk8Lcw91dyZjS7103SjTyNLHiiS1auk6O1WL96Er3bR0irjMD/bmkrGyfThTX07Gmll6fSSpURLPlK7zUUySsuh4KfkumdWRZGy6m45J0lJjWzI2r3S9kqTDy+ncB/LZMDeqW9P1eDvXs3RbGrVJkpQX6bYjiknSbCNddyRppr6YjDUtzo2+P7oet8PtIr2to+87KT4O3ePzo6M6PVNLbwtJqgff02XHSrStco/34QO97WH8waXpZKybxwdiq54u966pdpi7s344GZv1dEySGr1gW5ec495u7gjjiNiWvobgK2b2aUlnSXq9mc1JJUcmAAAAMGE223/+B5XsEJjZ09z9/0p6jaTHS7rV3dtmtlvSz25UAQEAAICxsAVHCN4h6XxJ/+zu3/3Qm+5+SNKhURcMAAAAGBtb9DkEXTO7RNJpZvaORwbd/bWjKxYAAAAwPlxb80nFL5B0oaTnSvrKxhQHAAAAGFNbcITg1939N8zsDHe/bMNKBAAAAIyh6C5dm1nUjXl+//aiF29UYQAAAIDxZJU/h8DMbjOza83sajPbP6qSRyMEn5L0gKRtZjavlecR+EM/3T2+cS8AAAAwSUZzytAPuvvBUcz4IclSu/uvu/tOSZ9w9+3uPrf65ygLBQAAAIwVW7moeNBpMyntxrj7RWb2WDO7UJLMbLr/cDIAAAAAWrl+wLPawJOkPWa2f9X0qmPOVvq0mX0lEa9E6ZOKzew/SXqVpBMkPU7SaZLeJelZoyoUAAAAMG7W+KTig+6+r+Qz3+fud5rZSZI+Y2b/6u5Xrb+ExzZIqV8j6WmS5iXJ3b8u6aSqCwIAAACML1sZJRhwGoS739n/ea+kyyVdMIqSD9Ih6Lj78kMvzKyuleELAAAAAH1V3mXIzGYfOk3fzGYlPUfSdaMod+kpQ5I+Z2a/KWnazJ4t6T9L+t+jKAwAAAAwlkxStRcLnyzp8pWnAKgu6a/c/VNVLuAhg3QIXifplZKulfRzkj4p6d2jKAwAAAAwnkw+0Mk3g3H3WyU9sbIZBko7BO5emNllkj7ff+smd+eUIQAAAKDPpU13O9FBDXKXoWdIukzSbVoZDDndzF4+iiucAQAAgHG1xrsMbRqDnDL0dknPcfebJMnMzpX0QUnnpxJqlmtX7YFqSliRomQIJw82Rc/jzWTBvMty69YrKdf6RVewly23uXJ/3GPq5I0wt1ukc7OSjvOR7kwy1qun5ytJs1k7GduT3Rfm9qbS6zSfx8/ha+etMN7NHpOMPbD9xDA32k9Wcm3/jsZCMjZbj+tlz9Pbumy5rWw5GauV1OiOp7dlab3L08dhsxYvN6qzPY/bDu9NhfGapbdXZkWYW8/S+z+q75LU7C0lY4XFx1Lm6e3VDPavJO1qzofxyKB33VhrbidvhrkL3fQ+bC+XtP8lRc6n0h/Y0Yj3/5QtJmOzHm/nXpZe52XFbdZikd4eRcnxMJV1krGy753o+3LR4+OsV6Rzy+rVch7v4+2t9DpN19MxSWpaNxkr//5PH6cP1OLvjm4W/E0TbCtJyoq4XiI2TDt2PA3SIWg81BmQJHf/mpnF38wAAADARLEtPUKw38zeLekD/dc/LWn/6IoEAAAAjJ8tew2BpJ/XysPJXtt//U+S/nRkJQIAAADGjGtrnzJUl/TH7v4HkmRmNankBEQAAABgkpiVXqO1WQ1yotOVkqZXvZ6WdMVoigMAAACMpyqfVLyRBhkhmHL3h29X4u4LZpa+FQwAAAAwgcb1lKFBuidHzey7H3phZudLSt8LDQAAAJgw3r/L0FYdIfhlSX9rZndp5cFkp0j6yZGWCgAAABgz4zpCUNohcPcvm9njJX1r/62b3D39pA0AAABgAm3l246q3wG4bsRlAQAAAMaW+xbuEAAAAACImHygy3M3HzoEAAAAwJDG+cFkyW6MmT3XzH7sGO//mJk9e7TFAgAAAMaLywaeNpNoXONNkj53jPc/K+m/jaQ0AAAAwJga1w5BdMpQy93ve+Sb7n7QzGZHWCYAAABgzGy+P/QHFY0QbDezR3UYzKwhaXp0RQIAAADGi0sqPBt4GoSZPc/MbjKzm83sdaMqe1Saj0r6i9WjAWa2TdK7+jEAAAAAfVWeMmRmNUl/IumHJJ0n6aVmdt4oyh2dMvRGSb8j6XYzu73/3hmSLpX0X6OZFsq06DPVlHAMzGSLyVjNemFu4bUw3irS827knTC3U0/vg7ZtKylXuq9YFHElnl9sJGO9ohnm7ppJP/OubkWY2w4GrnqPHuz6dzJPz3s2a4e522vxPq4V6XjmeZjbs/T2WvJ4oO6B5e3J2HynFeaaeTJWz9IxSZqup/fhbCNdnyVpOltKxvY2Hgxza7X0ck1xmfOgfixl8RmS8725MP7AUvo47Obxf4hmmum6s1yPj6Wl+lQy1rD42ZI1petlTXF9b9hyMtbM4/1fWLo9XLAdYe7hbrpNW+ql2yRJqmXp4/+UbfNh7rba0TDe9HSdXrL4e/Jgd08y1u7F+7+RpffhVD29jySplQVxi9usxSJd7zp5vB96Rfp4qAVtkiQ1g3Z4upbeB5J0QuP+MD7VS+/jVmchzK330t/Teckx3G7tTMbmbVec20vvh3Y3Xq7HmxolKj5l6AJJN7v7rZJkZn8t6SJJN1S5ECnoELh7T9LrzOwtks7uv32zu8ctOgAAADBxbK0PJttjZvtXvb7E3S9Z9XqvpH9b9foOSU8eooBJyQ6Bmf2MJHP390u6dtX7L5OUu/tfjaJAAAAAwLhxScXaRggOuvu+ERVnTaLx6l+UdPkx3v+opF8dTXEAAACA8VTxbUfvlHT6qten9d+rXNQhaLj7o06Oc/ejkuITAQEAAIBJ4pK7DTwN4MuSzjGzs8ysKeliSR8fRdGjKy2nzWy23wF4mJnNSYqvSAEAAAAmTJUXFbt7z8x+QdI/SqpJeo+7X1/ZAlaJOgSXSvqwmb3a3W+XJDM7Uyu3P7p0FIUBAAAAxtOaLyou5e6flPTJSmd6DNFdht5mZguSruo/f0CSFiS91d3/bNQFAwAAAMaFq/Lbjm6Y8Obs7v4uSe/qnyYkdz+yIaUCAAAAxkzVIwQbJXlRsZm9d9XLF9MZAAAAANKKNUybSXSXoSeu+v2XRl0QAAAAYFy5TIVnA0+bSXTKEA+vBgAAAAY0rqcMRR2C08zsHZJs1e8Pc/fXjrRkAAAAwBjZihcV//qq3/ePuiAAAADA2HKpGNPza6Lbjl62kQUBAAAAxtWWvO2omYWPRnb3H62+OAAAAMB42orXEDxF0r9J+qCkL0pj2uUBAAAANoBvtVOGJJ0i6dmSXirppyR9QtIH3f36jSgYAAAAMD5MxZj+/zy6hiCX9ClJnzKzllY6Bp81s7e4+zujmZqkzDbXIxe6RSOM97yWjLWy5TDXhrhDa6toh/FONp2MHbYTwtyFXjq3k8fbI1qnLIvXd/fsUjLWyPIwt1XrpmMl+6Fl6eXOdg+HufW8kw5afHAvNubC+IPanYzddXRnnNtO76dayX7YMd1LxnZPx/VurrEQxiM9T/+fYSlvhblNS+9/87hNmVpOPzsxK9LbQpKWWjuSsSKL7xXdzNJllqTd0+ltaRbvw1rw6JqyNjY6/g+203VSknp5us43a/FyZ1vp7XFCK36+5ZzSx+mcPxjm1pvpfXy0PhPm5kW6/S+7V/iyN8P4lB9NxxQfh9ZI14/perzcbpE+Dtu9qTC3Y+l2p6zeRduyV7It68G8p+tBG634OBz2nO5elt7Wvan4ezjz9HdeWbnc0turEbSVkrStvriumLT5/n4bJ66tecqQ+h2BH9ZKZ+BMSe+QdPnoiwUAAACMly13ypCZvU/St0v6pKS3uPt1G1YqAAAAYMxsubsMSfoZSUcl/ZKk19o3T5swSe7u20dcNgAAAGA8bNHnEMQn+wEAAACQtHINQVFsvRECAAAAAAPacncZAgAAADC4cb2omNOCAAAAgCG5TO6DT8Mwszeb2Z1mdnV/ev4w82OEAAAAABjWxl9U/Ifu/rYqZkSHAAAAAKgApwwBAAAAE8xlA0+S9pjZ/lXTq9a4uF8ws2vM7D1mtmuYcjNCAAAAAAzJteZThg66+75U0MyukHTKMUJvkPRnkn67v9jflvR2Sa9Y09JXoUMAAAAAVKDKU4bc/cJBPmdmfyHp74dZFqcMAQAAABVwH3wahpmduurliyRdN8z8GCEAAAAAhuQuFUPeTnQNfs/MnqSVU4Zuk/Rzw8yMDgEAAABQgY26y5C7v6zK+dEhAAAAACqQF8e7BOtDhwAAAAAYkktDP4H4eKFDAAAAAAyrgouFj5eRdAgKNy3mU6OY9br1HwCRjgc9urLcSNebcTyL47nXkrGlvBXmFp6+iVSr1g1zZ2qdZKxmeZgbba+yenFvey4Z6+bxTbHmWul1OqE1G+buzu5Jz/fIXWHu1NGDYXx6Zj4ZO61kPyzt3p6M3aXTw9w75tO5B4+kY5KUZXE8cvLcUjJ2TuuWODkYal2qxftwYeqxyVjZMdyw9H5o2HKYO+cPhPFecIzPa2eYO7+cXuej3bjtaC+n246ZZnwM755O78NdzXR9lqSZ4kgyVs9L6ns9vb5HtCPMPbI8k4z1irjtmKmn9/H2enp9JGm6WAjjnWw6GTtSpNs7SfIiXW+bWVkbvpiM7agfDnOL4HvngW5cZ+9aSO+HpeX4ODxpe3o/zDbS6yNJM3Y0GWvmce6SxW3LPb1j3QZ+xeFO/J3WqKUbtZ2tuO7MWjsZa3r6GJWkRpbelj01wlwMZ43PIdg0GCEAAAAAhrRyytDxLsX60CEAAAAAKkCHAAAAAJhgnDIEAAAATCouKgYAAAAml0sqeA4BAAAAMLkYIQAAAAAmGB0CAAAAYEK5c1ExAAAAMNF8TIcI6BAAAAAAFcjjB8FvWnQIAAAAgCE5tx0FAAAAJhvXEAAAAAATbFxHCLLjXQAAAABgK/DCB56GYWY/bmbXm1lhZvseEXu9md1sZjeZ2XMHmR8jBAAAAMCQNvi2o9dJerGkP1/9ppmdJ+liSU+Q9BhJV5jZue4eXu5MhwAAAACowEadMuTuN0qSmT0ydJGkv3b3jqRvmNnNki6Q9PlofnQIAAAAgAoUaxsi2GNm+1e9vsTdLxmyCHslfWHV6zv674VG0iHoFTXd254bxazXrVWLbwy7rdlJxqazdpi7e/7/JWPNo4fC3N709jCedZeSsbwxHeYe2nFWMnZ/74Qw944ju9LzXWiEuUvLQawTHyjNxqN6ug9rNcNUuadzp+qtMHdbYyYZm83i9W3NHwzjc4fuSsZ6u04Oc5cbs+lgenUlSfPtWjJ2/+F4P5y8Ox371hPvD3NP8TuTsdziJmfe0vXu3vbOMLdbpNd372x8HO5evCMZay7Nx8ttbQvj98ykj8OD7fj4X+qlt9eOqXTbIEmP3fZgMjblcZvW7C0mY/VOcIBLajd3JGP3ZqeGuQfm0/v4nsPxcXjg3nQb38vj+n7qSenj7IIzumHu3vv2h/Hslht21QXFAAAJiElEQVSSMZuNvyfb55yfjN1Q+64w976FqWSsXou3x46p9PfhTD3e/2fvSreHnSJuxPOgDS/jj/4v6cMKS7cNktRVyZdLYLYZb4+pWjo+k6WPM0ma7R1Oxprdo2FuFpwdcnQq/v4/qJPCONJcax4hOOju+1JBM7tC0inHCL3B3T+2ttLFGCEAAAAAhlXxcwjc/cJ1pN0p6fRVr0/rvxfiLkMAAADA0FyFDz6NyMclXWxmLTM7S9I5kr5UlsQIAQAAAFABLzZmOWb2Ikn/U9KJkj5hZle7+3Pd/Xoz+5CkGyT1JL2m7A5DEh0CAAAAYGjuUl5yzVJ1y/LLJV2eiP2upN9dy/zoEAAAAAAV8DF9VDEdAgAAAGBIrg19MFml6BAAAAAAw3LJx7RHQIcAAAAAqMCYnjFEhwAAAACowhqfVLxp0CEAAAAAhuTuXFQMAAAATLKNeg5B1egQAAAAABUY4ROIR4oOAQAAAFABThkCAAAAJpQ7FxUDAAAAE21MBwjoEAAAAADDcnfl+XheVUyHAAAAAKgATypepVVb1tlzd45i1ut23/LuMH64M52MdYsTw9xirpaM7a6VbOKSsaWvNp6ejP3DP8e90Nv+9e5kbGb7Upj7hCfuSMZe8KQDYe4Zn3hbMnbVr/19mNs6uZmMfdtLzgtzd73kJcnYZ7MXhbmXXZmuH4cPtcLcs859Whh//Nnp/Fu/3g1zl5fT+/iUYFtJ0hPPPJqM/cjO/WFu80ufScbu/qevhrn1velt2frpV4e5D06lc2cby2FudDTcu7gzzL3qzqcmY+2l+BjdvdPC+Ldk6f1w5kzcTu46ckcylrU7Ye6i9iRj37Czw9zlPN1uZfHqqtnrJWNLwXwlaaqezj3vlHaY+/QzDiVjjTzeVu1sLhm7fzndFkrSV3Y8N4zru9NxV7wxG1mejG2vp+uVJJ28+2Ay1iv56u8WjWRstrYQ5u5o3xPGI736VDLmebytOjaTjN3nJ4e5y8vx9tjWWEzG6paus5K00JtNxm5fiMvVK05NLzeLv/+jeK+dhbmdPP03DcrRIQAAAAAmlUtj2h+gQwAAAAAMy8UIAQAAADDBnOcQAAAAABNrjJ9DEF9ZAgAAAGAg7j7wNAwz+3Ezu97MCjPbt+r9M81s0cyu7k/vGmR+jBAAAAAAQ9rgawiuk/RiSX9+jNgt7v6ktcyMDgEAAAAwLN+4DoG73yhJZiX3gh4QpwwBAAAAQ3MVPvgkaY+Z7V81vaqigpxlZl81s8+ZWfqBVqswQgAAAABUYI0jBAfdfV8qaGZXSDrlGKE3uPvHEmkHJJ3h7ofM7HxJf2dmT3D3+aggdAgAAACAIblLeR4/RXpt8/ML15HTkdTp//4VM7tF0rmS9kd5dAgAAACAChzvB5OZ2YmS7nf33My+RdI5km4ty+MaAgAAAGBog99ytILbjr7IzO6Q9BRJnzCzf+yHvl/SNWZ2taQPS3q1u99fNj9GCAAAAIAhuUteVHfKULwsv1zS5cd4/yOSPrLW+dEhAAAAACowrk8qpkMAAAAAVGDYU4GOFzoEAAAAwLDcj/tFxetFhwAAAAAYkuv432VovUbSIbj9zlyvfuOhUcx63V7+82eF8ac/5mvJ2M4jd4S5hxt7k7ErFp4a5l75uQfDeFEcTcae88xdYe6bLvh6MpZ9+bNhrt+5nIw17LQwt/3MFyVju699U5i71GsmY+m1WfHgYjp34Wh8Q60feNqOZGzPtukwd36pEcZvui1Pxi5+yt1h7kkf+h/J2Df+8po497zHJGPTP/JDYe4Xn/qbydhldy2EuV/bf2My9gNfOj/M3fft6Sbp1O3xcufq7WSsmfXC3GeeczC93AdvCHMtj+fdLdJ1a6m3Pcy9deY7krFr7tod5t7w5cVk7PTTp8LcJz8u/fyaHY3w2TZqrtz++piyevpYkKSTb/9iMlbcfkuYm83OJmP5GeeGub2T0tu53U23K5J03W1x/JZbjyRjT3/ytjD3CSfek4zt7sVtR1etZOxoFte7U7u3JWPLHreHd7TOTpepiNvKe46mt8dtd9fC3AN3p7+zTt+b3haS9GN7Px/GZ770mWTMl9PLlST/zicnYzfs+P4w9/9cN5eM3XT9A2FuZ6mbjJ3+LXHb8dTvsjCOWOEbc1Fx1RghAAAAAIbljBAAAAAAE8vFNQQAAADAROMuQwAAAMCkcinvxddKbVZ0CAAAAIAhuVzORcUAAADAhOKiYgAAAGCy0SEAAAAAJpbzHAIAAABgUjmnDAEAAACTzQtGCAAAAIDJxAgBAAAAMMm47SgAAAAwsVxSMaYjBNnxLgAAAAAw9nzlGoJBp2GY2e+b2b+a2TVmdrmZ7VwVe72Z3WxmN5nZcweZHx0CAAAAYGguLwafhvQZSd/u7t8p6WuSXi9JZnaepIslPUHS8yT9qZnVymZGhwAAAAAYlktFng88DbUo90+7e6//8guSTuv/fpGkv3b3jrt/Q9LNki4omx/XEAAAAABDcvlaTwXaY2b7V72+xN0vWceiXyHpb/q/79VKB+Ehd/TfC5l79Rc/mNl9km6vfMYAAACYRI919xOPdyEiZvYpSXvWkHLQ3Z8XzO8KSaccI/QGd/9Y/zNvkLRP0ovd3c3snZK+4O4f6McvlfQP7v7hqCAjGSHY7DsMAAAAqFL0x/0653dhFDez/yjpBZKe5d/8D/+dkk5f9bHT+u+FuIYAAAAAGCNm9jxJ/0XSj7p7e1Xo45IuNrOWmZ0l6RxJXyqbH9cQAAAAAOPlnZJakj5jZtLKaUKvdvfrzexDkm6Q1JP0GncvvYJ5JNcQAAAAABgPjBAAQEXMbLekK/svT5GUS7qv/7rt7k89LgUDACDACAEAjICZvVnSgru/7XiXBQCACBcVA8AGMLOF/s9nmNnnzOxjZnarmb3VzH7azL5kZtea2eP6nzvRzD5iZl/uT087vmsAANiq6BAAwMZ7oqRXS/o2SS+TdK67XyDp3ZJ+sf+ZP5b0h+7+PZJe0o8BAFA5riEAgI33ZXc/IElmdoukT/ffv1bSD/Z/v1DSef27R0jSdjPb5u4LG1pSAMCWR4cAADZeZ9XvxarXhb7ZLmeSvtfdlzayYACAycMpQwCwOX1a3zx9SGb2pONYFgDAFkaHAAA2p9dK2mdm15jZDVq55gAAgMpx21EAAABggjFCAAAAAEwwOgQAAADABKNDAAAAAEwwOgQAAADABKNDAAAAAEwwOgQAAADABKNDAAAAAEyw/w/qVm347hYREAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plotting MFCC\n",
+ "mfcc = librosa.feature.mfcc(S=log_S, n_mfcc=13)\n",
+ "\n",
+ "# Let's pad on the first and second deltas while we're at it\n",
+ "delta2_mfcc = librosa.feature.delta(mfcc, order=2)\n",
+ "\n",
+ "plt.figure(figsize=(12, 4))\n",
+ "librosa.display.specshow(delta2_mfcc)\n",
+ "plt.ylabel('MFCC coeffs')\n",
+ "plt.xlabel('Time')\n",
+ "plt.title('MFCC')\n",
+ "plt.colorbar()\n",
+ "plt.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Original Sound\n",
+ "ipd.Audio(samples, rate=sample_rate)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Silence trimmed Sound by librosa.effects.trim()\n",
+ "ipd.Audio(aa, rate=sample_rate)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Silence trimmed Sound by manuel trimming\n",
+ "samples_cut = samples[10000:-12500]\n",
+ "ipd.Audio(samples_cut, rate=sample_rate)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# IV. Defining the truth label"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2452"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# 2 class: Positive & Negative\n",
+ "\n",
+ "# Positive: Calm, Happy\n",
+ "# Negative: Angry, Fearful, Sad\n",
+ "\n",
+ "label2_list = []\n",
+ "for i in range(len(data_df)):\n",
+ " if data_df.emotion[i] == 2: # Calm\n",
+ " lb = \"_positive\"\n",
+ " elif data_df.emotion[i] == 3: # Happy\n",
+ " lb = \"_positive\"\n",
+ " elif data_df.emotion[i] == 4: # Sad\n",
+ " lb = \"_negative\"\n",
+ " elif data_df.emotion[i] == 5: # Angry\n",
+ " lb = \"_negative\"\n",
+ " elif data_df.emotion[i] == 6: # Fearful\n",
+ " lb = \"_negative\"\n",
+ " else:\n",
+ " lb = \"_none\"\n",
+ " \n",
+ " # Add gender to the label \n",
+ " label2_list.append(data_df.gender[i] + lb)\n",
+ " \n",
+ "len(label2_list)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2452"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#3 class: Positive, Neutral & Negative\n",
+ "\n",
+ "# Positive: Happy\n",
+ "# Negative: Angry, Fearful, Sad\n",
+ "# Neutral: Calm, Neutral\n",
+ "\n",
+ "label3_list = []\n",
+ "for i in range(len(data_df)):\n",
+ " if data_df.emotion[i] == 1: # Neutral\n",
+ " lb = \"_neutral\"\n",
+ " elif data_df.emotion[i] == 2: # Calm\n",
+ " lb = \"_neutral\"\n",
+ " elif data_df.emotion[i] == 3: # Happy\n",
+ " lb = \"_positive\"\n",
+ " elif data_df.emotion[i] == 4: # Sad\n",
+ " lb = \"_negative\"\n",
+ " elif data_df.emotion[i] == 5: # Angry\n",
+ " lb = \"_negative\"\n",
+ " elif data_df.emotion[i] == 6: # Fearful\n",
+ " lb = \"_negative\"\n",
+ " else:\n",
+ " lb = \"_none\"\n",
+ " \n",
+ " # Add gender to the label \n",
+ " label3_list.append(data_df.gender[i] + lb)\n",
+ " \n",
+ "len(label3_list)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2452"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# 5 class: angry, calm, sad, happy & fearful\n",
+ "label5_list = []\n",
+ "for i in range(len(data_df)):\n",
+ " if data_df.emotion[i] == 2:\n",
+ " lb = \"_calm\"\n",
+ " elif data_df.emotion[i] == 3:\n",
+ " lb = \"_happy\"\n",
+ " elif data_df.emotion[i] == 4:\n",
+ " lb = \"_sad\"\n",
+ " elif data_df.emotion[i] == 5:\n",
+ " lb = \"_angry\"\n",
+ " elif data_df.emotion[i] == 6:\n",
+ " lb = \"_fearful\" \n",
+ " else:\n",
+ " lb = \"_none\"\n",
+ " \n",
+ " # Add gender to the label \n",
+ " label5_list.append(data_df.gender[i] + lb)\n",
+ " \n",
+ "len(label5_list)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2452"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# All class\n",
+ "\n",
+ "label8_list = []\n",
+ "for i in range(len(data_df)):\n",
+ " if data_df.emotion[i] == 1:\n",
+ " lb = \"_neutral\"\n",
+ " elif data_df.emotion[i] == 2:\n",
+ " lb = \"_calm\"\n",
+ " elif data_df.emotion[i] == 3:\n",
+ " lb = \"_happy\"\n",
+ " elif data_df.emotion[i] == 4:\n",
+ " lb = \"_sad\"\n",
+ " elif data_df.emotion[i] == 5:\n",
+ " lb = \"_angry\"\n",
+ " elif data_df.emotion[i] == 6:\n",
+ " lb = \"_fearful\"\n",
+ " elif data_df.emotion[i] == 7:\n",
+ " lb = \"_disgust\"\n",
+ " elif data_df.emotion[i] == 8:\n",
+ " lb = \"_surprised\"\n",
+ " else:\n",
+ " lb = \"_none\"\n",
+ " \n",
+ " # Add gender to the label \n",
+ " label8_list.append(data_df.gender[i] + lb)\n",
+ " \n",
+ "len(label8_list)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " path | \n",
+ " source | \n",
+ " actor | \n",
+ " gender | \n",
+ " intensity | \n",
+ " statement | \n",
+ " repetition | \n",
+ " emotion | \n",
+ " label | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " data/Actor_01/03-02-04-02-02-01-01.wav | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 4 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " data/Actor_01/03-01-04-02-01-02-01.wav | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " data/Actor_01/03-02-05-02-01-01-01.wav | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " data/Actor_01/03-01-04-01-01-02-01.wav | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " data/Actor_01/03-01-02-01-02-01-01.wav | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " path source actor gender intensity \\\n",
+ "0 data/Actor_01/03-02-04-02-02-01-01.wav 2 1 male 1 \n",
+ "1 data/Actor_01/03-01-04-02-01-02-01.wav 1 1 male 1 \n",
+ "2 data/Actor_01/03-02-05-02-01-01-01.wav 2 1 male 1 \n",
+ "3 data/Actor_01/03-01-04-01-01-02-01.wav 1 1 male 0 \n",
+ "4 data/Actor_01/03-01-02-01-02-01-01.wav 1 1 male 0 \n",
+ "\n",
+ " statement repetition emotion label \n",
+ "0 1 0 4 male_negative \n",
+ "1 0 1 4 male_negative \n",
+ "2 0 0 5 male_negative \n",
+ "3 0 1 4 male_negative \n",
+ "4 1 0 2 male_positive "
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Select the label set you want by commenting the unwanteds.\n",
+ "\n",
+ "data_df['label'] = label2_list\n",
+ "# data_df['label'] = label3_list\n",
+ "# data_df['label'] = label5_list\n",
+ "# data_df['label'] = label8_list\n",
+ "data_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Index(['male_negative', 'female_negative', 'male_positive', 'female_positive',\n",
+ " 'male_none', 'female_none'],\n",
+ " dtype='object')\n"
+ ]
+ }
+ ],
+ "source": [
+ "print (data_df.label.value_counts().keys())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Plotting the emotion distribution\n",
+ "\n",
+ "def plot_emotion_dist(dist, color_code='#C2185B', title=\"Plot\"):\n",
+ " \"\"\"\n",
+ " To plot the data distributioin by class.\n",
+ " Arg:\n",
+ " dist: pandas series of label count. \n",
+ " \"\"\"\n",
+ " tmp_df = pd.DataFrame()\n",
+ " tmp_df['Emotion'] = list(dist.keys())\n",
+ " tmp_df['Count'] = list(dist)\n",
+ " fig, ax = plt.subplots(figsize=(14, 7))\n",
+ " ax = sns.barplot(x=\"Emotion\", y='Count', color=color_code, data=tmp_df)\n",
+ " ax.set_title(title)\n",
+ " ax.set_xticklabels(ax.get_xticklabels(),rotation=45)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAHyCAYAAADP4N5SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xu8pWP9//HXh3EmYxjSOBYpv4o0OZVvSc5EJYqcUlJIKeVQ0UGpbzkkKSFUSDqYpIMck5JRCjlNDjEOMzkVUg6f3x/XtZtlf2fMDLP2PXtfr+fjsR97rXvda+1rZt17r/t9X5/ruiIzkSRJkqSWzdN1AyRJkiSpawYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSSpLyLi6xHxiY5+9gYRceMcfL2fRcSu9fZuEXHZHHztnSLil3Pq9SRJz064jpEkjVwRcRuwDPBkz+ZTMnOfOfxzdgPenZmvnZOvO4OfdRhwCPBY3XQ38Evg8My8+1m81iqZ+c7ZeM5uPMt/a0SsBNwKzJeZT8zu8yVJ/WOPkSSNfFtn5qI9X3M0FHXke5m5GDAGeDPwfOCqiFh2Tv6QKPyslKQG+MdekhpVS8J+ExFHRcSDEXFLRKxft98REVMGysfq/otHxGkRMTUibo+Ij0fEPBHxUuDrwHoR8XBEPFj3PyUiPtvz/PdExKSIuD8iJkTEC3oey4jYKyJurm05LiJiZv+GzHw8M68DdgCmAh+ur/f6iLiz5/U/FhGTI+KfEXFjRGwUEZsBBwM71Hb/qe57cUQcHhG/AR4FXli3vfvp/33x1Yh4KCJuiIiNeh64LSLe2HP/sIj4Tr17af3+YP2Z6w0uzavvwZX1ta+MiPV7Hrs4Ij5T37d/RsQvI2Kpmf0/SZJmzmAkSW1bB/gzsCRwOnAm8GpgFeCdwFcjYtG677HA4sALgdcBuwC7Z+b1wF7Ab2uP1OjBPyQi3gB8HtgeWBa4vf6sXlvVn/2Kut+ms/qPyMwngXOADabzs1cD9gFeXXuZNgVuy8yfA5+j9D4tmplr9DxtZ2BPYLHa1sHWAf4KLAUcCvwwIsbMQlP/p34fXX/mbwe1dQzwU+ArlPfkSOCnEbFkz247ArsDSwPzAx+ZhZ8rSZoJg5EkjXw/rr0wA1/v6Xns1sz8Vg0W3wOWBz6dmf/OzF8C/wFWiYh5gbcDB2XmPzPzNuDLlAAxK3YCTs7MP2Tmv4GDKD1MK/Xsc0RmPpiZfwMuAtaczX/nXZTSusGeBBYAVo+I+TLztsz860xe65TMvC4zn8jMx6fz+BTg6Npj9T3gRmDL2Wzv9GwJ3JyZ364/+wzgBmDrnn2+lZk3Zea/gLOY/f8nSdJ0GIwkaeTbNjNH93x9s+exe3tu/wsgMwdvW5TSMzIfT+89uR0YN4tteEHvczPzYeC+Qc+/p+f2o/Xnzo5xwP2DN2bmJOCDwGHAlIg4s7eMbwbumMnjk/PpsxfdTvk3PldP+3/qee05+f8kSZoOg5EkaVb8HXgcWLFn2wrA5Hp7ZlOc3tX73IhYhFIqNnmGz5gNdYKErYFfT+/xzDy9ziK3Ym3rFwYemsFLzuzfM27QGKgVKP9GgEeAhXsee/5svO7T/p96XnuO/D9JkmbMYCRJmqlaancWcHhELBYRKwL7AwOTCtwLLBcR88/gJc4Ado+INSNiAcrYnitqSd6zFhGj6uQPZ1ACyJHT2We1iHhD/bmPUXrBnupp90rPYua5pYEPRMR8EfE24KXAefWxq4G318fGA9v1PG9q/dkvnMHrnge8OCJ2rP+2HYDVgXNns32SpNlkMJKkke8ndQa0ga8fPcvX2ZfSG3ILcBllsoaT62MXAtcB90TE3wc/MTN/BXwC+AFl3aEXUcYsPVs7RMTDwEPABEpZ3qsy867p7LsAcASl1+seSqg5qD72/fr9voj4w2z8/CuAVetrHg5sl5n31cc+Qfn3PQB8ivL/BEBmPlr3/00d77Vu74vW19iKMrvefcBHga0y8//8n0qS5iwXeJUkSZLUPHuMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqXl+DUUSMjoizI+KGiLg+ItaLiDERcX5E3Fy/L1H3jYj4SkRMiog/R8Ra/WybJEmSJA3o66x0EXEq8OvMPLGubbEwcDBwf2YeEREHAktk5sciYgvKVLBbAOsAx2TmOs/0+ksttVSutNJKfWu/JEmSpOHtqquu+ntmjp3Zfn0LRhGxOGWRuxdmzw+JiBuB12fm3RGxLHBxZq4WEd+ot88YvN+Mfsb48eNz4sSJfWm/JEmSpOEvIq7KzPEz26+fpXQrU1b4/lZE/DEiToyIRYBlesLOPcAy9fY44I6e599Zt0mSJElSX/UzGI0C1gKOz8xXUlZLP7B3h9qTNFtdVhGxZ0RMjIiJU6dOnWONlSRJktSufgajO4E7M/OKev9sSlC6t5bQUb9PqY9PBpbvef5yddvTZOYJmTk+M8ePHTvTUkFJkiRJmqm+BaPMvAe4IyJWq5s2Av4CTAB2rdt2Bc6ptycAu9TZ6dYFHnqm8UWSJEmSNKeM6vPr7wt8t85IdwuwOyWMnRURewC3A9vXfc+jzEg3CXi07itJkiRJfdfXYJSZVwPTmwFio+nsm8De/WyPJEmSJE1PXxd4lSRJkqThwGAkSZIkqXkGI0mSJEnNMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeaO6bsBQ23i/yV03Qc/g/GPGdd0ESZIkNcgeI0mSJEnNMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmjeq6AVIXNt5vctdN0DM4/5hxXTdBkiQ1xh4jSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmGYwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkppnMJIkSZLUPIORJEmSpOYZjCRJkiQ1z2AkSZIkqXkGI0mSJEnNMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKa19dgFBG3RcQ1EXF1REys28ZExPkRcXP9vkTdHhHxlYiYFBF/joi1+tk2SZIkSRowFD1GG2bmmpk5vt4/ELggM1cFLqj3ATYHVq1fewLHD0HbJEmSJKmTUrptgFPr7VOBbXu2n5bF74DREbFsB+2TJEmS1Jh+B6MEfhkRV0XEnnXbMpl5d719D7BMvT0OuKPnuXfWbZIkSZLUV6P6/PqvzczJEbE0cH5E3ND7YGZmROTsvGANWHsCrLDCCnOupZIkSZKa1dceo8ycXL9PAX4ErA3cO1AiV79PqbtPBpbvefpyddvg1zwhM8dn5vixY8f2s/mSJEmSGtG3YBQRi0TEYgO3gU2Aa4EJwK51t12Bc+rtCcAudXa6dYGHekruJEmSJKlv+llKtwzwo4gY+DmnZ+bPI+JK4KyI2AO4Hdi+7n8esAUwCXgU2L2PbZMkSZKk/+pbMMrMW4A1prP9PmCj6WxPYO9+tUeSJEmSZqSL6bolSZIkaa5iMJIkSZLUPIORJEmSpOYZjCRJkiQ1z2AkSZIkqXkGI0mSJEnNMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmGYwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkppnMJIkSZLUPIORJEmSpOYZjCRJkiQ1z2AkSZIkqXkGI0mSJEnNMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmGYwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkppnMJIkSZLUPIORJEmSpOYZjCRJkiQ1z2AkSZIkqXkGI0mSJEnN63swioh5I+KPEXFuvb9yRFwREZMi4nsRMX/dvkC9P6k+vlK/2yZJkiRJMDQ9RvsB1/fc/wJwVGauAjwA7FG37wE8ULcfVfeTJEmSpL7razCKiOWALYET6/0A3gCcXXc5Fdi23t6m3qc+vlHdX5IkSZL6qt89RkcDHwWeqveXBB7MzCfq/TuBcfX2OOAOgPr4Q3V/SZIkSeqrvgWjiNgKmJKZV83h190zIiZGxMSpU6fOyZeWJEmS1Kh+9hi9BnhTRNwGnEkpoTsGGB0Ro+o+ywGT6+3JwPIA9fHFgfsGv2hmnpCZ4zNz/NixY/vYfEmSJEmt6FswysyDMnO5zFwJeDtwYWbuBFwEbFd32xU4p96eUO9TH78wM7Nf7ZMkSZKkAV2sY/QxYP+ImEQZQ3RS3X4SsGTdvj9wYAdtkyRJktSgUTPf5bnLzIuBi+vtW4C1p7PPY8DbhqI9kiRJktSrix4jSZIkSZqrGIwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWrekMxKJ0lzo433mzzzndSp848Z13UTJEmNsMdIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmGYwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWqewUiSJElS80Z13QBJkrq28X6Tu26CnsH5x4zrugmSGmCPkSRJkqTmGYwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkppnMJIkSZLUPIORJEmSpOYZjCRJkiQ1z2AkSZIkqXkGI0mSJEnNMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmGYwkSZIkNc9gJEmSJKl5sxSMIuI1s7JNkiRJkoajWe0xOnYWt0mSJEnSsDPqmR6MiPWA9YGxEbF/z0PPA+btZ8MkSZIkaag8YzAC5gcWrfst1rP9H8B2/WqUJEmSJA2lZwxGmXkJcElEnJKZtw9RmyRJkiRpSM2sx2jAAhFxArBS73My8w39aJQkSZIkDaVZDUbfB74OnAg82b/mSJIkSdLQm9Vg9ERmHt/XlkiSJElSR2Z1uu6fRMT7I2LZiBgz8NXXlkmSJEnSEJnVHqNd6/cDerYl8MI52xxJkiRJGnqzFIwyc+V+N0SSJEmSujJLwSgidpne9sw87RmesyBwKbBA/TlnZ+ahEbEycCawJHAVsHNm/iciFgBOA14F3AfskJm3zca/RZIkSZKelVkdY/Tqnq8NgMOAN83kOf8G3pCZawBrAptFxLrAF4CjMnMV4AFgj7r/HsADdftRdT9JkiRJ6rtZLaXbt/d+RIym9Po803MSeLjena9+JfAGYMe6/VRKyDoe2KbeBjgb+GpERH0dSZIkSeqbWe0xGuwRYKbjjiJi3oi4GpgCnA/8FXgwM5+ou9wJjKu3xwF3ANTHH6KU2w1+zT0jYmJETJw6deqzbL4kSZIkTTOrY4x+QuntAZgXeClw1syel5lPAmvWHqYfAS95lu3sfc0TgBMAxo8fb2+SJEmSpOdsVqfr/lLP7SeA2zPzzln9IZn5YERcBKwHjI6IUbVXaDlgct1tMrA8cGdEjAIWp0zCIEmSJEl9NUuldJl5CXADsBiwBPCfmT0nIsbWniIiYiFgY+B64CJgu7rbrsA59fYEpq2XtB1woeOLJEmSJA2FWQpGEbE98HvgbcD2wBURsd0zP4tlgYsi4s/AlcD5mXku8DFg/4iYRBlDdFLd/yRgybp9f+DA2f3HSJIkSdKzMauldIcAr87MKVB6g4BfUWaPm67M/DPwyulsvwVYezrbH6MEL0mSJEkaUrM6K908A6Goum82nitJkiRJc7VZ7TH6eUT8Ajij3t8BOK8/TZIkSZKkofWMwSgiVgGWycwDIuItwGvrQ78FvtvvxkmSJA2VjfebPPOd1Jnzjxk3852k52BmPUZHAwcBZOYPgR8CRMTL62Nb97V1kiRJkjQEZjZOaJnMvGbwxrptpb60SJIkSZKG2Mx6jEY/w2MLzcmGSJIkSV2zpHLu1s+Sypn1GE2MiPcM3hgR7wau6k+TJEmSJGlozazH6IPAjyJiJ6YFofHA/MCb+9kwSZIkSRoqzxiMMvNeYP2I2BB4Wd3808y8sO8tkyRJkqQhMkvrGGXmRcBFfW6LJEmSJHViZmOMJEmSJGnEMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmGYwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkppnMJIkSZLUPIORJEmSpOYZjCRJkiQ1z2AkSZIkqXkGI0mSJEnNMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmGYwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkprXt2AUEctHxEUR8ZeIuC4i9qvbx0TE+RFxc/2+RN0eEfGViJgUEX+OiLX61TZJkiRJ6tXPHqMngA9n5urAusDeEbE6cCBwQWauClxQ7wNsDqxav/YEju9j2yRJkiTpv/oWjDLz7sz8Q739T+B6YBywDXBq3e1UYNt6exvgtCx+B4yOiGX71T5JkiRJGjAkY4wiYiXglcAVwDKZeXd96B5gmXp7HHBHz9PurNsGv9aeETExIiZOnTq1b22WJEmS1I6+B6OIWBT4AfDBzPxH72OZmUDOzutl5gmZOT4zx48dO3YOtlSSJElSq/oajCJiPkoo+m5m/rBuvnegRK5+n1K3TwaW73n6cnWbJEmSJPVVP2elC+Ak4PrMPLLnoQnArvX2rsA5Pdt3qbPTrQs81FNyJ0mSJEl9M6qPr/0aYGfgmoi4um47GDgCOCsi9gBuB7avj50HbAFMAh4Fdu9j2yRJkiTpv/oWjDLzMiBm8PBG09k/gb371R5JkiRJmpEhmZVOkiRJkuZmBiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkppnMJIkSZLUPIORJEmSpOYZjCRJkiQ1z2AkSZIkqXkGI0mSJEnNMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmGYwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkppnMJIkSZLUPIORJEmSpOYZjCRJkiQ1z2AkSZIkqXkGI0mSJEnNMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmGYwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkppnMJIkSZLUvL4Fo4g4OSKmRMS1PdvGRMT5EXFz/b5E3R4R8ZWImBQRf46ItfrVLkmSJEkarJ89RqcAmw3adiBwQWauClxQ7wNsDqxav/YEju9juyRJkiTpafoWjDLzUuD+QZu3AU6tt08Ftu3ZfloWvwNGR8Sy/WqbJEmSJPUa6jFGy2Tm3fX2PcAy9fY44I6e/e6s2/6PiNgzIiZGxMSpU6f2r6WSJEmSmtHZ5AuZmUA+i+edkJnjM3P82LFj+9AySZIkSa0Z6mB070CJXP0+pW6fDCzfs99ydZskSZIk9d1QB6MJwK719q7AOT3bd6mz060LPNRTcidJkiRJfTWqXy8cEWcArweWiog7gUOBI4CzImIP4HZg+7r7ecAWwCTgUWD3frVLkiRJkgbrWzDKzHfM4KGNprNvAnv3qy2SJEmS9Ew6m3xBkiRJkuYWBiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkppnMJIkSZLUPIORJEmSpOYZjCRJkiQ1z2AkSZIkqXkGI0mSJEnNMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmGYwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkppnMJIkSZLUPIORJEmSpOYZjCRJkiQ1z2AkSZIkqXkGI0mSJEnNMxhJkiRJap7BSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKk5hmMJEmSJDXPYCRJkiSpeQYjSZIkSc0zGEmSJElqnsFIkiRJUvMMRpIkSZKaZzCSJEmS1DyDkSRJkqTmGYwkSZIkNc9gJEmSJKl5BiNJkiRJzTMYSZIkSWqewUiSJElS8wxGkiRJkppnMJIkSZLUvLkqGEXEZhFxY0RMiogDu26PJEmSpDbMNcEoIuYFjgM2B1YH3hERq3fbKkmSJEktmGuCEbA2MCkzb8nM/wBnAtt03CZJkiRJDYjM7LoNAETEdsBmmfnuen9nYJ3M3GfQfnsCe9a7qwE3DmlD5z5LAX/vuhHqnMeBBngsCDwOVHgcCDwOAFbMzLEz22nUULRkTsrME4ATum7H3CIiJmbm+K7boW55HGiAx4LA40CFx4HA42B2zE2ldJOB5XvuL1e3SZIkSVJfzU3B6Epg1YhYOSLmB94OTOi4TZIkSZIaMNeU0mXmExGxD/ALYF7g5My8ruNmDQeWFQo8DjSNx4LA40CFx4HA42CWzTWTL0iSJElSV+amUjpJkiRJ6oTBSJIkSVLzDEaSJEmSmmcwkiRJktQ8g5EkSZKkmYqI6LoN/TTXTNetuUNERGZmRLwaeAoYlZlXdN0udafnmHg58CgwT2be3HW71F897/syQGbmlK7bpG71HBOLUo6JR7puk+a8nvf5eZT3+Z9dt0ndGzgugIWBEfu7b4+Rnqb+MdwcOBkYD/wsIl7fbavUpXpMbA2cBOwGHB0R63fbKvVbfd+3BU4HToyIQyNi2a7bpe70/C04G/h2RBzUdZs05/W8zz8CTomIz3fdJnWvHhebAWdFxGcj4qNdt6kfDEb6r4iYp14dPgDYGpgK3AJc32nD1KmIWA74GLAZcD/wPODGiJi304apryJiDeAjwLbAnyjvv1eOGxYRrwEOBt4DXAfsFBELddsqzWkRsR7lfd4VuArYNiIW7rZV6lpE/A/weeAwYDFg45H4+28w0tNk5r3AlcAbgA8DO2bmvRHxlohYpdvWaahFxChKGLoG2BTYDtg9M+8DNqhBWiNTAD8GtgE2AnbKzIcjYrVum6WhNGg8wSLAZ4B1gDcCW2XmvyJi1U4ap36ZD/gcsB7lIukWmfloRKzebbPUsdHAfsCilGPj3fX3/8XdNmvOMhiJKF4GXFo3rQCcAGyWmTdFxNrAgcCCXbVRQ6/+sTuZMtZsSeAoSlCeFBEbUq4ceRVxhImI1SNiG+AxYEPKB+HOmXlLRGwJnBARYzttpIZMLZ9Zv4afp4AjgL0poei2iNgU+HRELNFpQ/WsTWcw/UKUv+/7AJtn5q0RsTHlfV5qyBuoTkznuFgQOAv4X2DjzLw9It4I7BERiw15A/vEyRcaVg/6yMyngGsjYuAg3x0YB5waEVcC2wOHZea1HTZXQ6RngGUC/6JcJTqSUkb1uYj4GaW07pDMvLW7lqpPNgK2zcyNIuIy4CXAayLilZQSigMzc2qXDdSQ2wJYOzM3iYjLgTWARSLidcBngQMy84FOW6hnrYbfjYG1gKsz8xcR8VpKGe3SEbEJcCjw0cz8e5dt1dCpx8VrgFcA51LGFr4KWBMYOGaOphwXI6bMOsr5j1oSEQtm5mP19ujMfLDe3ht4YWZ+uN7fH5gC3JGZl/ScMGuEiYhRmflEvT06Mx+sZXTfAh7MzH0j4vnAB4B7gOsz83yPieEvIubJzKciYt7MfLJu+yFwHmXCjfcDK1IC8g/qSZPve0MiYgFKj/GJmfmHiPgmpfdoaeAbmflzj4nhZ9CMo6cDvwbmB+7KzE9GxCeB5Si/+yf7PrclIjYAvg5MAp6kHCNXUy6erw/8Gzg2M386ko4Lg1FjImIMsBdwHKVb9ErgU8BlwN+Ay4FjMvOUrtqooRURLwA2oFwNGke5AnReZp5Yp2s9EfhmZp7fYTM1h9WxQi/KzPMiYjylZnxSZv6slsy9NjMP6tl//sz8T1ftVf9FxPLAapn5q4h4A6Ws+vzMnBwRnwBekJnv69l/4cx8tKv26rmrZdEHAIdn5m9qD8H2wIPA5zPzsYhYKDP/1WlDNaRqWD4S+FBmXlsvnK8OXJCZP6wVRwtn5iMjKRSBY4xatBjwXcrguTHA24DVgE9TJlv4MrBGvUKoNjwfuJYy29wywFeB3SPiS5Qa8yuBF3TXPPXJwsAjEbEIZQbKJYCPRsQXKCWUW0fEW3v2f7yDNmqI1BOd1YCp9e//FMpkK4dExMGUCybjI2KLnqd5sjz8PUyZcXKbev93wJmU3sAjauWAF0QaEhHzAKsArwS2BMjM4yiTML05It4OzEtZ15CRFIqgYap8AAAavElEQVTAHqNm9F7tjYglKdNwrgV8uk6wMHBCvCxl/aIV6wx1GqGiTLedtYxqMeB4yrTMX6KE5jWBdwJvp3wwrgj8o45J0wgQEfMBDwDvycwzao/yF4GbgP0pU/Vu70Ke7YiyeOtZlMqBX0TES4GvALcCr6GUWB44UHap4aWnfG454D+ZOaX2DvyGMlbsG/XEeF3ggcx0uY4G9BwXiwFP1Z6g7YBdKCXUp9b99gYuGcljzg1GDagnP/9DmX73CUp36O+B1wOrAqdm5uX1iuHLgfkzc2JHzdUQiIgFgVdTToDXovQGBLAT8EfgzIFgXP843pWZl3fUXM0hUdYi2bDWhK8LPES5MvwDygDak2tvwdKUD8SrM/On3bVY/RZlHZLxmfnriHgJZUzJ0pQLIqdl5tl1v00pkzBckJkTOmuwnrMos05+iDLBzkTglHr7IuCzmXlsd61TV6Is6P1eyiy0p1B6D8cB7wLOzcyTumvd0DEYNSAi5qecBB8OvBjYJjOvrB+CWwErA9/PzIsHPW9E1Y1qmhqM3keZgexlwK51go3XA3tQ/iD+IjMnDXqex8Qw1XNF8HvAiygnQu+tg+k3oMw6tG9mnja953XQZA2B2ku4L+UCyXKUmcj+Tvls2BX4TmaeOeg5HhPDVO0pOpdyEWwU5dxgXco4o9WACygzUU62OqAdUdao+g7ld34JyvFxIyUgbQzsBrybcpF0RP/uO8aoAbWE7nbKWJKrgZXq9huAHwF3AjvGoHUoRvrB37I6K+EvKB+Evwf+Vmemuxj4JmX9mi1rgOp9nsfEMFQH1e9V7x5OuQr4aGb+ASAzf01ZyPGUiHhX73N9z0emiHhRRByQmfdTJt7ZGLgpM++oA+1/RTkpek9E7Nj7XI+JYe15lJLo6zLzT8D5lAVdN8vM3wHL1WPAUNSWMcC9mXlNZl5KmaBrN0pJ/Q+A3TJzcgu/+wajEayWxhERi2bmnZT5548BNouI99bd7qeMI/hcug7FiNdzTCyYmX+hnAzdSJmG+9UA9Y/i8cDFNUBp+PsPcHlELE0pmXw9MF9E/GBgh/q+r0W5UKKR717gN/WC2LeBnYF/1ElXqJ8HVwLHUv5GaBjqPQ8AqH/3746IQ+oU/bdT3t9V61P+2fs8jUw9x8W8ddNfgPsjYpM62+SfKTPVPj8zn2hpzLmldCNUT9nMlpSZxW4GrsjM70bEDsAmlHnpX065EuAH3wjXc0xsSimXu4wyPft1lFkJAe4D3kG5enh3Ny3VnFRPfp6sH4DnAtdk5kfrY1cAf6VMy3oE8NbMfMhSqZGt9g4/UQfZ30YZP/D+iFgD+AhwB3AOZdbSL2bmlO5aq+eqziS4B3A35W/9GsDmlDL6Uyi//7vXiyNqRD0/3Ah4LDMPjoi9gP9HKaW9ijIh146tjS+2x2iEqifAm1DKZg6hDK7/ckTsk5nfoyzc+G/K2gWGogb0HBNfYlq53OGUkPxxyqxTLwQONRSNDDXgPFnHEy4E7AmsFhGH18fWARYBPk9ZqO8hsFRqJKvv+xMRsVItl3o5sGFEHFNLqz4HLE9ZzPEiQ9HwFhFrAwdRFuteHjiYUinyFUovwauAfQxFbYmItSgXw/4ArBcREzLz68AESrnl24C9WgtFYI/RiBYRA4PoV6SEo8MpfwyP6Z11xqvDbaizTx1AmYp3ecq0zCcBm1IWcJ3Q07vgMTFCRMTWlKvEe9ZJV1ag1I9fA3yyniSPycz7fd/bUK8UfxHYIcvijc+jXCE+LzP3q/usWMusNEzV3/UjgZsz86A6EdPRwFPAcelU3E2q07PvDdyYmUfVbRcAj2Tmm+r9ZhdvtsdoBIqIl0XE4nVqxXsopXQHZOZ5lJrxAyNi5VpG4dXhBtTB9/NQeoseBD4GvAn4OmVqzl0jYlzWtUk8JkaGiHgl8BnKWkRX1hmpHqfMOPRq4DM1DN8Pvu8tqNO0/y/wzhqKnp+Z/6CUV701Ik6su/6ts0ZqTlmIUir7+oh4bZ2IaV/K4s4fGRh3pOaMpsxA+YqIeBFAZm4ELBURl9V9/t1V47o2qusGaM7oGT/yUsqJ0D8i4gOZeV9ETAUWjIiNKAf7hpl5a6cNVt/1HBNrAvtRusxPpRwDiwOPUAbc3gcclJmTO2us+uUJykyUG0bE2yj15EHpQdodWDZdqLM18wFnACtExP9QLor8ETiMMr7glWBIHgky88aI+Brlb/yOEfFUljUL3wO8JDMf7riJ6kCWNcsep/QabRoRP8vMWzNz/Vp6ScufC/YYjRD1BHhbSh3xZMoCfV+p5VNXUuafPx6YkJk3dddSDZV6TGxNGUD5fGA7ylXiByhrVVxEma79FI+JkaFnpqExEbE4cBdwBWXa1ZsoH4RnAytk5p2ZeWVXbdXQ6Dkm5q+lVLdRpmv/EGWsyb7Aw8CamflQZl7sjGQjRy2H/DGl52jP2nP0ZGZe13HT1KEsU7OfBKwNvDkiXli3/77Ths0FHGM0QtQPvDOBL9UrQqtTBlqPonwAPkWZdnGy4wjaEBFLUY6JD2XmNRGxE7ABcFVmfjMiVqT8DbjNY2LkiLKq/XuBxSgD6C+vg+qJiFcDJwMfzMwLumulhlJEvImycONSwJcp44nuz8x/1Yk5zqAMwP9Nh81UH9X3eVvKDITXdt0ezR1qJdEelKoRxxRij9FIMg+lPGq1ev9mypXidYEvAAsOlEp5AtyMRyllUy8GyMzvUkoq9oqIdwJ3ZuZt9TGPiREgIlallMl9FPgssAzwlohYISLGA18DDjEUtaPOPvUpyriioyg9RFvWULQJZQ2jTxmKhqdBPYLzzWi/LAu6f3UgFA2MMdbINL1e3+m95/WzYN+BUGRvsWOMhq2e8SOvAB6jzDt/KPCJiLgnM38WEZMp4wuWAl5CuUqoEarnmFgJSEpJ5bcpAywn167zn1FWsn4z8FPARX1HlqWBqfXk59qIuIcyK9UFwB+Bt2fmX+0hbMqywF/q7z/1mDgrIiYCk4B31R5lj4lhqP7N34byN32xiPgKcOng9zIi5snMhyNi/sz8T52qXSNQz7nAlsCWlLGmZ05v6u06+c59ETFfZj7u3wB7jIatnvEjJ1JWLP8uZaaZbwHHR8RxlDKar1EG2y/XVVs1NHrGmZ1GWYvkcMoEC08Ah9ZBuCcDB9ZtL+2qrZozeq4WL1Q3/Zmyqv3O9QPvT5Qxhqtl5j8z869gD+FINp0rvrfV7atFxAI1IJ0OjMnMWzLzGvCYGK4i4rWUdYoOAhagzDg6/6B95s3MpyJiNHB2RCw79C3VUKnnAptQLpafTBlTeGiURb7/K6YtzzEa+FItv2+ewWiYiogXUMplNqWURy0KXJmZZ9Zt51AW8FwAWIdywqQRLCJeDOwPbAbcCLwW+CFwAvBJ4FpKjfmilEUdrSce5uoH4BbACRFxLDCe0jO8CnBU/XDcnvLeqwEDx0REfC4ivgRMAf5JGXe2Xc8x8Y8u26lnJyJeEBG792x6CaVcfm1gDPC+zPx3RCxW9x9VT34XB34A/G+6gPeIExFjI+L1PZtWp4wdegFl8qX31ONgTN2/97g4Bzg7M/8+1O2eGxmMhq9RlLCzBWWF4ndl5gMR8UZKKc0vKYOvDwZ2dnruJiwEXEaZfW4zYNc65eaymXllZn6N8sH5ZUpJldNzD3NR1qQ5DPgeZTzZhvWhS+r3bSmD6n879K1TF+pYsi9TyqhXpSzfcALlQsh6lHXt9nb2qWHrJcDOEbFXvf8AZaKlD1NmHb09InYAjq09hE9ExBKUGUgPzcxfd9Ns9UvtCdoZ2CEiNq6bF6asU/gByuf93yJiK+C9EbFgPS5GU2YsPMTjYhpnpRsmempGF8269kBEnEk5EVqnziy2IfB5YMfMvKVeCZjPqwAjU88xMdAd/jxKKeVqwFsy86aI2IzSW7RdZt5VryIunpl3dtl2PXdRVrU/Grg9Mz9UB16/g7JW0T6Z+c/6AfiY40faEGVF+w8Cf83Mz9VtXwJWycxt6/3nZVnQVcNQLZvdAHg/5aT2TMoV/6uB44CV6/ePZuZ59aT5COC8zLyom1ar36Is3v1Oypjys4HrgIsplUR71fPD4ykTLZwfZSbj44HTMvOSGbxskwxGw0gtmdmDsjbJpyldpdtTfhF+SimtOzgzJ3gi1IY6uHIj4LHMPDgidgZeB9xBKaf7BPCxzDx3IEB12FzNQRGxGuXvwSaUD7tf1+0XA5/OzAs7bJ46EBEbUMYQPkK5Cnxz3X4h8P7MvMHPhuGp932LiAUoF0X3oSzafQFlkpX5gCUps8+dW/edF1g0Mx/qpOHqq0HHxXLALpTZSE8H/kYpp78dWInyuXDewPMoS7hYVjmIwWiYiLIa8ZcptcTvoRzop1Lqx99FWajvhnolwA++BkSZhvdUyjGxB/BIZm5VT462osxMd2Fm/tJjYmSqvUbvoEzJPgG4HvgJpYfwmi7bpm5ExDqUE+aJlCUbHqH0LGycmbd02TY9Oz3VAeMpE+c8npnXRcTmlPf6W5l5dt13bGZOrSe+4exzI1fPcfFyyjjC++tD+1DC0SmUnsSFgdED5fNeJH1mBqNhoJ78HAncnJkH1S7QoymLth6Xmdd32kANufqHcG/gxsw8qm67AHg0M7eu90dl5hMdNlNDIMraRTtTFvC8AfhcZl4SZXpeT4oaFBGvo5RarUDpPT41M3/qBZLhq1YHfJEyE+0uwAGZ+ataLn0A8KPM/KrvcVuizE58GGVc6WKUMsqbKOuVvRD4gRdHZ4+TLwwPCwF/BV4fEa/NzP9QDvqFgY9ExKKdtk5dGE2Zgv0VEfEigMzcCFgyIi6r+3hS3IBaLnUicCxlXZr76nbf/0bVMQNfBm6l9Br9um73xGgYqmWznwa2pvQKzAd8MyK2zsyfU97r34LvcUsiYg3g45S1iqYA61JKaV9GCUh31C+Pi9lgj9EwERErAjtQ6kS/k5mX19rhl2TmdZ02Tp2oM5LtTflA/NnAzIMRsbYzTo0MPaUS81M+2x5/hn1fQimrWwz45MAkLRpZpnfld0a9g7XnaH/gXMog638PUTP1HPX87i8AjKWsR/hSygWQ1wDvo5wU75yZE7prqYZaz7HxKuBJyjjzLwJ7UYZWvJgy6dLlXiCbfaO6boBmTZ2C88eUK0Z71g/Cyygzj6hBmfm7iFgQ2A1YMCJ+nGXBRkPRCFE//GZ1VfsbIuJ7lJLbGQYoDV89J0SzuqL9JRExD3CtoWh4qe/zmyknurcC3wcWAU7PzIcj4g7K7GNeAGlEz0WRccCdwB/qcXII8PHM/H2dfS6Ahw1Fz46ldMNIZt5EmX3uBuDBjpujuUBmXgx8m7Kwp4MpR5iYvVXtn0eZrn/MkDdUQ6KeBM3uivZbAwblYaJOmkB973alzC52DaWn6F3A8hHxEeBwyuxzFw48RyNb/f3fDLg0Ir4BfLBeHH0KODIi3kQ5Rk7OzKu7bOtwZo/RXGJWS2bqVeGv5rS1jBxgPULNaslMZl4QEVdn5n0zep6Gh4h4AbBpZn6rbhq8qv07sq5qn2WdolFZFupbnDIt66cy895uWq9+iIixwP+rF0Fg2or2K1NWtH9HDUFjMvP+QcfEOZQryV5IGybqecA6wFrAVZl5BkBEPEC5QLIIZaaxD2XmHwee01V71X8954djKIu3v4tSMv0GYL/M/HyUdey2oqxfdUWHzR32DEZzidksmXk4IubPzP8YikamZ1Eyc19EzJeZj/shOawNrGq/QGZ+nWmr2i/C01e13zwi3ltD0hLADyjjii6b8UtruIlpK9qvWn+/z2faivb/oqxof0eUFe1fHhFHZVnQdzTwI8paRh4Tw0DP3/z1KQt1TwKWrpPpXJaZZ9eT309QZqC7z4tgbajHxYaUsLwscCkwL+VvwNYR8UnKBbTHa/WAx8VzYCndXGI2S2ZGA2dHxLJD31INhWdZMvOliFiqg+ZqzvktZZX6zSJiN0rp7Dx1+xN1MP0ngLNqKJoXOBj4jCfAI0+WtUbOoqxbt2mdcOVYYEFgUg1FGwJfAibWUDQ/ZZaywzwmho+enqJPUdYh2xL4OfAWYP0ajM+grEc1MPOkJ78NiIjXAMdTwtCmwPtqVdGFlGNkaWD5gQvlHhfPjbPSdWRwyUxEvJsyze5TlFD0jnp1eEYlM4dlXeleI8PgkpmI+CBlRfOVmXZM/G0GJTMTKCUzHhPDUO8VvnBVe+GK9i2qF8POo5RDHVl7iD4OLA98OzMv6rSBGnJRluM4hnIx7LQanr8DHJmZx9fJVZYYCMt67iyl644lM/ovS2ba1VNC07uq/c/rCe4+lAuAu9V9B69q/yRgKBpheo6J3hXtv0o5HnakrGi/PjNe0d5QNAxlWYjzrcDnIuKezDw9Ij5DWcNoSsfNUzeWpnwuvD0iLsjMKyJiJ2BCvTh6LHXtOs0Z9hh1JCIWAjagrE7+Y+BMykDZqykLc61cv380M8+rJ85HAOd51WhkqleF30lZk+BsylTsFwNXZuZetWTmeGDfzDy/lswcT1mf5JKOmq05IFzVXoOEK9o3KyK2AD4DHJuZp3TcHA2hnvL4F1M6L24CVqN8LiRwTGbeXctqF8xpk7JoDjEYDTFLZjSYJTNti7Kq/enA2ygXSw6g9Bx/IDN/Uk+S7s3MqzpspoZQlBXtTwC2oaxTthPlQsmRwF+AD1KC0fVdtVH9FWXq5SOAN1J+/12OYQSLiBUp5+S31QtlXwB+DbwWeCul52hLSi/xFzLzrvo8L4zMYQajITSDkpnrImJzSjj6VmaeXfcdXDLj7HMj0AxKZqAcD8tQSmauZsYlMxqGet53V7XXf/UcF65or/+eB3TdDvVXRKxEmURhD2AqZTKVvYA1gaOA8XWs+XrA9sA3MvOGblo78jkr3RCqH3hbUnqHNgS+ExFvzMyfUU6I3hcR+9Td/z7wHD8AR656TGxNCUAfoMwm9ULgaOAuyh/HjTPzkXp/4HmGomGsvu9vppRMfpQy5vC/q9oDrmrfkHoBDMrsk1BWtL8aWIe6oj1wK3AzrmjfDEPRyFd/98cD5wK3AdsBlwHvoMxKu3kNRZtk5m8pY8wNRX1kMBpCtWTm05SVyO+nlMx9MyK2zsyfU06KfwtOt9iKWjLzcUoX+RRgXeBA4GWUMQV31C+PiRFg4AQ4XNVePWpQdkV7qTH1c/1XlHLZa4E/Aa8Adge2zcxb6niioyJi9cz8Z3etbYOldH1myYymx5KZdsW0Ve2XyszP1G3bUdYwu5cypmyKfw9Gvp6/A2Mov+8/ZtqK9vdk5heiLN64HPDTzDynw+ZK6oM65fa5lAui76d8DpxEmZRrAcpaVgdn5k86a2RDnK67z3pKZt5FKYX4Pj0lMxFhyUxDegZKjgPupJTMZEQcQi2ZqbPPBZbMjBg9J8Cuaq//qseEK9pLDauf81vUCRguoCza/U5gPWAJYO/MvNTf/6FhMOqTnhOh3pKZRSk9RTcD99aSmfdRVrn+owf9yNdTMvO1iDgfuCEijmdaycwoSojexZKZkaO+772r2l9T1yd5C/BURFyemWdExKXpqvbNiGkr2p/MtBXtj4uICyml1ltSVrSfBB4T0kiWZf3Kt1HOF4/LzK8Oetzf/yFgKV0fWTKjAZbMKFzVXj3CFe0lTUdErEWpJNoIuM1ANLTsMZrDLJnR9Fgyo3RVez2dK9pL+j8y8w8RsYYTLXTDHqM+qFf+Pgvs31MyM5pyBeDyzHw8IsZlXZNGI18tmTmJUjJzMHBILZmZh1JCsyVw9EDJjEaucFX7JoUr2kuaRV4c7Y7BqA8smVEvS2Y0WLiqfTPCFe0ladhwHaM+yMxfUj7w9oiIHTPzccoV4nuwZKZFvSUz4zLzCsqaBYdGxL6Z+ZShqC11XOHrMvMuQ9HIFWVF+18A42pP0XuBTYCfAPMDd+f/b+/eQewowzCO/x8VjJAE8YKtpYXoKrEQo0RBKwtJ0BAtxE4shIDIYpVUESyCNgpiEBu1UmIEbcQbIipsbngpIiIWRrTJirLo+lrMbByCexD2HGfOzv8Hyzlzzn5zKU7xzPfO91Z9DBylWYBl+9pYQ5Ek/f+cMZohS2bGyZIZSW1j3j00TZsP06xO+idN37IHgH3VNG+8p33+bJvPFEhSvwxGM2bJzHhYMiOpq23X8BWwhaYvyT5gAbi7c3PkJeD+qvqyvzOVJIGldDNnycw4WDIj6V+cA5aAZZqmzc/S/P4fSXIQeBFYNBRJ0jA4YyRtkCUzkia5oKP91/zT0f4TO9pL0nAYjKQpsGRG0iRJbmKdjvaSpGEwGElT0C65fQy4HngMOEsThF4DLgV2A09V1Vu9naSkXtnRXpKGzWAkTZElM5ImsZRWkobLYCRNmSUzktbjzRFJGi6DkTQDlsxIkiTNF4ORNCOWzEiSJM0Pg5E0I5bMSJIkzQ+DkSRJkqTRu6jvE5AkSZKkvhmMJEmSJI2ewUiSJEnS6BmMJEm9SrKa5Hjnb3EK+7w2yYOd7R1JntvofiVJm5eLL0iSepXk16raOuV97gKeqKp7p7lfSdLm5YyRJGmQknyX5FA7i/RFkpuTvJvkTJJH2/9JkmeSnE5yKsnedvjTwO3t2P1JdiU51o65IsmbSU4m+TTJDe3nB5IcSfJ+km+TPN7PlUuS+nBJ3ycgSRq9y5Ic72wfqqrX2/ffV9VCksPAy8BtwBbgNPACsBtYAG4ErgI+T/IhsEhnxqidQVpzEFiqqvuS3AW80u4D4DrgTmAb8E2S56vqj2lfsCRpeAxGkqS+/V5VC+t8d7R9PQVsraplYDnJSpLLgZ3Aq1W1CpxN8gFwC3BuwvF2AnsAquq9JFcm2d5+93ZVrQArSX4CrgF+2NDVSZLmgqV0kqQhW2lf/+q8X9uexc297jFWZ3QMSdIAGYwkSfPsI2BvkouTXA3cAXwGLNOUw6035iE4X2L3c1VNmmGSJI2Ad8IkSX278Bmjd6rqvy7Z/QZwK3ACKODJqvoxyS/AapITNM8mLXXGHACOJDkJ/AY8vMHzlyRtAi7XLUmSJGn0LKWTJEmSNHoGI0mSJEmjZzCSJEmSNHoGI0mSJEmjZzCSJEmSNHoGI0mSJEmjZzCSJEmSNHoGI0mSJEmj9zf1V/MuwdBKbwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "a = data_df.label.value_counts()\n",
+ "plot_emotion_dist(a, \"#2962FF\", \"Emotion Distribution\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# V. Data Splitting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Female Data Set\n",
+ "\n",
+ "## Uncomment all below to use Female set \n",
+ "\n",
+ "# data2_df = data_df.copy()\n",
+ "# data2_df = data2_df[data2_df.label != \"male_none\"]\n",
+ "# data2_df = data2_df[data2_df.label != \"female_none\"]\n",
+ "# data2_df = data2_df[data2_df.label != \"male_happy\"]\n",
+ "# data2_df = data2_df[data2_df.label != \"male_angry\"]\n",
+ "# data2_df = data2_df[data2_df.label != \"male_sad\"]\n",
+ "# data2_df = data2_df[data2_df.label != \"male_fearful\"]\n",
+ "# data2_df = data2_df[data2_df.label != \"male_calm\"]\n",
+ "# data2_df = data2_df[data2_df.label != \"male_positive\"]\n",
+ "# data2_df = data2_df[data2_df.label != \"male_negative\"].reset_index(drop=True)\n",
+ "\n",
+ "# tmp1 = data2_df[data2_df.actor == 22]\n",
+ "# tmp2 = data2_df[data2_df.actor == 24]\n",
+ "# data3_df = pd.concat([tmp1, tmp2],ignore_index=True).reset_index(drop=True)\n",
+ "# data2_df = data2_df[data2_df.actor != 22]\n",
+ "# data2_df = data2_df[data2_df.actor != 24].reset_index(drop=True)\n",
+ "# print (len(data2_df))\n",
+ "# data2_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "800\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " path | \n",
+ " source | \n",
+ " actor | \n",
+ " gender | \n",
+ " intensity | \n",
+ " statement | \n",
+ " repetition | \n",
+ " emotion | \n",
+ " label | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " data/Actor_01/03-02-04-02-02-01-01.wav | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 4 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " data/Actor_01/03-01-04-02-01-02-01.wav | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " data/Actor_01/03-02-05-02-01-01-01.wav | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " data/Actor_01/03-01-04-01-01-02-01.wav | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " data/Actor_01/03-01-02-01-02-01-01.wav | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " path source actor gender intensity \\\n",
+ "0 data/Actor_01/03-02-04-02-02-01-01.wav 2 1 male 1 \n",
+ "1 data/Actor_01/03-01-04-02-01-02-01.wav 1 1 male 1 \n",
+ "2 data/Actor_01/03-02-05-02-01-01-01.wav 2 1 male 1 \n",
+ "3 data/Actor_01/03-01-04-01-01-02-01.wav 1 1 male 0 \n",
+ "4 data/Actor_01/03-01-02-01-02-01-01.wav 1 1 male 0 \n",
+ "\n",
+ " statement repetition emotion label \n",
+ "0 1 0 4 male_negative \n",
+ "1 0 1 4 male_negative \n",
+ "2 0 0 5 male_negative \n",
+ "3 0 1 4 male_negative \n",
+ "4 1 0 2 male_positive "
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Male Data Set\n",
+ "\n",
+ "## Uncomment all below to use Male set \n",
+ "\n",
+ "data2_df = data_df.copy()\n",
+ "data2_df = data2_df[data2_df.label != \"male_none\"]\n",
+ "data2_df = data2_df[data2_df.label != \"female_none\"].reset_index(drop=True)\n",
+ "data2_df = data2_df[data2_df.label != \"female_neutral\"]\n",
+ "data2_df = data2_df[data2_df.label != \"female_happy\"]\n",
+ "data2_df = data2_df[data2_df.label != \"female_angry\"]\n",
+ "data2_df = data2_df[data2_df.label != \"female_sad\"]\n",
+ "data2_df = data2_df[data2_df.label != \"female_fearful\"]\n",
+ "data2_df = data2_df[data2_df.label != \"female_calm\"]\n",
+ "data2_df = data2_df[data2_df.label != \"female_positive\"]\n",
+ "data2_df = data2_df[data2_df.label != \"female_negative\"].reset_index(drop=True)\n",
+ "\n",
+ "tmp1 = data2_df[data2_df.actor == 21]\n",
+ "tmp2 = data2_df[data2_df.actor == 22]\n",
+ "tmp3 = data2_df[data2_df.actor == 23]\n",
+ "tmp4 = data2_df[data2_df.actor == 24]\n",
+ "data3_df = pd.concat([tmp1, tmp3],ignore_index=True).reset_index(drop=True)\n",
+ "data2_df = data2_df[data2_df.actor != 21]\n",
+ "data2_df = data2_df[data2_df.actor != 22]\n",
+ "data2_df = data2_df[data2_df.actor != 23].reset_index(drop=True)\n",
+ "data2_df = data2_df[data2_df.actor != 24].reset_index(drop=True)\n",
+ "print (len(data2_df))\n",
+ "data2_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "160\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " path | \n",
+ " source | \n",
+ " actor | \n",
+ " gender | \n",
+ " intensity | \n",
+ " statement | \n",
+ " repetition | \n",
+ " emotion | \n",
+ " label | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " data/Actor_21/03-01-04-02-02-02-21.wav | \n",
+ " 1 | \n",
+ " 21 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " data/Actor_21/03-02-03-02-01-01-21.wav | \n",
+ " 2 | \n",
+ " 21 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " data/Actor_21/03-02-05-01-02-01-21.wav | \n",
+ " 2 | \n",
+ " 21 | \n",
+ " male | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " data/Actor_21/03-01-02-02-01-02-21.wav | \n",
+ " 1 | \n",
+ " 21 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " data/Actor_21/03-01-02-02-02-01-21.wav | \n",
+ " 1 | \n",
+ " 21 | \n",
+ " male | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " path source actor gender intensity \\\n",
+ "0 data/Actor_21/03-01-04-02-02-02-21.wav 1 21 male 1 \n",
+ "1 data/Actor_21/03-02-03-02-01-01-21.wav 2 21 male 1 \n",
+ "2 data/Actor_21/03-02-05-01-02-01-21.wav 2 21 male 0 \n",
+ "3 data/Actor_21/03-01-02-02-01-02-21.wav 1 21 male 1 \n",
+ "4 data/Actor_21/03-01-02-02-02-01-21.wav 1 21 male 1 \n",
+ "\n",
+ " statement repetition emotion label \n",
+ "0 1 1 4 male_negative \n",
+ "1 0 0 3 male_positive \n",
+ "2 1 0 5 male_negative \n",
+ "3 0 1 2 male_positive \n",
+ "4 1 0 2 male_positive "
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "print (len(data3_df))\n",
+ "data3_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# VI. Getting the features of audio files using librosa"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 800/800 [00:31<00:00, 25.69it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "data = pd.DataFrame(columns=['feature'])\n",
+ "for i in tqdm(range(len(data2_df))):\n",
+ " X, sample_rate = librosa.load(data2_df.path[i], res_type='kaiser_fast',duration=input_duration,sr=22050*2,offset=0.5)\n",
+ "# X = X[10000:90000]\n",
+ " sample_rate = np.array(sample_rate)\n",
+ " mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13), axis=0)\n",
+ " feature = mfccs\n",
+ " data.loc[i] = [feature]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " feature | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " [-56.91284250420127, -56.48526874950596, -56.5... | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " [-62.104852507780045, -62.104852507780045, -62... | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " [-45.968126964359264, -45.81826183337232, -44.... | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " [-67.73615146024396, -67.77801795322442, -66.7... | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " [-69.67328949566406, -69.69331084873151, -69.6... | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " feature\n",
+ "0 [-56.91284250420127, -56.48526874950596, -56.5...\n",
+ "1 [-62.104852507780045, -62.104852507780045, -62...\n",
+ "2 [-45.968126964359264, -45.81826183337232, -44....\n",
+ "3 [-67.73615146024396, -67.77801795322442, -66.7...\n",
+ "4 [-69.67328949566406, -69.69331084873151, -69.6..."
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df3 = pd.DataFrame(data['feature'].values.tolist())\n",
+ "labels = data2_df.label"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 249 | \n",
+ " 250 | \n",
+ " 251 | \n",
+ " 252 | \n",
+ " 253 | \n",
+ " 254 | \n",
+ " 255 | \n",
+ " 256 | \n",
+ " 257 | \n",
+ " 258 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " -56.912843 | \n",
+ " -56.485269 | \n",
+ " -56.501424 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " ... | \n",
+ " -44.822108 | \n",
+ " -46.451407 | \n",
+ " -46.669580 | \n",
+ " -46.596475 | \n",
+ " -47.113484 | \n",
+ " -46.768849 | \n",
+ " -48.650488 | \n",
+ " -52.294436 | \n",
+ " -51.852247 | \n",
+ " -47.143469 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.037936 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " ... | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " -45.968127 | \n",
+ " -45.818262 | \n",
+ " -44.713754 | \n",
+ " -43.853780 | \n",
+ " -44.876142 | \n",
+ " -45.742182 | \n",
+ " -44.462401 | \n",
+ " -45.629232 | \n",
+ " -45.794369 | \n",
+ " -44.506374 | \n",
+ " ... | \n",
+ " -17.042166 | \n",
+ " -17.049920 | \n",
+ " -18.028540 | \n",
+ " -16.300012 | \n",
+ " -15.349774 | \n",
+ " -14.373643 | \n",
+ " -14.399101 | \n",
+ " -13.917189 | \n",
+ " -14.184953 | \n",
+ " -14.288989 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " -67.736151 | \n",
+ " -67.778018 | \n",
+ " -66.746144 | \n",
+ " -65.957883 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.258683 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " ... | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " -69.673289 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.620774 | \n",
+ " -69.693311 | \n",
+ " -68.906572 | \n",
+ " ... | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.383522 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 259 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4 5 \\\n",
+ "0 -56.912843 -56.485269 -56.501424 -57.221756 -57.221756 -57.221756 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.037936 -62.104853 -62.104853 \n",
+ "2 -45.968127 -45.818262 -44.713754 -43.853780 -44.876142 -45.742182 \n",
+ "3 -67.736151 -67.778018 -66.746144 -65.957883 -67.736151 -67.736151 \n",
+ "4 -69.673289 -69.693311 -69.693311 -69.693311 -69.693311 -69.693311 \n",
+ "\n",
+ " 6 7 8 9 ... 249 \\\n",
+ "0 -57.221756 -57.221756 -57.221756 -57.221756 ... -44.822108 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.104853 ... -62.104853 \n",
+ "2 -44.462401 -45.629232 -45.794369 -44.506374 ... -17.042166 \n",
+ "3 -67.736151 -67.258683 -67.736151 -67.736151 ... -67.736151 \n",
+ "4 -69.693311 -69.620774 -69.693311 -68.906572 ... -69.693311 \n",
+ "\n",
+ " 250 251 252 253 254 255 \\\n",
+ "0 -46.451407 -46.669580 -46.596475 -47.113484 -46.768849 -48.650488 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.104853 -62.104853 -62.104853 \n",
+ "2 -17.049920 -18.028540 -16.300012 -15.349774 -14.373643 -14.399101 \n",
+ "3 -67.736151 -67.736151 -67.736151 -67.736151 -67.736151 -67.736151 \n",
+ "4 -69.693311 -69.693311 -69.693311 -69.693311 -69.383522 -69.693311 \n",
+ "\n",
+ " 256 257 258 \n",
+ "0 -52.294436 -51.852247 -47.143469 \n",
+ "1 -62.104853 -62.104853 -62.104853 \n",
+ "2 -13.917189 -14.184953 -14.288989 \n",
+ "3 -67.736151 -67.736151 -67.736151 \n",
+ "4 -69.693311 -69.693311 -69.693311 \n",
+ "\n",
+ "[5 rows x 259 columns]"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df3.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "newdf = pd.concat([df3,labels], axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "800"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "rnewdf = newdf.rename(index=str, columns={\"0\": \"label\"})\n",
+ "len(rnewdf)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 250 | \n",
+ " 251 | \n",
+ " 252 | \n",
+ " 253 | \n",
+ " 254 | \n",
+ " 255 | \n",
+ " 256 | \n",
+ " 257 | \n",
+ " 258 | \n",
+ " label | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " -56.912843 | \n",
+ " -56.485269 | \n",
+ " -56.501424 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " ... | \n",
+ " -46.451407 | \n",
+ " -46.669580 | \n",
+ " -46.596475 | \n",
+ " -47.113484 | \n",
+ " -46.768849 | \n",
+ " -48.650488 | \n",
+ " -52.294436 | \n",
+ " -51.852247 | \n",
+ " -47.143469 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.037936 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " ... | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " -45.968127 | \n",
+ " -45.818262 | \n",
+ " -44.713754 | \n",
+ " -43.853780 | \n",
+ " -44.876142 | \n",
+ " -45.742182 | \n",
+ " -44.462401 | \n",
+ " -45.629232 | \n",
+ " -45.794369 | \n",
+ " -44.506374 | \n",
+ " ... | \n",
+ " -17.049920 | \n",
+ " -18.028540 | \n",
+ " -16.300012 | \n",
+ " -15.349774 | \n",
+ " -14.373643 | \n",
+ " -14.399101 | \n",
+ " -13.917189 | \n",
+ " -14.184953 | \n",
+ " -14.288989 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " -67.736151 | \n",
+ " -67.778018 | \n",
+ " -66.746144 | \n",
+ " -65.957883 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.258683 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " ... | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " -69.673289 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.620774 | \n",
+ " -69.693311 | \n",
+ " -68.906572 | \n",
+ " ... | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.383522 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " -54.181857 | \n",
+ " -53.653303 | \n",
+ " -52.179519 | \n",
+ " -52.163266 | \n",
+ " -53.387515 | \n",
+ " -53.853849 | \n",
+ " -52.760702 | \n",
+ " -51.047829 | \n",
+ " -50.953316 | \n",
+ " -50.094384 | \n",
+ " ... | \n",
+ " -52.989496 | \n",
+ " -52.172938 | \n",
+ " -51.714458 | \n",
+ " -53.732064 | \n",
+ " -54.112915 | \n",
+ " -52.875975 | \n",
+ " -52.818990 | \n",
+ " -52.377234 | \n",
+ " -53.531375 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " -68.049082 | \n",
+ " -68.049082 | \n",
+ " -68.049082 | \n",
+ " -68.049082 | \n",
+ " -68.049082 | \n",
+ " -68.049082 | \n",
+ " -68.049082 | \n",
+ " -68.049082 | \n",
+ " -68.049082 | \n",
+ " -68.049082 | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " -61.542955 | \n",
+ " -61.670297 | \n",
+ " -61.663520 | \n",
+ " -61.675594 | \n",
+ " -59.627474 | \n",
+ " -58.578270 | \n",
+ " -60.384651 | \n",
+ " -60.370816 | \n",
+ " -59.209070 | \n",
+ " -59.793678 | \n",
+ " ... | \n",
+ " -40.469880 | \n",
+ " -41.462666 | \n",
+ " -40.453254 | \n",
+ " -42.066735 | \n",
+ " -42.704448 | \n",
+ " -41.112258 | \n",
+ " -41.137339 | \n",
+ " -41.213322 | \n",
+ " -38.552507 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " -55.815831 | \n",
+ " -55.791512 | \n",
+ " -55.661960 | \n",
+ " -55.702223 | \n",
+ " -55.800005 | \n",
+ " -55.791471 | \n",
+ " -55.815808 | \n",
+ " -55.815831 | \n",
+ " -55.815831 | \n",
+ " -55.676474 | \n",
+ " ... | \n",
+ " -35.430449 | \n",
+ " -34.440064 | \n",
+ " -34.951263 | \n",
+ " -33.887344 | \n",
+ " -34.126421 | \n",
+ " -33.674242 | \n",
+ " -34.369253 | \n",
+ " -36.464253 | \n",
+ " -38.092677 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " -63.557785 | \n",
+ " -63.707485 | \n",
+ " -63.975054 | \n",
+ " -63.975054 | \n",
+ " -63.975054 | \n",
+ " -63.975054 | \n",
+ " -63.975054 | \n",
+ " -63.975054 | \n",
+ " -63.975054 | \n",
+ " -63.975054 | \n",
+ " ... | \n",
+ " -39.142542 | \n",
+ " -40.554657 | \n",
+ " -40.985578 | \n",
+ " -41.396802 | \n",
+ " -40.635562 | \n",
+ " -40.026052 | \n",
+ " -40.481173 | \n",
+ " -39.127330 | \n",
+ " -34.881790 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
10 rows × 260 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4 5 \\\n",
+ "0 -56.912843 -56.485269 -56.501424 -57.221756 -57.221756 -57.221756 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.037936 -62.104853 -62.104853 \n",
+ "2 -45.968127 -45.818262 -44.713754 -43.853780 -44.876142 -45.742182 \n",
+ "3 -67.736151 -67.778018 -66.746144 -65.957883 -67.736151 -67.736151 \n",
+ "4 -69.673289 -69.693311 -69.693311 -69.693311 -69.693311 -69.693311 \n",
+ "5 -54.181857 -53.653303 -52.179519 -52.163266 -53.387515 -53.853849 \n",
+ "6 -68.049082 -68.049082 -68.049082 -68.049082 -68.049082 -68.049082 \n",
+ "7 -61.542955 -61.670297 -61.663520 -61.675594 -59.627474 -58.578270 \n",
+ "8 -55.815831 -55.791512 -55.661960 -55.702223 -55.800005 -55.791471 \n",
+ "9 -63.557785 -63.707485 -63.975054 -63.975054 -63.975054 -63.975054 \n",
+ "\n",
+ " 6 7 8 9 ... 250 \\\n",
+ "0 -57.221756 -57.221756 -57.221756 -57.221756 ... -46.451407 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.104853 ... -62.104853 \n",
+ "2 -44.462401 -45.629232 -45.794369 -44.506374 ... -17.049920 \n",
+ "3 -67.736151 -67.258683 -67.736151 -67.736151 ... -67.736151 \n",
+ "4 -69.693311 -69.620774 -69.693311 -68.906572 ... -69.693311 \n",
+ "5 -52.760702 -51.047829 -50.953316 -50.094384 ... -52.989496 \n",
+ "6 -68.049082 -68.049082 -68.049082 -68.049082 ... NaN \n",
+ "7 -60.384651 -60.370816 -59.209070 -59.793678 ... -40.469880 \n",
+ "8 -55.815808 -55.815831 -55.815831 -55.676474 ... -35.430449 \n",
+ "9 -63.975054 -63.975054 -63.975054 -63.975054 ... -39.142542 \n",
+ "\n",
+ " 251 252 253 254 255 256 \\\n",
+ "0 -46.669580 -46.596475 -47.113484 -46.768849 -48.650488 -52.294436 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.104853 -62.104853 -62.104853 \n",
+ "2 -18.028540 -16.300012 -15.349774 -14.373643 -14.399101 -13.917189 \n",
+ "3 -67.736151 -67.736151 -67.736151 -67.736151 -67.736151 -67.736151 \n",
+ "4 -69.693311 -69.693311 -69.693311 -69.383522 -69.693311 -69.693311 \n",
+ "5 -52.172938 -51.714458 -53.732064 -54.112915 -52.875975 -52.818990 \n",
+ "6 NaN NaN NaN NaN NaN NaN \n",
+ "7 -41.462666 -40.453254 -42.066735 -42.704448 -41.112258 -41.137339 \n",
+ "8 -34.440064 -34.951263 -33.887344 -34.126421 -33.674242 -34.369253 \n",
+ "9 -40.554657 -40.985578 -41.396802 -40.635562 -40.026052 -40.481173 \n",
+ "\n",
+ " 257 258 label \n",
+ "0 -51.852247 -47.143469 male_negative \n",
+ "1 -62.104853 -62.104853 male_negative \n",
+ "2 -14.184953 -14.288989 male_negative \n",
+ "3 -67.736151 -67.736151 male_negative \n",
+ "4 -69.693311 -69.693311 male_positive \n",
+ "5 -52.377234 -53.531375 male_positive \n",
+ "6 NaN NaN male_negative \n",
+ "7 -41.213322 -38.552507 male_positive \n",
+ "8 -36.464253 -38.092677 male_positive \n",
+ "9 -39.127330 -34.881790 male_positive \n",
+ "\n",
+ "[10 rows x 260 columns]"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "rnewdf.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2284"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "rnewdf.isnull().sum().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 250 | \n",
+ " 251 | \n",
+ " 252 | \n",
+ " 253 | \n",
+ " 254 | \n",
+ " 255 | \n",
+ " 256 | \n",
+ " 257 | \n",
+ " 258 | \n",
+ " label | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " -56.912843 | \n",
+ " -56.485269 | \n",
+ " -56.501424 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " ... | \n",
+ " -46.451407 | \n",
+ " -46.669580 | \n",
+ " -46.596475 | \n",
+ " -47.113484 | \n",
+ " -46.768849 | \n",
+ " -48.650488 | \n",
+ " -52.294436 | \n",
+ " -51.852247 | \n",
+ " -47.143469 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.037936 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " ... | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " -45.968127 | \n",
+ " -45.818262 | \n",
+ " -44.713754 | \n",
+ " -43.853780 | \n",
+ " -44.876142 | \n",
+ " -45.742182 | \n",
+ " -44.462401 | \n",
+ " -45.629232 | \n",
+ " -45.794369 | \n",
+ " -44.506374 | \n",
+ " ... | \n",
+ " -17.049920 | \n",
+ " -18.028540 | \n",
+ " -16.300012 | \n",
+ " -15.349774 | \n",
+ " -14.373643 | \n",
+ " -14.399101 | \n",
+ " -13.917189 | \n",
+ " -14.184953 | \n",
+ " -14.288989 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " -67.736151 | \n",
+ " -67.778018 | \n",
+ " -66.746144 | \n",
+ " -65.957883 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.258683 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " ... | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " -69.673289 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.620774 | \n",
+ " -69.693311 | \n",
+ " -68.906572 | \n",
+ " ... | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.383522 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 260 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4 5 \\\n",
+ "0 -56.912843 -56.485269 -56.501424 -57.221756 -57.221756 -57.221756 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.037936 -62.104853 -62.104853 \n",
+ "2 -45.968127 -45.818262 -44.713754 -43.853780 -44.876142 -45.742182 \n",
+ "3 -67.736151 -67.778018 -66.746144 -65.957883 -67.736151 -67.736151 \n",
+ "4 -69.673289 -69.693311 -69.693311 -69.693311 -69.693311 -69.693311 \n",
+ "\n",
+ " 6 7 8 9 ... 250 \\\n",
+ "0 -57.221756 -57.221756 -57.221756 -57.221756 ... -46.451407 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.104853 ... -62.104853 \n",
+ "2 -44.462401 -45.629232 -45.794369 -44.506374 ... -17.049920 \n",
+ "3 -67.736151 -67.258683 -67.736151 -67.736151 ... -67.736151 \n",
+ "4 -69.693311 -69.620774 -69.693311 -68.906572 ... -69.693311 \n",
+ "\n",
+ " 251 252 253 254 255 256 \\\n",
+ "0 -46.669580 -46.596475 -47.113484 -46.768849 -48.650488 -52.294436 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.104853 -62.104853 -62.104853 \n",
+ "2 -18.028540 -16.300012 -15.349774 -14.373643 -14.399101 -13.917189 \n",
+ "3 -67.736151 -67.736151 -67.736151 -67.736151 -67.736151 -67.736151 \n",
+ "4 -69.693311 -69.693311 -69.693311 -69.383522 -69.693311 -69.693311 \n",
+ "\n",
+ " 257 258 label \n",
+ "0 -51.852247 -47.143469 male_negative \n",
+ "1 -62.104853 -62.104853 male_negative \n",
+ "2 -14.184953 -14.288989 male_negative \n",
+ "3 -67.736151 -67.736151 male_negative \n",
+ "4 -69.693311 -69.693311 male_positive \n",
+ "\n",
+ "[5 rows x 260 columns]"
+ ]
+ },
+ "execution_count": 43,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "rnewdf = rnewdf.fillna(0)\n",
+ "rnewdf.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# VII. Data Augmentation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def plot_time_series(data):\n",
+ " \"\"\"\n",
+ " Plot the Audio Frequency.\n",
+ " \"\"\"\n",
+ " fig = plt.figure(figsize=(14, 8))\n",
+ " plt.title('Raw wave ')\n",
+ " plt.ylabel('Amplitude')\n",
+ " plt.plot(np.linspace(0, 1, len(data)), data)\n",
+ " plt.show()\n",
+ "\n",
+ "\n",
+ "def noise(data):\n",
+ " \"\"\"\n",
+ " Adding White Noise.\n",
+ " \"\"\"\n",
+ " # you can take any distribution from https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.random.html\n",
+ " noise_amp = 0.005*np.random.uniform()*np.amax(data)\n",
+ " data = data.astype('float64') + noise_amp * np.random.normal(size=data.shape[0])\n",
+ " return data\n",
+ " \n",
+ "def shift(data):\n",
+ " \"\"\"\n",
+ " Random Shifting.\n",
+ " \"\"\"\n",
+ " s_range = int(np.random.uniform(low=-5, high = 5)*500)\n",
+ " return np.roll(data, s_range)\n",
+ " \n",
+ "def stretch(data, rate=0.8):\n",
+ " \"\"\"\n",
+ " Streching the Sound.\n",
+ " \"\"\"\n",
+ " data = librosa.effects.time_stretch(data, rate)\n",
+ " return data\n",
+ " \n",
+ "def pitch(data, sample_rate):\n",
+ " \"\"\"\n",
+ " Pitch Tuning.\n",
+ " \"\"\"\n",
+ " bins_per_octave = 12\n",
+ " pitch_pm = 2\n",
+ " pitch_change = pitch_pm * 2*(np.random.uniform()) \n",
+ " data = librosa.effects.pitch_shift(data.astype('float64'), \n",
+ " sample_rate, n_steps=pitch_change, \n",
+ " bins_per_octave=bins_per_octave)\n",
+ " return data\n",
+ " \n",
+ "def dyn_change(data):\n",
+ " \"\"\"\n",
+ " Random Value Change.\n",
+ " \"\"\"\n",
+ " dyn_change = np.random.uniform(low=1.5,high=3)\n",
+ " return (data * dyn_change)\n",
+ " \n",
+ "def speedNpitch(data):\n",
+ " \"\"\"\n",
+ " peed and Pitch Tuning.\n",
+ " \"\"\"\n",
+ " # you can change low and high here\n",
+ " length_change = np.random.uniform(low=0.8, high = 1)\n",
+ " speed_fac = 1.0 / length_change\n",
+ " tmp = np.interp(np.arange(0,len(data),speed_fac),np.arange(0,len(data)),data)\n",
+ " minlen = min(data.shape[0], tmp.shape[0])\n",
+ " data *= 0\n",
+ " data[0:minlen] = tmp[0:minlen]\n",
+ " return data\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHiCAYAAADic/1bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8VNX5x/HvSQJhX2QRAdlEWcQFoeCOouKC1rVVtNa2tlatttZqi0vVqj+17mtbcWldqqKodQFBURZBtrDvECDsYScLkP38/sgkJGGSmcncO/fOzOf9ekVn7r1z75OQzJznnnOeY6y1AgAAAACEL8XrAAAAAAAg3pBIAQAAAECESKQAAAAAIEIkUgAAAAAQIRIpAAAAAIgQiRQAAAAARIhECgAAAAAiRCIFAPCUMSbLGHPAGJNvjMk2xvzHGNPM67gAAKgLiRQAwA8usdY2k3SipP6S7vE4HgAA6kQiBQDwDWtttqQJKk+oJEnGmOHGmPnGmFxjzEZjzENV9r1ljPlT4HEnY4w1xvwu8PwoY8xuY8whn3XGmPXGmAGBx9cFXnds4PmNxpj/BR4PMsbMMMbsNcZsNca8bIxpGNj3T2PM0zXO+5kx5s7A447GmI+NMTuMMeuMMb939IcFAPAUiRQAwDeMMZ0lXSgps8rmfZJ+LqmVpOGSbjHGXBbYN0XSWYHHQyStlXRmleffW2vLglwq1OumBB6XSvqjpLaSTpF0jqRbA/vel3S1McYEYm8taZikDwLJ2xeSFkrqFHjdHcaY88P7SQAA/I5ECgDgB/8zxuRJ2ihpu6QHK3ZYaydbaxdba8ustYtUnsAMCeyeIun0QOJypqQnJZ0W2Fc1IappSpVznCHp8SrPK19nrZ1rrZ1prS2x1mZJerXKcd9LsoHXS9JVkmZYa7dI+pGkdtbah621RdbatZJek3RNhD8XAIBPkUgBAPzgMmttc5X3EvVWeQ+QJMkYM9gYMykwRC5H0s0V+621a1TeY3WiyhOaLyVtMcb0UuhE6gxjzBGSUiV9KOk0Y0w3SS0lLQhc+xhjzJeBIhi5kh6rcm0r6QNJIwLnvFbSfwOPu0rqGBgSuNcYs1fSvZIOr/+PCADgJyRSAADfsNZOkfQfSVXnHr0n6XNJR1prW0r6lyRTZf8UlfcGNbTWbg48v0FSawUSoiDXyZS0X9LtkqZaa3MlZUu6SdK0KsMB/ylphaSjrbUtVJ4MVb32+5KuMsZ0lTRY0seB7RslrbPWtqry1dxae1GkPxMAgD+RSAEA/OZ5SecZY04IPG8uabe1tsAYM0jlPT9VTZF0m6SpgeeTA8+nWWtL67hOxesqeq0m13hece1cSfnGmN6Sbql6AmvtfEk7Jb0uaYK1dm9g12xJecaYvxhjGhtjUo0x/YwxPwr53QMA4gKJFADAV6y1OyS9LemBwKZbJT0cmEP1gMqH4VU1ReUJT0UiNU1SkyrPa1PzdTWfS9JdKk/c8lQ+x2l0kPO8J+ncwP8rvodSSRerfMjhOh1MtlqGiAkAECdM+RBvAAAAAEC46JECAAAAgAiRSAEAAABAhEikAAAAACBCJFIAAAAAECESKQAAAACIUJrXAcRS27Ztbbdu3bwOAwAAAIBPzZ07d6e1tl2o45IqkerWrZsyMjK8DgMAAACATxlj1odzHEP7AAAAACBCJFIAAAAAECESKQAAAACIEIkUAAAAAESIRAoAAAAAIkQiBQAAAAARIpECAAAAgAiRSAEAAABAhEikAAAAACBCJFIAAAAAECESKQAAAACIEIkUAAAAAESIRAoAAAAAIkQiBQAAAAARIpECAAAAgAiRSAEAAABAhEikAAAAACBCJFIAACDh/PRfMzTgkW+8DgNAAkvzOgAgXu3ML1Sz9DQ1apDqdSgAgBpmZ+32OgQACY5ECqingY9O1ICurXXqUW00PXOnPrn1NK9DAgAAQIyQSAFRmLt+j+au3+N1GAAAAIgx5kgBPvBD5k5l5xR4HQYAAADCRCIF+MC1r8/SRS9+73UYAAAACBOJFOATu/cVeR0CACScbiPHqri0zOswACQgEikAAJDQCktIpAA4j0QKAAAAACJEIgUAAAAAESKRAgAAAIAIkUgBESosKdUNb872OgwAQJistV6HACABkUgBEVq8KUdTVu3wOgwAAAB4iEQKAAAAACLkaSJljLnAGLPSGJNpjBkZZH+6MWZ0YP8sY0y3KvuON8bMMMYsNcYsNsY0imXsgBsOFJV6HQIAAADC4FkiZYxJlfSKpAsl9ZU0whjTt8ZhN0raY63tKek5SX8PvDZN0ruSbrbWHivpLEnFMQodcE2fB8Z7HQIAAADC4GWP1CBJmdbatdbaIkkfSLq0xjGXSnor8HiMpHOMMUbSMEmLrLULJclau8tay618eGra6p3q+8B45RWQ0wOAn+zdz/syAOd5mUh1krSxyvNNgW1Bj7HWlkjKkdRG0jGSrDFmgjFmnjHmz7VdxBhzkzEmwxiTsWMHBQLgnucmrtL+olKtzM7zOhQAQBVnPDlJM9fu8joMAAkmXotNpEk6XdJ1gf9fbow5J9iB1tpR1tqB1tqB7dq1i2WMAADAJxZvyvE6BAAJxstEarOkI6s87xzYFvSYwLyolpJ2qbz3aqq1dqe1dr+kcZJOcj1iAAAAAJC3idQcSUcbY7obYxpKukbS5zWO+VzSDYHHV0n6zpavqjdB0nHGmCaBBGuIpGUxihtJzpjg20vKWPARAAAgWXiWSAXmPN2m8qRouaQPrbVLjTEPG2N+HDjsDUltjDGZku6UNDLw2j2SnlV5MrZA0jxr7dhYfw9ILl8u2qIfvzyt1v0LN+6NYTQAAADwUpqXF7fWjlP5sLyq2x6o8rhA0k9qee27Ki+BDsTEbe/N9zoEAEA9WTFqAICz4rXYBAAAAAB4hkQKcBj3PAEAABIfiRQQIetRprR3f5EWbWIeFgDU17jFWzU9c6fXYQBIEJ7OkQLiRW5Bsdch6KevztCqbfnKemK416EAiKFuI8eqc+vG2rTngN7+1SCdeQxrItbXrf+dJ0m8jwJwBD1SQBiOf+hrr0PQqm35XocAwCOb9hyQJH00d5PHkQAAKpBIARGqbR0pAAAAJA8SKQAAAACIEIkUAAAAAESIRAqIUKiqfbv3FcUmEABA2B4bt8LrEAAkGBIpwGG/fWeuMrJ2B9338BfL9LtA1SgAAADELxIpwAVLNucE3f7m9HUau3hrjKMBgOTywsTVXocAIAmQSAEAECesVyuCx5nnJq7yOgQASYBECojQVf+a4XUIAAAA8BiJFAAAAABEiEQKiJEvF23xOgQAiHuz1u7Se7M2eB0GAJBIAbFy23vzvQ4BQBzZuHu/pq7a4XUYvnP1qJm699PFUZ1j/BKK/gCIXprXAQCJiOngAKI19JnJKi7l3cQNN787T1lPDPc6DABxjh4pAAB8iCQKAPyNRApwyYKNe1VQXOp1GAASCKkVAPgHiRTggi17D+iyV6ZHPY4fAAAA/kQiBbggr6BEkrR0c67HkQAAAMANFJsAXPbp/E2anrnL6zAAAADgIBIpwAVbcwoqH/9x9EIPIwEAAIAbGNoHuGBKYO2XldvyPI4EgJ98vTRb/R/+mkI0DrjtvXkqKS3zOgwASYxECgCAGHl07HLt2V+sbbkFoQ9Gnb5ctFVZu/Z5HQaAJEYiBXhg3oY9XocAIB5R/zymduUXqtvIsRq/ZKvXoQDwIRIpwANX/OMH3Tl6gcrKam8VXfvaTN38ztwYRgUAqKpiePZ/fsjyNhAAvkQiBXjkk/mblV3H8J4f1uzS+KXZMYwIiWRXfiHzcACHzFu/V/MZSQCgBhIpAHDBvsIS/WXMIuUWFHty/QGPTtTVo2Z6cm0g1opLy1RY4t6Ng6LSMl3+jx9cOz+A+EQiBQAueGtGlkZnbNQ/J6/Rks05Kq1jGKdbFm7cG/NrAl645KVp6nX/+Ihe89Vi5j0BiA6JFAC4wAbypmVbcnXxS9P0/MRV3gaExGC8DsCfVmSXz2XKyNod9mtu+e88husBiAqJFAC4qKLM9eLNOR5HAiS+q/41Q0u3hP+3ll9YUvcBVEkEUAcSKQBIMP+bv9nrEICYCDZidve+otgHAiApkUgBQIKZunqH1yGgFjbaLg56SKr5IXOn1yEASGIkUoCHaBMByckw2ckRrr+H8s8EoA4kUgDgsLs+Wqh/T1/ndRjwsah7puCI69+YrRlrdnkdBoA4RSIFAA4bM3eTduZXn6dhPWo3z11PVTI/oSfKWU78Xb0yKTP6kwBISiRSgM+8MyOr2vNuI8dqD5On45Yx3jacf/b6LE+vD8Q1Og4B1IFECvCZv362tLJkdoWsXfs8igbxjiFkAAC4g0QK8KHSYDV9gThRWFKqjbv3ex0GktRL30U2VI+bDQDqi0QK8BCzJeC2guKymF/z7o8W6YwnJ+lAUWnMr53oaPRXZ3Xoorqz1+32JhgASYdECgjik3mbNHWV+2vx0CRCIpq8crskqagk9kkckssjXy5TvwcneB0GgCRFIgUEceeHC/XzN2d7HUZQc9fvUV5BsddhIEz0OgL+Nj1zl37//nyvwwAQh0ikgDhQtefqyn/+oJvenutZLKgfeh8hMTTPrz5fuKXy8eg5G5Szv1hFJWXKrlH4BwCqSvM6ACCZZWTtVqcTOx2yPVRTa8nmHHcCguNiVf38n5PXaEV2rl64pn9sLoio1Hc9qZJSqwNFpWrcMNXhiCBJS7fk6C8fL9bE5dvVqEGqvqiSYAFATfRIAXW44h/TVVDs3oT5P3ywQH3+Ot618yN5/H38Cn22oLzRV7OR/r/5m7UzvzDmMd30TobmZDHx30lfL9umPg/wnuGG3IJibdlb3gO1M79QE5ZmexwRAL8jkQLqMG/DXq3elu/qNQ6Ekai9+O3qoNu7jRyrW//LMD/U7Y7RCzTw0Ymau35PTK87a91u3fIuv5+ID8c/9LV+83ZGncdMiUERIgDxg0QKiAOTV9b+4T1uMXdNEZ7lW3O9DgEBzJXyN1vLP88Nb87Wwo17YxsMAN8ikQJ8aNW2PK9DQIRyDhRrz76imF3v1v/O1bWvzYzZ9RC9GWt2qbQ0dAK1ZHOOet47LgYRoT72HqBqKoByFJsAfOiX/57jdQiI0Al/+1qSlPXE8KD7bW23uOuJnsj4snDjXo0IM/F9e0aWSsrosfJSQXEp66ABCMnTHiljzAXGmJXGmExjzMgg+9ONMaMD+2cZY7rV2N/FGJNvjLkrVjEDfkATK37Eqmof/G3XvtgX+0D9rchmVACA0DxLpIwxqZJekXShpL6SRhhj+tY47EZJe6y1PSU9J+nvNfY/K+krt2MFAC+9MHG1Vtcx3PNvXyyNYTRAcnO6dxlA/PKyR2qQpExr7VprbZGkDyRdWuOYSyW9FXg8RtI5xpTf3zXGXCZpnSRaEHAVk8LhpX2FJXpu4ipd9a8ZtR7z7+lZsQsIAABI8jaR6iRpY5XnmwLbgh5jrS2RlCOpjTGmmaS/SPpbDOIEgDoVl7o/lyIW13DCtNU7lVtQ4nUYgGsM43UBBMRr1b6HJD1nrQ25wI8x5iZjTIYxJmPHDtZ/QGLgY9xfSusoDFCxOG5eQYmOf2iCZq7dJUlauyM/bpKjSPzsjVlehxAXai6aDACIP14mUpslHVnleefAtqDHGGPSJLWUtEvSYElPGmOyJN0h6V5jzG3BLmKtHWWtHWitHdiuXTtnvwMkBRo8cMLizTnKLSjRi9+u1vbcAg19Zkq1uU2b9ux3LLHKzj3gyHkAAEDtvEyk5kg62hjT3RjTUNI1kj6vccznkm4IPL5K0ne23BnW2m7W2m6Snpf0mLX25VgFDgDhWrw5R1L1CeoV69DMWrtbUvkaVKf/fZLu/3SJI9ecnrnLkfMAAIDaebaOlLW2JNCLNEFSqqQ3rbVLjTEPS8qw1n4u6Q1J7xhjMiXtVnmyBSQ9yl/4V13D/CQpWMGvfYXlc4qmrmb4MegFB4B44emCvNbacZLG1dj2QJXHBZJ+EuIcD7kSHADUw76i4IUWWF8VAIDEEq/FJoCYee37tV6HgDgyacX2er92Z36hLn15mrJzChyM6CByOf9gWQUAiH8kUkAVO/MLdc8ni6pt+3zhFo+iQby49OXplY8376270ENdDejiUquFm3L01owshyLzA4apAQASE4kUUMVjY5fr/dkbQx8IVLFyW17Yxx4oDl2ZL9g8qmDbIubISeCG0XM2aNZaioQAQDwhkQKqoJmJaIUqFLBw496Q56jaa+Xk2p9//Wypa8MGa8dfVTj+8vFiXT1qpiSG/QFAvCCRAuCajbv3a/ySrV6HEVNOJD5FJeGvJxWqSmBNXy5iqCoAAE4gkQISwGPjlmt/LdXivHTRC9/r5nfneR1GTDnRgfTv6VlhH/v+7A0OXBGxVlfPZbjlzzfu3q+znpqkbbmx7mVEhTemrdNnCzZ7HQYAj5BIAQlg1NS1enWK/6oL5hX6L7lLNDmBxX0j9eWiLTFpAOYeKFHWzn2uXycZvTtrvbJ27dcn85KnIX+gqNTrEKotrv3Il8v0hw8WeBgNAC+RSAEJoqQs/OFgcI+Tc5rcdNt782PSACwqLdNZT092/TpIDn0eGO91CEFdM2qGlm3J9ToMADFGIgUADgp3WJZb6ttDBSA8Jsjdkplrd+uhL5Z6EA0AL5FIAYCDIumRcqM22979RXXu372v7v0AACA8JFIA4KAV2aHXlHKyz+qpCSsjOn797v0OXh2eoko6AHiKRAoAHDRm7iZXzsvaQqiNU/PyvluxTd1GjlVuAcND62JZ2BpAAIkUEIfyC0vUbeRYr8NADHg95wruyC0o1tacA16HUc2L32ZKkjK353scCQDEBxIpAAlp4KMT9cfR/ixLPG/Dnnq/9kBRqc6Oogre2EVbVVjifQnpZHfxS9N0yuPfBd3ndeXHklIb0aLQySZYsQkAyYlECkBC2plfqE/n+3N9nTU76r+u0urteVoX5bpM89bvjer1SGw/fXWG+j00weswAMD3SKQAAEC1WXj0SNWOOVIAKpBIAVUwYMP/Vm3LU7eRY/Xt8m1ehxK3KIEeW/+evk6vTlnrdRgAAIeRSAFVxPN9xlcmrdFR947zOgzXzVtfPr/o66XlidRnCzZrwy5Kekfi43nuVBZEcH/7Yplmrdsd9vGedXjQ0wIAESGRAhJIaVnyNYT+8MECDX/pe6/DAOJe8r171E+txSb4AQJJh0QKQNzLKyjx7NpuJa9TVu3Qgo3Vi0I8P3GVnv1mVdTndmsI65LNOS6dGcG43W7vdf9X+nQ+vZc1fblwi1Zk53odBgAfSPM6AMAvrLVMIo4DfvoXKiguVe+/jo/4dSuy8yRJa3fUvl7PDW/OliQtf/iCym3PT1wd8bWCcaN684KNe3XZK9OdP3GC2+PAfDW3EuPCkjI9Nm6FLu/f2aUrxKeP5m7SR8EW3maSLZB0SKSQ9IpLy5SdU6AznpzkdSiIgB+WcskvrF9P2NRVOyRJ4XRmlZSVV09zMsd3Yx2crXv9tbhsvOj/yDeHbPPD73YF7i0BQO0Y2oeksjL70Ipvf/tiaUIlUXv3F2l/kXdD3eCsv49f4fg5fdROh4+QNEWJnx+QdEikkFTmbSiv+PbNsoOJ1LTVO70KxxUnPvyNznt2qtdhuKaiseenu/ZuenfmBq9DgA8dKCp1/Jw2aCZAdgAAtSGRAhLQ5gQeZnWwsZckmVSEwhkuuCUncX8/kkVRSRlzOv2GtyQg6ZBIAUAC+dOHC0Ies2Sz8xXHkqWHMJGRl0WJnx+QdEikAMQVGnt1m7dhb+iDEPdWb89zpWgIACB8JFIA4hJtSCSz92dvjMl1uHEBALUjkQKQ0IY+M1m7HVirx2uFJWVeh4AYCecmwcfzNmnU1LWOXpekKUrc3AGSDokUgIS2dsc+TaxS7h5uoRUZ7/yaR81cu0ub9uz3OozQ/PoDBOAaFuQF4Ipd+YWunDfRavbN37BHW3MKvA4D8K1rRs1UaorRmscu8joUAKiGRApJhaErsXOmW4scB/4R/TBHyonfp8v/8UP0J0FC8dP7lF9CKQ2nrj8AxBiJFJKSHxrhiW6fCwuGVvXuzA1avS3f1WsAsVZcWuZZIsW6VAAQGeZIISnRXoiteRv2OHauqv90s9btrrbv129l6KOM2FQzA9xw9H1faTS/wwAQF0ikkFToifLG7e/Nd+Q83y7fpplrd9W6f+Lybbp7zKJDd5A4AwAAh5FIAXCdU/MbbnwrQ+MWZ4c8rtvIsdWe//njRbrro4XVtn0we4Oydu5zJC4gEQTrqWe4HwDUjkQKSYU2gTf2FZZ4HYLGzN1U7fnITxbr0lemexQN4C/5hSUqKWOtMgCIBIkUkhJD/Nw1u8bcJb/KOVDsdQgJI9Tf1EmPfKPxS0L3JsIb/R6coDU7Du2h5d4TANSORApJiZ4pd73+/VqvQ0CYYjV0a/e+Ij06dllMrgUAQCyQSCGpBLtrbuiecp1f8la3FgmOZ69/vy7qc8xdv0e/fWeuA9EA8a2ohOGRQDIhkUJSYTJ1chvw6ES99UOWFm3a63UovjF3ffSl6a/8J4sKxzPeA50xO2u3jrn/K63Zwfp2QLJgQV4ASeXBz5c6di7rm742wB3kWJH7x6Q1mrJqh6b95Ww1apDqdTgAXESPFJJKso3iKywp1e59RZXPi0u9GXbCHW9I0qY9B/T8xFVeh5FwHv9qxSEl/+Gdj+dt0s78Qm3ee8DrUAC4jEQKSGC/eXuuTnrkG0nSks05Ovq+r/Tdim0eR5U4Roya6XUIcef5iau9DgE1cJ8DAOqHRApJL5GLTUxdtaPy8bwN5XNhJq3YUdvhjkngH2k1wcpFAwCA5EAiBSQZ5vUACJefhuUe99AEr0MAgGpIpJD0/NRQcFMsO4mycwqqPU+OnzAQn+Ll7zOvoMTrEACgGhIpAI5buCnH6xAQI/M3RF8+HQCAeEQihaSUJJ1QQbn9vQdboykRp0yt2pbndQiOiHY+27bcgtAHAQCQgEikkPSydu33OoSEsXH3fv345elehxETw56b6nUIgOu8vue0PY4T9WS+YQckC08TKWPMBcaYlcaYTGPMyCD7040xowP7ZxljugW2n2eMmWuMWRz4/9BYx474lgxV5Uo8WDPqjCcnxfyaiA6NPfh5nmjGeoaOAvAvzxIpY0yqpFckXSipr6QRxpi+NQ67UdIea21PSc9J+ntg+05Jl1hrj5N0g6R3YhM1EoW15Y2HBz9b4nUorul531fVNwSyR/82mRBPikvLVFRSRiKW6Pj3rbdkuGEHJLs0D689SFKmtXatJBljPpB0qaRlVY65VNJDgcdjJL1sjDHW2vlVjlkqqbExJt1aW+h+2IhnVT/X8gpL9NaM9Z7FEkvdRo519fxfLNyi29+fX+v+fUWlrl5fkj7K2Oj6NRJRfRt7Q56cpC05BTq3T3tnAwKqIFEH4GdeDu3rJKlqy2dTYFvQY6y1JZJyJLWpccyVkuaRRAHe+e8s7xPSu8cscuW82TkFWreThXdr2hIocT9x+XaPI0G0yFUAoH687JGKmjHmWJUP9xtWxzE3SbpJkrp06RKjyOBXVRsMjLpwjkngn+bJj38rScp6YrjHkQCIJ/SmAYnPyx6pzZKOrPK8c2Bb0GOMMWmSWkraFXjeWdKnkn5urV1T20WstaOstQOttQPbtWvnYPiId4YB7I5ZsyM/5DFbcw7EIBIATvI6F7CeR1B/b05fp6KS2Bf9ARA7XiZScyQdbYzpboxpKOkaSZ/XOOZzlReTkKSrJH1nrbXGmFaSxkoaaa1NjlrLcERF6jQ6Y6MueD45y1e7cZd0e17okbXfr9rp/IU9kl9Y4nUIAHzuvVkbNGpqrfd5ASQAzxKpwJyn2yRNkLRc0ofW2qXGmIeNMT8OHPaGpDbGmExJd0qqKJF+m6Sekh4wxiwIfDHjGRHZtIceklgqLkucO7P9HpzgdQiO+WpJttchwGMMQXNPHjddgITm6Rwpa+04SeNqbHugyuMCST8J8rpHJT3qeoAAHHPfp0t03eCu9XrtCxNX67mJqxyOCIDfkeQB8DNPF+QFYm3kJ4u9DgH1QBLlL38cvcDrEBAjfl6sFwC8RiIFAIjIp/Nr1gVCPIvngg4A4KW4Ln8OoD5oNIVj9bY8Ldua63UYAADAp0ikACCI855LzqqOgJ9w2weAn5FIAai3OVm79VHGRq/DABCFuqZBkcgAQO1IpADU24hRM1VSRlMLAAAkH4pNAAA8lbk9X+t27vM6DAThddE+qgYC8DN6pIAkQ7skOpnb87wOwTPbcgs0eeV2x8977rNTJElZTwx3/NwAALiFRAoAInDus8lbhOKGN2drRXbyJpIAAFTF0D4A9bIzv5D5UUlmZ36RI+epbbjWm9PWKbeg2JFrIDHQgw7Az0ikkPCOe2iC/jN9nddhJJyb3s7wOgRHLNy41+sQ4oizrdo5Wbt11L3jKp8//OUynfbEd45eA9HxerFe5s4B8DMSKSS8vIISPfTFMq/D8A2n7vBuzyt05kQeu/SV6dq894DXYXjq52/O9uS6r05Zq9IavZp5BSWexJLM/NzrU1xa5nUIUfl2ufNzCgH4B4kUgKSXl+TDyaau2hHWcU4P5Uwxjp7Od1Zty9NTE1Z4HQY8lLk9X1uq3Ki5/3+LXSnYAsAbJFJIGmt35HsdAhB38gqKlbO/PNHcu9+ZhPNAcakkySR4InX1qzP0yqQ1XocBj03L3KluI8dq7vo9enfmBv3i33O8DgmAQ0ikkDSGPjPF6xB8wak5D4nUCPbz0Cav9X/4G53w8NeOnnPL3gJHz+cUa62jc+bipRhLXe8JXv9tJML7zJRAj+/0zJ2V254cv0JX/vMHr0IC4BASKQBArdxJBsrPmeKzVvJHGZt06SvTNWFptjMnjI88yte8TuQcEeR7+MfkNZq7fk/sYwHgKBIpAEDMFZeW6aslDiUsDlkdWGw5i0pxcEFCJIUAqiGRAlAvRv7qTXDSvsLgleNWZOfGOJJEZfTerA1B9zRtmBry1cWlZfp47iaVOdBbtnZHviYu2ybpYEPXqY7JaSM4AAAgAElEQVSyRGg3+6zTEAB8Jc3rAADAb96duT7o9gue/z7GkcTOf6av09sz1uu7u86q3LYyO8+Va13/xixtzQk+T2rYsR1Cvn7U1LV6asJKSdKVAzorv7BEDVNT1DAt8nuDFXMn/+/yfvpuRXk1NaduEtS28LDfxEmYccvrtbgAuIdECkgyTjWaEvlOdTI2e4KttXb+81NduVZtSZQkLd+aq1cmZep3Z/es9Zjd+4okSX/6aKF6dWiui1+aptZNGmjP/mL17tBcvzmjh64c0DmimO77dElEx4cjEX6PCorLVFhSqvS00D2FCG7c4uiHsN70doa+Wb5N6x4f7kBEAJzC0D4A9ZJdR2M43nGHXprk0Vo3K7LzKnubguk2cqzemLau8vnFL02TJO0JlGZfkZ2nP320sNbXW2sre4p+qFJFrapEvklQH4+P824tLP4tyn29bBvvS4APkUgBqJfCkjKvQ4CLlm7O8fT6wYbFzVq7K+zXLwkS/678QnW/Z5zembleK7Jzde3rs6KKMZR4afiGCnPj7v0xiQMA4g2JFADUwJwGeV6aOVgScvWomWG//uKXpunb5duqbft+dXkP1KNjlzu2uHAyMB52C8VLMgogOZFIAQAqVfQE5RYEr1wYK7PW7daaHflRnePGtzL03DerKp+PD5RbLyopq7OchFOJQ6wT8u9WbAt9UD2k0lIAgKB4ewSSDDd4D7V5z4Fqz5P5Lnht3/vSLbEd6jfitZk6J1BRLxovfLu68nHVxKau3q1JK7brswWbo752rH+PJiypXyIVqrqg3xZOBgC/oGofgKT367czJEn3D++jXh2a64uFWzyOyDu1NamHvzgtpnFUKCopq1dZ82DCXXZqWuZOTcvcqUtP7BTV9WKdj7vVA0Yi5Z6ikjKNnrNB1w7uqtQUfs5AvCGRAoCAR8cu9zoEz5X3ThjfrIF0zP1fadT1A9S+RaOozxXrb6koxgVZpmeGX4wjEmMXb1XfECXpUT+vfV++JlpKitF1g7t6HQ6ACDG0DwACuPHuz6GfXy/bpstemV7v11/2ynQVlyZ+lcnNew+EPqie6ipJj/AE6zHMPVBe9CSvoESfL9yizO3VF8HesIuKiYCfkUgBScbLjoaC4lLvLh4Gn3TCeMqPP4Noe3YWbNyrjzI2ORRN4vHhP3nyCNy8sVb6/fvzde6zBxfBHrd4q858apJrRUQARI+hfUCSWbszXxc8P1XpDVLVuVVj3X1+L5WUWfVs38z1a2/LLVDXNk1dvw7qb8HGveretqmvGtdlDmR3hSWlSoaU4bMFm/XjEzp6WrIc4ZubVb7MQLDeqsWBtdCWb807ZB8AfyCRApLM/A17Kx8v3LhXYxdvlSQte/h8NUhNUQNqHQe1ftc+r0OIiZ++OkOS1OeIFh5HcpAT6Y+p8t9E9ocPFsha6bL+0RXKQGys21n7+0ri/7YC8Y8WEwBJUt8HJuja18Jf8LQ+6tOxsGdfkfOB1MNnC5Krkt/yrbleh1BpyeboS69PWrlDyVIUbW0djfOaCopLVRZuOUNE5fmJqw/ZZqoM7aswauoaXf/GrCToPwXiH4kUEppfKo/FizmBYSZuWZEd2RCVFdm56v/INy5Fg3ix3oEJ91NW7dC+osgWGX75u9Xa7ZNEPhIvfrta23ILwjq291/H647RC1yOCLU7NLt/bNwKfb96pwexAIgUiRSAiJXUswLanR9G1mBbtS2/XtdxQ5J0ZiS0SMuDP/31Kt3zySKXonFXJBX8Jq/c4WIkqFvtN/uCvedwcxDwl5CJlDGmiTHmr8aY1wLPjzbGXOx+aAD8al9R/arv7S8q1WtT1zocDeCefYX+rjRZGxL/+LAzv7zHM9wEaeLy7W6GAyBC4fRI/VtSoaRTAs83S3rUtYgA+ML7szdo7Q7ne4T+b1x8Lnr7j8lrvA4BHnCiYqAX3Kja98XC5JonGEt1/ZpVTbJ27yuMQTQAwhVOInWUtfZJScWSZK3dL252AQmtrMzqnk8WV1sEtaC4tPIDPdo2Wn2HBnrpgM/XwII74jWRcqOwxu3vz9eYuazH5YbiIAU/gt28MTS/AF8JJ5EqMsY0VmAgrzHmKJX3UAFIUEWBRCe3oETdRo7VttwC9f7reL0aGJYX7Uc5k9sRL+K1oJ1bDe67PlpY+Xjj7v169uuVzNtxwIvfHlrRr8LTX6+KYSQAIhFOIvWgpPGSjjTG/FfSt5L+7GpUADxVVKPHaN768mp+T3y1QlL0w4a+XLQ1qtcDMRMkR9iwa7963f+V1rgw9NUp4fyJhlvZr6aKxOm378zVi99lRlRuHQASSchEylr7jaQrJP1C0vuSBlprJ7sbFuAMbpRG7vFxyzViVPX1pG757zyPogG8ZYNkUl8u3qLCkjJ9lOHfYW7hJFLF9RxiWzHkLBbDXXkLB+BntSZSxpiTKr4kdZW0VdIWSV0C2wAkoFenrtXSLbUvxvrcN6tiNkqfIUPw2o68Qs1YU71sekogS/lqyVY9/MUyL8IKacnmHHUbOVYbd9e+BleD1PqtgPLUhJWSpHWBnqjSeB3/CABRqutd9JnA1yuSZkkaJem1wONX3A8NgB+98O1q/W/BZq/DAGIia9d+jXiteg9tRX6/ftd+vTl9nQdRhVZRFOLf07NqPSaaGyKfzDvYGzd6zkZJUtbOffohk4Vk3fbIl8t0yuPfeh0GANWRSFlrz7bWnq3ynqiTrLUDrbUDJPVXeQl0AEnqvk+XRH2Ov4xZpF351K1BfKjoHS0rs/r7+BUhjy/wuMrj+l3lPVF1JXrfLN9W7/PPydpT+Xjxphy9MilTZz09Wde+Pqve5wyGTukajPTGtHXamnNwfpu1VvsKSzwMCkhe4fTr97LWLq54Yq1dIqmPeyEBSAajMzaG1SAF/KBi9Nqq7XlhHV+zYEusbc87eJPixy9PC9rQjuaGyPuzN1Q+np21u3K4H9z15zGLKh+XBX4pP5izUcc+OEFZFP0AYi6cRGqRMeZ1Y8xZga/XJC0K+SoACOHDjE2V8ywAP6sozBDuvKI0NxZyqqdFm3I0d/2e0AcirowJDK+855Pye92Z2/1bRRJIVOF8IvxS0lJJfwh8LQtsA4Conf30ZIpKwPcqCioES5Cstfp6aXZlD4EkpfookZKk3fuKYvZ39t2KbVq+tfaCNZGIdvHvRDZq6lreOwGPhVP+vMBa+5y19vLA13PW2votPgEAQXS/Z5zXIQB1mrJqh/7wwXwNeWryIfu63zNON70zV+9VGe62rI7Kl164Y/QCdb9nnFZmhzc0MRq/+k+GLnzhe+XsL1bOgWLXr5esMrfn6/vVFPcAvJQW6gBjzDoFWcrBWtvDlYgAB3GvLj6t37VPbZqlex0GUOnWMNZS25pzoPJxfRe7ddsfPpiv8XecGZNrnfDw15KkrCeGx+R6yejnb872OgQgqYUztG+gpB8Fvs6Q9KKkd90MCnAK65vEj24jx+qLhVtUUFyqIU9NVr8HJ3gdEhCRqqOsSnz63rMiO0+fzt+k3ILY9RQVlZSpuLRMZWU24qFojFyLzleLt1YmW+FU99uzr0jPfL2Sz04gTCF7pKy1u2pset4YM1fSA+6EBDinjE/huHL7+/N15UmdK58Xl/Lvh/hR9bc1O8efPVKS9MfRC2N6vWPu/6ry8ZnHtNPbvxoU9mst4wrC9t9Z6zWkV7tqBVFuqdKT+sqkTD399Spl3H+u2tbS4//QF0v12YItOqFzK53b93DXYwbiXcgeKWPMSVW+BhpjblYYCRjgB+RR8efjKgt93vVRbBt8QDT2F5YoL9DTwx394Kau2qE3p63T3v1F4b2AH2PYJq3coYe/WBZ0X1FJmZ7+epUk6fo3Zuvxr5ZrZXaenv16pb5YuEU5+8t/bzfuLl9/7Ksl2ZKk/MISlZSWad3OfaxVBQRhQnWzG2MmVXlaImmdpGestVEvGmGMuUDSC5JSJb1urX2ixv50SW9LGiBpl6SrrbVZgX33SLpRUqmk31trQ44DGjhwoM3IyIg2bF8qKS1TmZUapoVXmjcZWGu1v6hUxzJEDEAMTbxziG58a07lorg41Ll9DlduQbFuPL27jKTTerZV0/SD92jLyqx63DtOfY5o4VgFwGTz/m9O1ojXZoZ9/IOX9NXfaknEanrrV4O0Ymuubji1m5ZuydWArq3rGybgS8aYudbagSGPCyOR6mGtXVtjW3drbe3LpYcXYKqkVZLOk7RJ0hxJI6y1y6occ6uk4621NxtjrpF0ubX2amNMX0nvSxokqaOkiZKOsdbWuZR8IidSQ56apPW79oec1FtUUqbUFKMtew/ovdkb9IdzjlZhcZkyd+Rr3c59uvj4I5SaYvTAZ0vUsnFDdW3TpHKNivuH99HAbofpxCNbxeJbikq3kWO9DgEAEIFWTRroH9eepPs/W6K1O1hfLt69cM2JGty9jVo1aaBGDVK9DgeIiJOJ1Dxr7UlBTj4gygBPkfSQtfb8wPN7JMla+3iVYyYEjplhjEmTlC2pnaSRVY+telxd1/RLIvXyd6sru9grnHhkKy3YuNejiPztsKYN9bPBXfTid5kaMaiL3p+9QZPuOktnPz1ZktQwNUXLHj5fPe/7qu4TAQCAuDes7+Hq0a6ZGjVIUXFpmV6ZtKbWY392che9O3NDtW2PXX6c7v10sTq2bKRz+x6ubbkFmrB0W+X+4zu31KJNOZXP2zZL1/DjOuitGesd/14ev+I4lVmrMitt2XtA/5xc/r0c16mlFm/OCfHqctcN7qL+XVpXGw7/xBXHyap8ioOVlbXShKXZjpXMf+qq43X3mEV1HvPzU7qqX6eW2rOvSI9/taLOY5+88nhdeFwHNW/UwJH4ohV1ImWM6S3pWElPSrq7yq4Wku621h4bZYBXSbrAWvvrwPPrJQ221t5W5ZglgWM2BZ6vkTRY0kOSZlpr3w1sf0PSV9baMUGuc5OkmySpS5cuA9avd/6PIFL0lgAAAAAHTb7rLHVr29TrMCSFn0jVVTSil6SLJbWSdEmV7XmSfhNdeLFjrR0laZRU3iPlcTiSpHWPX6Q5WXu0I69QB4pLlWKknu2b6fb35+vqHx2pS0/spN35RerbsYUk6aslW7W/sFRN0lNVXFqmxg1S1TQ9TSf3aKO0FKPM7fk677mp1a5xUpdWGn58R/Xp0Fwz1+3Wquw8jV+aXe+YO7VqrM17D+gXp3bTf37IqvW4fp1a6Ddn9FCz9DS1atJQx3duqbGLtuqO0QtCXuOdGwdpX2GpjJF27ytS5vZ8vTGt/iNIs54YTtIKIOZ+fXp3vR7FexcQL35+SlfdfX4vpaWkKC3VqEFqitbt3Kezn56s3h2aq1OrxrpyQGct25KrIb3aqVl6muZk7dYDny2tdp42TRtq174iNWqQopdGnCRrrW56Z64kqWPLRhoxqIue+ebgSJ63fzVIXQ5rogZpKcrZX6yLXvy+ct+IQV20ZHOOjjm8uU44sqVO6dFGF77wfeWSBK/9fKCO7dhCf/l4ka4a0Fn9j2ytpVtyqlU4HHX9gMrrN0g1Gvv7M1RaZnXhCwevU9UbNwzUaT3bqsxaLdyYo+5tm6pd83St3p6neev3ql+nFjquU0vlF5Zo6ZZc5RwoVsvGDdSqSQO1atxQKUYyxshaq+zcAmVuz9eJR7bSnR8uDDpa6d0bB6uwpFRHtGysb5Zt04XHdVDjBqn6dP5mPfvNKt161lH62cldZYxkZAL/l0qt1fKtuVq/a7+apqepW5umGti1tUrKrFZty9MPa3bqsXHVe46G9m6vBy7uq65tmmj51jwt2LhXfTu2UPNGaXro86WVPVwndG6ps3u31+cLtqhDy0Ya2ru9zulzuBqkGu0rLNX5zx9sp95zYe9qPVQvjuivAV1bq33z+Fs/MpyhfaeEGjJXrwsn8dA+N4yZu0nbcgv0u7N7hnV8aZlVUUlZ5RtfRcLx+W2nqVl6mt6ZuV63ntVT7eLkl3r+hj3q1Kqx2rdoVG37X8Ys0uiMjR5FBSAZzbhnqE55/Duvw4hrWU8Mr2yQw3utmzTQ278arB7tmuqGN2frtqE9dVav9l6HBbgm6h4pY8yfrbVPSrrWGDOi5n5r7e+jjHGOpKONMd0lbZZ0jaRraxzzuaQbJM2QdJWk76y11hjzuaT3jDHPqrzYxNGSknp576sGdA59UBWpKUaNGx6c/Dn73nOUlpqiw5o2lCQ9eElUIzdjrn+X4BWD/n7V8SRSAGLmgYv76oiWjb0Ow/fO6tVOF/broGe+XqXteYXV9jUNfDZ198kQn3j1yKXHav6Gvfpk/uaQx069+2xd/+asapUmfz+0p178LlNtmzVUxv3nVW4fc8uprsQLxKO6hvYtD/zflS4ca22JMeY2SRNUXv78TWvtUmPMw5IyrLWfS3pD0jvGmExJu1WebClw3IeSlqm8JPvvQlXsQ91q9uQAACJz5Umd9cvTunkdRlz4zy/LF+X98QmdVFRSppZN/DHBPFFcN7iLfjLwSJWU2aCJ1Pg7ztDP35it7XmFldV+p9x9tjbt2a9P5m3W7UN7yhijIb3a6ZjDm8c6fCBuhBzal0gSeWgfasc8qfhydPtmWr093+swgGpSU0ydi+ye1rON/vvrkyufH33fOBWXJs/nazhuHnKUyqzVmLmbNO+v54V+gaShz0ymFHoElvztfO3ZV6QjD2siqXw9xVXb8tWzfTMdde84SdLl/TvpuatPVHZOgVZty9OZx7TzMmTAl5wY2veF6lhT3Fr743rGBgCHWPjgMGVk7dag7ofpuIe+1l3DjjlkmQDAKx1aNNLmvQdq3X/3+b2rPR92bAeNXbTV7bDq5drBXfTerA2hD4zCjHuGasaaXbrzw4W65ayjdMMp3dSuebpSU4zuvahP2Oc57ai2JFIRaJaepmZVFjY2xqhXh+o9SinGSJI6tGykDi0ZjQJEo66hfU/HLAoASa9l4wY6p8/hkqTM/7tQqSmGRAq+0TQ9VRPvHKJzn50SdH9qoHFa4aVr+qtRWqo+nrcpFuGFrWnDVD3842P12zN76OKXpimvoMSV6xzRsrEu799JDdNSNKxvBzVMS6nXeWzt93OT3lu/GqQb3jw4Pfz0nm3Del2KCX0MgPDU+s5mrZ1S8aXyYg97VD5PaUZgGwBE7aYze2j5wxdU25aWmiJj+LSHf1hbvkxFbVJSaj43unlID5ejiswTVxynH0aWFxbq2qapLj6+oyvXaZBa/rdrjNHFx3esdxKFunVr06RyfpMkdWnTJKzXDTu2g1shAUkn5LubMWa4pDWSXpT0sqRMY8yFbgcGwJ9O69nG0fO1btKwWgVJwI/KQswnTgmS+PvlXsD1J3eVJJ3Ws221og5nHh1eD0YkfnlaN425mapusVDzVzLUkMmM+8/Vm78YqPP6Hu5iVEByqWtoX4VnJJ1trc2UJGPMUZLGSvrKzcAA+NOwvh00PXOXY+cbMehIx84FuCXUALNGDQ69GXBYU3+sw/fwpcfqvuF9DokxWMzR6N2hueNLZyRRPayI1Uzuq86NCqZts3QN7U0SBTgpnP72vIokKmCtpDyX4gHgcz8L3N12SqsmDR09H+CG2hr0R7RspOevPjHomkcV6/J5zRgTNGnq16mlY9dY/NAw/e93pzl2vgrkUdVRYQ/wl3ASqQxjzDhjzC+MMTdI+kLSHGPMFcaYK1yOD4DPpDo0U7ld8/TKuRSA39X2az/u92fosv6dYhuMQ9o1T1e/Ti0cOVfzRg0c7+GS6JGqKcVItw/tqWbpadWSd78k7UCyCWdoXyNJ2yQNCTzfIamxpEtUfrPoE3dCA+BXnVo1rrMUdDhmjBzK3WbEhV+d1l0/O7lL0H2t47wBO+bmU/X692t9XCGTd4mqjKQ/DeulPw3rVblt8UPDlFaz2gmAmAiZSFlrfxmLQADEjzG3nKJTHv8uqnOkpfLBj/jwwCV9vQ6hXob2bh90yGFVjRqkqqWPh9cmS49U04ap2ldUGvK4YNVMmzdqEORIALEQMpEyxnSXdLukblWPZ0FeIHk1DTGpGUhUCx8YppXb8vTTV2d4HUpIb/7iR16HgBCap6cpr9CdtbwAuC+c1tD/JL2h8rlRZe6GAyAeMLMJyaplkwYa1P0wr8NwVLR/z27Odezdoblr5/aDx644Tre/P9/rMADUUziJVIG19kXXIwGAGqbcfZaGPDXZ6zCAhFaf9a56Hd5cK7flad5fz1Oai4lU1XWvElGzRuXNsJQwi/jcNrSnm+EAiFA4idQLxpgHJX0tqbBio7V2nmtRAfC1YOP03dC1TVNlPTFc3UaOjcn1gGRkIuiTevfGwVq7M18/GXCkDhSXUi0uShULOXc5rImWbskNeXzfI5ypsgjAGeEkUsdJul7SUB0c2mcDzwEkieHHHaErTorPMs+A08bfcYaaNEiMuYKR3Bc5/ei2Ov3otpKkxg2dL3de04lHtnb9GvHgf787Tcu35rpSYh5A/YVTNusnknpYa4dYa88OfJFEAUnmmMOb65w+h0tijhTQu0MLdWnTxOswHOHnv+dQVQcTRdVk9svbT5ckXR5Yn2xQt8N04pGtNGJQ8BL8ALwTTiK1RFIrtwMBkDx+fEJHr0NAHdo3T/c6BMRQjEbqIohOrRpLkq48qXPltn6dWirrieG6echRkqRjHVo0GYDzwhmX0ErSCmPMHB2cI2WttZe6FxYAv6na2GocxfCSTq0a68UR/R2ICG455ag2KrPSFwu3eB2Kp0YM6qIL+3XwOgwksDZNG2rNYxcpxUhtmqWrZeODxTV6dWiuj285Vcd1aulhhADqEk6P1IOSLpf0mKRnJc2RRNkYIImFW2EqGJssK2zGsTIrvUSyq5O6tNKZx7TzOgzXhSoeM+bmU2IUSXJKTTEyxujHJ3TUkBq/bwO6tlbDNBYvB/wqZI+UtXaKMaa/pGtVPl9qnaR/uR0YAH9r2yxdO/MLQx9YQxl5lO+R7JaLVXVKr4X6Lo9o1Vhz7ju3Xn/vCK5RgxQVFJcxrBKIc7UmUsaYYySNCHztlDRakrHWnh2j2AD4iFOf938492iHzhRbZxzdVt+v3ul1GDFBGlUuXtu4Iy/s7Xjs7Zqnqx1z5xzTMLU8kQIQ3+rqkVoh6XtJF1trMyXJGPPHmEQFwBfeuXGQvli4RR9mbHLkfJf37xS3laeapSdGqetw0CNVLiVOR1RVFCkIV6iet3hNKONBJGt4AfCfuj4mrpC0VdIkY8xrxphzxPspkDRuH9pTp/dsq7bNyu9Cp6ZW//Ovz5CUO887xonQXDPq+gGVpYdritcEsD7Io8olSyM3Ob5LAHBerYmUtfZ/1tprJPWWNEnSHZLaG2P+aYwZFqsAAcTOjad3r3z8p2G9ZIzRr8/ooYuPP0LXDe4a9fkrSv360dDe7TXs2A7qV0uFrGQoOlChjExKUvKUBQ/1ffLbAADBhVNsYp+k9yS9Z4xprfKCE3+R9LXLsQGIkbG/P1092zdTelqq3pi2rtq+w5o21MvXnuTIdaKp9uemjPvPVfNGyTN0L5QjWvo34QUSAckpkBgiGgFurd1jrR1lrT3HrYAAxN6xHVsqPa3+a0PFu7bN0pP6+6/q/uF9NPLC3l6H4QtO/E6c1Su2PZmDuh3m+DmZMxedmr8DDaoOk/bnvSUAYYrTqbQA3BTOuiX9OraIQSSItV+f0UONolhwOVHcNewYndf38KjP859fDnIgmvC89+vB+pA1n3ynZh46sKvzyS4Ab5BIAajm01tP1ZS7zwp53EsODfcD/Oi2oUcr1adDUWvjVr8RHVLR4ccHJC4mBQCopn+X1mEdl0zlwIF4QMLjTwyNBBIXPVIAACQAqi3GEf6pgIRAIgUANbRrnh50uxsT+QGnNHWpl5j8zHnJUlofSHQkUkASSzFyZEJ9ornhlOBrZnVt0yTGkQDhG9A1vGG5iK2K6o/NA4muldXo356i3w7poRYsuwDENf6CgST2xg0/0tm923sdBgAkrB7tmupfA07SyT3a6O/jV+jWs3rqyMOaqM8RVD4F4h2JFJCk1j52kW8XyAXgH5YJPVG7oN8RkqTHrzje40gAOImhfUCSIomqHXNCgIOOaNnY6xDiGu+0QOKiRwqA7/U5ooWWb831OgzuyyeBZ35ygnp1aO51GL4SzgLdqB3vG0DiIpECksxNZ/bQSV1aeR1GRD646WSNW7xV93yy2OtQElLrJg20Z3+xTujc0utQPHdZ/05xtxBvtKggBwD1QyIFJJnrBndR1zZNvQ4jIi0bN9CIQV1ilkh1axtfP59oXXJCRz18aT+vw/CFJMuhAABRoL8eCS/eel/gvYuPP0JNG6Yesr1Ns4YeROO+5iFKMF90XActfHBYjKLxlqF7BgAQJhIpJLxPbj0taRqB4aCQQmjGGM3963m6bnCXatvvPO8YjyJy1+1Dj65zv7XlvYKx8uXtpx/ys4d7DOUQAKBeSKSQFBiu445GDRL3LaRRg1S1bZZebVvFwpqJplEDf31f/Tq11HWDgy+KHI0rT+qsl0b01/Djjzhk36Buh+njW051/JoAgMSVuK0goIoUhusA9eZFL2bfji2U9cRwR8/5zE9P0CUndNQZPdsesq9F4wYa0LW1o9cDACQ2EikkBRIp1Ed6Ave4RYIFWeElpxNqAHAKrQQkBfIod1w1oLPXIbjqV6d19zoEOGDkhb01+qaTQxxFshhMov+Nx0LXNk28DgGAS0ikkBRIpNzxyKX9NPqmk9U8PTFXUvDb3CGvxHuBknP7tNfgHm0qn/N+EL5ErVQZK6NvOlnXDqJwCpCoErP1A9TA0D53GGOqNVAT0Re3nZ50C7QmumBV6uI9WYQ/Jfr7I5Ds6JFCUqAZ7K4e7Zt5HUK9dG/bVA9e0rfOY47r3FJ9O7aIUUT+cm6fwyVJFx7XweNI6q9ts4bq3JqhVXXhPhO1nj8AACAASURBVJM77hqWmMslADiIRApJgUU2D3Ljxvt/fvEjF87qvgFdW+uXzIOq1Ws/H6BPbj1Vl/ePz3kyR7Vrqoz7zzt0iGaQtwM6pGrBD6be+NwBEh9D+5AU+Dg7yLowhql10/icR8FwrroZY3RSl9iVBD+9Z1tHixsMP75j0O28H4SPPxEAqB2JFJICNwYP4i4p/KrPEc11Wf9OYR/fMDVFRaVlQfctfmiYmjbkIw4A4B6G9iEpkDwc5EaPlFfe+81gr0OAg4L9av77Fz/S7UN7Bj1+1f9dqFHXDwi6r3mjBkqppUjIjDW7glw7cf4u4J1HLuvndQgAYsiTRMoYc5gx5htjzOrA/4OOHTHG3BA4ZrUx5obAtibGmLHGmBXGmKXGmCdiGz0Av2jZuEFUr2ehWe8tfGCY7j6/l6Tgw8jO7t1efxrWq9q2gV1b69azjpJUv5skVw08dPjgOYHCGqiOBDMy15/c1esQAMSQVz1SIyV9a609WtK3gefVGGMOk/SgpMGSBkl6sErC9bS1trek/pJOM8ZcGJuwASB5ndunvePnbJKeqvS0yD6KftT9MP35gt71vuapR7VV1hPDK58vemiYrhucvGv91JWMkkcBQO28SqQulfRW4PFbki4Lcsz5kr6x1u621u6R9I2kC6y1+621kyTJWlskaZ6k+CwpBbigy2HJWer5qauOj+n1LorjkuD19foNzldnrNqEr0+jfUDX1tXW+Tq8Rbp+1C2yAhktGjVg+G8tyKMAoHZezcQ93Fq7NfA4W1KwMRWdJG2s8nxTYFslY0wrSZdIesGNIAHEj58MPFJ3j1nk+nV6tG2qtTv36R/XDVC3kWNdv16is9Ueh9dsr5pwHda0odY8dpG25hzQ5JU7NGJQ8vYswR86tWqszXsPUOQISAKu9UgZYyYaY5YE+bq06nG2fAB2xDe9jDFpkt6X9KK1dm0dx91kjMkwxmTs2LEj4u8DQHj+EsVQK6f947qTwjuwHrfbv/z96Zr31/MifyEq/etnAyp7To3Cm+c0+75z9PtzjpYUPOE6omVjkij4wiUnBC+7DyDxuJZIWWvPtdb2C/L1maRtxpgjJCnw/+1BTrFZ0pFVnncObKswStJqa+3zIeIYZa0daK0d2K5du+i+KcDnerZv5tm1bwlM/nfTDyOHqmPLRiGPG3KMe3/rTRqm6bA4XTcrmKPaNY35NS/o10Gf33aaRt90stJSD34M1TW0r33zRjqpSytJ0nGdWrodIgKYIwUAtfNqjtTnkm4IPL5B0mdBjpkgaZgxpnWgyMSwwDYZYx6V1FLSHTGIFYgbE+8c4nUIrurYqrG6tgnd8A93SA1tROmYw5t7ct1WTRpqcI82klRZbCK9Qd0fSWf1aq+pd5+ti2tZaBfOo7Jl5PiZAcnDqzlST0j60Bhzo6T1kn4qScaYgZJuttb+2lq72xjziKQ5gdc8HNjWWdJ9klZImhcYEvKytfb1mH8XAGIuWCOlzxEtPIgETvnpwCO1PbdAN4fRq9mlTXIWU/EKPVL1Z8QkKSDReZJIWWt3STonyPYMSb+u8vxNSW/WOGaTxLsTUF9etYucqiYYTsMuhVnecaVhWorurLFWFGKHvxZnndGznV6dslaDukdWPRJA/PGqRwpAkvnuT84MO3QyR6IBSY8D4JTL+5cXFj796LZa9eiFahjh+mgA4g9/5UCC6dXBmzkvoVQtKhANJxv+5BDM5wCcMqzvwZVcSKKA5MBfOpBgnr/6RHVu3ViS9ORVx2vp386P2bVbNWng+jWCNfttILv63dlH6dNbT61zaN9Dl/TVsz89waXogPhTVy+vpcsSAGpFIgUkmKbpaTo5UA1NOrSR5Ga7aNa9h0x9dF6V+GtO5r77/N7q36U1C2FGINIJ8encaQeCIuUEkg+fiEACOubw8vWkOrVqHNPrpqel6tSj2oQ+MAptmkW2hlNdPwPutkc+tO/7P5/tUiQAAMQXEikgAf369B76+JZTdVrPtjEvwet2bnLzkPIS2b3rmAtWMbTv8Bbpmj5yaLV9Vs4WrEg27VuEXhAZiYNbDQBQO6r2AQkoJcVoQNfELL2blho6C0pNMXrmJydoUPfDYhARkLjotAWA2pFIAQnitZ8PDLo9UXtfTIhv7MoBnWvdR+MQCA9VHcPH+wqQfBjaB8BRFQ2vYzu2cOf8UTZWEjSvBOot1sN/ASBRkEgBcMV9w/tUPj6saWQFIsIRSdNv4QPD9NOB5T1UzJGqjrvoAADUD4kUkOAOTRpi33KOdfXAmlo2aaAmDRnJDESKRBsAakfLAkgQyVLKu3Wgd+ukrq2iPldy/MTqlsy9c785o7vW7dzvdRieq3NB3tiFAQBxhx4pIE5l/t+FYR0X6/kPvzqtuySp1+G1lyePRqdWjTX+jjP0wMXH1vsczAk5KEny76DuG95Xr98QvEiLHwz2QdXJZP79iBSFOYDkQyIFJIjaqtjFusdh2LEdlPXEcLVplu5aDL07tFDDtPq9fdEwrK4sxj+PT289NbYXjGM92jVT1hPDvQ4DNVzYr4PXIQDwCRIpIE6FKv9dm5aNnS/8EEqi9v/Mvu8cr0OIO/27JOb6Zm5olp7qdQiIAD3dQPJhjhQQp+rzkT195FC1a54e+sA4UZ9c0hhpYLfyxvxPBhz5/+3de3hcdZ3H8c8390vbpEmaJk3TpqT3pqWU0Cv0Am16kxYVEaS0CBR8vNMKCriUpSpVVn3c51EQsIq7C96eVbteHuTibV117S4ri64rrFYBQSq47K6st+W3f8xE0naSnDOZc37nzHm/nidPMzMnM59Ofjlzvud3OSVOBJTGNZvnaueKHt8xxCwpABgePVLIjH+89iwtmtrkO0ZkRltsoqrCvK+elxRTJzboyIGtOn1Wm+8oQEFXrOlVfY3/HimGwgaX5YVbgKyikEJmtE+oU0MCDkxKJeiH9uBmXRMpoqT0HhjWVUe1u47vDVk3Z1Jsr4XS6Giq8x0BABKLoX1AmauqrNAtFy7RkunMTYFfTfXVviOUjUtWzdDBb/20JM813DmZD124RAPzJ5fkNQCgHNEjBaRUmMUmNi/s1OQJnFkuuRh7t9Lak4aRffiiU/XOl/aF/rmtizrVGXFv0ZaFnaqqTMZhwtoU9GYysg/InmTsIYGY/fWly/TxS5b6jlFSHGcD6bNxQYcuXDa9qJ+try6focqjaaxhAA2A5KGQQiZVVEiVFZw/jE0CZmHvWtmjzqY6bV3U6TtKZhW7ZH/WBB5OV6K3k19LafA+AtnDKR5kE903mTOjrVHfvobrPiHZHrphIHhPU5b2YwkqUiiYAAyikAJG0dpYo2d+83vfMUbFHJr48Zaj1CbUhV+Q47LTZ2h2x/gI0iRHZYKqF/a1AAYxtA+ZFfRj+bvX0ouB4Gqrgu9WF3YNf12z1bOPnVwf1bEbB4XJMLN9XPjl4fM7sfOXTtN5/WO5uHRyipThXH/2fPV1TfAdAwCOQSGFTLEABwxfv2pt9EEikKATtplWwS9iWLwzw7tvzxp99NW+FsBJfjXdNq5WN24Pv7phnIrpTQSQbhRSyKThDhsuXtmj6a2NsWYJ4rSe0a8BleSehagPoJP0fy/VRZ/jKjoWTh2+VwzRuuz0GSV6pgT9AWTA8edKKkz6wPmLtaK31U8gAN5QSCG78h+GczvG6/OvW6UjB7bqhm0LTtwsAT0MZ81L90Uxo3oLff9q6gsUTbMnl3auSv+QCynffO6ikj63JG3ui3EVQ/9/Solx1cY5evtL5o/pOUr3dvKLCcO5Yy8uXVddqe2LuxLxWQEgXhRSyKShH3fNDdU6ubvZWxak14S6an3jqnXH3Peatb2Rvd4rxjQP5kT7z+nTnCIWKTivf2pJc2RR1BfTLUdJKlO+/KYzdOuOJb5jAPCMQgqZ5PTiePZpLQ1+wwQQ7ACC4T0+TGs9tv3MbB8X+GddgN9ZVWXut3/F6pPCBQugsUTDEIMKMkcRwQ32JrY01npOki1m0pTmep0+K+TiIADKDsufI7P6upp0x85+rZrZ5jsKcILBUUIVZjpyYKvfMEikPRtma/cZJ6mpYWyLHDAibWx4+4DsokcKmbZ+/uSC81ySrqoiHR/dS3tafEeIXWtjTayvd+2WuUX/LAfQ/pRigZSKChtzEZUmSZmDVFuV+8wY3A03N8T7Nw8gOSikkCkJ+RweszNmpaMX7a2biz/ID6JjQm6eyXmnlXbu0FjUVaevMAcQzBvOnKl9Z+cWCWmoqdI7zunTJy5f7jkVAF8opJAps/LzV5pTdha3a2L9qNskaQnwF0UbqrmhRkcObNWlJVtGOl4j/c5OntqsaS0NesvGOfEFCqjYtlYuJzKKdeuOU//0fdbfi2Ik4S3bOzDnmB6oHcunqzsF82wBRINCCply7dZ5umv3Mi2Ykp5r59y1e5m2LoxxieoIJOEAKOluetlCtY17cdGAcbVV+sbV67Rk2ujXEItbImv2FNjU1+E7QkH8fZ5ofC1TyAGMjkIKmVJbVamVvekYFjdoZW9bYuYGoPRuu+hU3XLhEl2wdJqmNMe7JDar6CFN4twNXn/22K7xBSAbOOUClIHeSY1ayeqDqTSwwF8vRZDl11H+irmWGACAHimgLNy/d62a6tM17wsnesWp6bjQbdFzpEobAyUyvbVRj7xzs+8YAJA6FFIA4MGs9nH6s5ccO3woyKIipZTMBUoQRO+kxpI+X3UlhwNDMZwaQBDsOYEUuuyMk3xHCGRKc64w8Dl8Lanu3bNGy09q9R1jzO69crXvCJkU5bWL7t69XPfvXRPZ86fFijL4+wQQLQopYBQm6etXrfUd408++9qVWpWfD/WxV5+mOy9Z6jnR8Dqb6vX9fQO6YnU6Cr+oXbhsmqSxXUS3lMZ60v3mcxdp1uTg82sWTU3PaplZtqK3Vb2TxvmOcYK4F0e5a/ey1FyzD4AfLDYBBDC9tbTDaEpl7Zx23xFGxdytE9XXlG7Xu+3kLr3rSz8q6meLHdr35vWz9Nizz2tjiOW879uzOpEH50AhptzwPob4ARgJPVJAyvDBjqE6muJdMl2Sulsa9KnXrNCEuuBF8sz28bTdhHvXSxdqZjvFLgAERY8UAMSgf/pE1VTlzl1VVRQuKDqbWGwC/rxq2TS9Kj/8NIl81OGU/gBGQiEFpIzj6DeV6msqtWfDbNVUVujlSwovcz6vc0LMqQCMZLB42zB/sq7eOMdvGACJQyEFADEZX1eta7bM8x0DQEivWjot1MIqALKBOVIAAMSMjuV0GBza58QvDMCJKKSAlGHCfnmrqx55t3zX7mX6wPmLY0oDZNPgbnZwf0vhC6AQCilgFFF/fn704tMifgXE5Y1nzhzzc+xYNn3Ex1f2tmn74q4xvw78Gsv5kP3bF5QuSIrEeQ5pTkduGF9X/qLi40OsUAkgO5gjBXhWVUkPU7k4ZdpE3xGQQBvmT9bcjtLNr7loRU/JnitN4uoV+v71A2pqyBVO122dpxW9rVo6oyWeFweQKl56pMysxczuNbNH8v8WPPows135bR4xs10FHj9kZg9HnxiIjrHALsbovj1rfEfACG7f2a+9A7kV386cm/yLaGfdYBElSXXVldqysNNjGgBJ5mto39sk3e+cmyXp/vztY5hZi6R9kpZJWipp39CCy8xeJul/4okLRIcpT9mwuLs50HaL8tvNCdGDUexFVKM+wX/kwNaIXyF9muoZIgYA5cLX0L7tktbmv79T0tckvfW4bTZKutc596wkmdm9kjZJutvMxknaI+lySZ+KIS8y6uZzF6lymIunAkF95crV6p0UrNjZdvIUndLdrO6WhohTIS3MWOxA4qQTgOTx1SM12Tn3ZP77pyRNLrBNl6THhtx+PH+fJO2X9F5Jz0eWEJD0iv5u3xFOwLFE+syePD5UQU4RhaEOX7de37x6ne8YAIDjRFZImdl9ZvZwga/tQ7dzzjmFGGFiZosl9TrnPhtw+8vN7LCZHT569Gi4/wQQg7CFESemgfRaPbtNUrihm63jaimuASCBIhva55xbP9xjZvZLM+t0zj1pZp2Sni6w2RN6cfifJE1VbgjgCkn9ZnZEufztZvY159xaFeCcu03SbZLU39/PMSgSp31C3bCP3fPm1TEmQbE293Xoyw8/pTNmtfmOgoR76SlTdebcycyVKgIL8wBIGl9zpA5J2iXpQP7fzxfY5h5J7xqywMSApGvyc6ZukSQz65H0heGKKCDpjhzYqqee+23Bx6oqLNRZa/hzy45TfUcoimPijRcUUQBQHnzNkTogaYOZPSJpff62zKzfzO6QpHzBtF/S9/JfNw4uPAFkQdfEet8RUOZOmtToOwIAAKnlpUfKOfeMpLMK3H9Y0mVDbh+UdHCE5zkiqS+CiEBsCq1EtbmvQ/vOXhB/GGRKVzPzbpAerNoHIGl8De0DEu3aLXN16vR4rmRfaHTVpr4OdTQdO3dqXucE/duT/8UsAQAAgASgkAIKuHx1r+8IJ6iupIRKo7VzJvmOgDJyyrRgF3ZGce7fu8Z3BAApQiEFeMZwlfI2rjbe3WxddYV++4cXAm3rYlhM/8+3LdAzv/l95K+TBV+5crU6m4Zf5RNjF/TC2QAgUUgBQFl5YO9arTzwgO8Yf7JrZY/vCGVj9mRW8QSAJPG1ah+AEViBbqqJDTWSpOpK/mzTpNDvMkpTmoOv9sjq5wAAFI8eKSBhLl7Zo819HSfc//5XLtYXHvqF5nVyVhoAAMA3CinAs+P7K27YVnjZ85bGGu1c0RN5HgBIIuaTAkgaxggBQISSfOzHyD4AAIpHIQUAAAAAITG0D/Dk+9cP5L5JcpcFxqylsSaS5/3k5cv1fy+MrU/JsdoEUsTYWQJIGAopwJOmhmrfERCDt26aG8nzLjupNZLnBQAAwTC0D4hIbVXuz6uCk6iZVl9T6TsCAACIAIUUEJEzZk065l8gSeqqK9TZFPyaUwAA4FgUUkBkgs0/Ydw/fLh9Z78qS9xd+tq1vSV9PmCoIMufX7B0WvRBACCPQgoAIvK6ddkqLK6OaD4YEFRTPXNPAcSHQgoIaM+G2aG2X9nbppct6dI7X9p3wmPXbH7xgLOumj/DcnXVRgoLoFSaKZIAJAxHcEBAbzxrlm7dsSTw9ktntOh95y3W1IkNJzx2xZoXeyrG13FwgPgxpBRp0z6hTvftWTPiNkGG/wFAqVBIARH4xOXL1dfV5DsGMCwXcA5fEGfObS/ZcwEjmdk+bsTHX9nfHVMSAKCQAkIJev3S6kpOiyI7bt/Zrx+/Y7PvGIB62hr1T29f7zsGgIygkAIAjEllhammio8TJN+yGS3DPnbR8ukxJgFQDqp8BwDKUdCeKwBAadkIE6UWdzfruz999pj7rt0yV5esmqGqSk4GAAiHvQYQQlQTmW/cviCaJwaGQbEP5AzM76CIAlAU9hxAAuxc0eM7AgBkzk9v2qKetkbfMQCkFIUUAADIpJGGAQLAaCikACCDOH4EAGBsKKSAEILOK2H6CZKOOVIAAIwNhRQQg7t3L/cdAQAyj/MHAEqJQgqIwPGjplb0tnrJAQAAgGhQSAFABjFHCuWKpg0gLhRSQAQYPoKkY44UsogiC0ApUUgBQAY11Vf7jgDEjvMHAEqJQgqI2VffstZ3BCDyoX237jg12hcAhtFQWzni4/9y/YaYkgAodxRSwBh84Q2nh/6ZGW2NESRBkrzn3EX6+CVLfcfwalNfh+8IyKjaqkodObB12MebG2piTAOgnFX5DgCkycKpTcfc7utqGmZLZNl5/d2+I3hzwdJpGpg/2XcMoKDBjtj28bV6+r9/5zULgPSjRwoIYerEhhPOdN6+s/+E7ZjIj6y66WULtW5uu+8YQEGDu+YvvemMokYUAMBQ9EgBY7SBs+8AkCpt42rVNq7WdwwAKUchBRRhYkO13nDmrFA/8/p1M7VgyoSIEgEAACBOFFJAER68fiD0z7xl45wIkgAAguqeWO87AoAyQiEFAGXgjp39evK5//UdA0isd798YaYXggFQehRSQAQ6m+p8R0DGrGeuHjCiVTPbZFFfQA1AprBqH1Bi33rbmepuafAdAxjRzPZxviMAkRpfx7liANGikAJKrLWRiz0iGRpqKgve/8DeNWqo4SAT5e1fb9jIEucAIkUhBQAAylJfV5O6mllgAkA0KKSAErh4ZY/vCACQSZeePsN3BAAZRSEFlMAN2xaotoo/JwCI264VPb4jAMgojvyAEjm5u1mSxKJQABCPIwe2alrryIv7HLz4NF20fLqmNDHED0BpMdsYKJGP7OrXfxz9jWqrCk/wBwDEb07HeO0/p893DABliEIKKJHxddVanO+VApLM+Q4AlNhJkxo5iQUgdhRSAFCmHBUTMuKBvWt9RwCQQcyRAoAyQ88oAADRo5ACgDLzN5ct0zevXuc7BgAAZc1LIWVmLWZ2r5k9kv934jDb7cpv84iZ7Rpyf42Z3WZmPzazH5nZy+NLDwDJ1lhbpe6WkVcyAwAAY+OrR+ptku53zs2SdH/+9jHMrEXSPknLJC2VtG9IwXWdpKedc7MlzZf09VhSA0AZ6GpmGWgAAMbKVyG1XdKd+e/vlHROgW02SrrXOfesc+7Xku6VtCn/2CWSbpIk59wLzrlfRZwXAMpGdSWjugEAGCtfn6aTnXNP5r9/StLkAtt0SXpsyO3HJXWZ2eAs6v1m9s9m9mkzK/TzkiQzu9zMDpvZ4aNHj5YkPACkgWOhcwAAIhNZIWVm95nZwwW+tg/dzjnnFO6yJlWSpkr6B+fcEknflvQXw23snLvNOdfvnOufNGlSMf8VACgr5jsAAABlILLrSDnn1g/3mJn90sw6nXNPmlmnpKcLbPaEpLVDbk+V9DVJz0h6XtLf5u//tKRLS5EZ8OnVq3r0uQef8B0DZe6LbzxdFRWUUgAAjJWvoX2HJA2uwrdL0ucLbHOPpAEzm5hfZGJA0j35Hqy/04tF1lmSfhhtXCB6+85eoAevH/AdA2VuQl217wgAAJQFX4XUAUkbzOwRSevzt2Vm/WZ2hyQ5556VtF/S9/JfN+bvk6S3SrrBzB6SdJGkvTHnBwAAAJBhkQ3tG4lz7hnlepKOv/+wpMuG3D4o6WCB7X4maXWUGQGgHI2v87LbBwCg7LAGLgBkxOdft0rNDTW+YwAAUBYopAAgI7pbGnxHAACgbFBIAUBGVLJaHwAAJUMhBQAZ8J5zF6mpnhX7AAAoFQopAMiATX0dviMAAFBWKKQAAAAAICQKKQAAkBr37VnjOwIASKKQAgAAKTKzfZzvCAAgiUIKAAAAAEKjkAIAAACAkCikAAAAACAkCikAKFPXbpnnOwIAAGWLQgoAytTOFT3qaW2QJJnnLAAAlJsq3wEAANG5a/dy/f0jv9L4umrfUQAAKCv0SAFAGZvSXK/zTuv2HQMAgLJDIQUAAAAAIVFIAQAAAEBIzJECAACp8tGLT9O3f/KM7xgAMo5CCgAApMq6ue1aN7fddwwAGcfQPgAAAAAIiUIKAAAAAEKikAIAAACAkCikAAAAACAkCikAAAAACIlCCgAAAABCopACAAAAgJAopAAAAAAgJAopAAAAAAiJQgoAAAAAQqKQAgAAAICQKKQAAAAAICQKKQAAAAAIiUIKAAAAAEKikAIAAACAkCikAAAAACAkCikAAAAACIlCCgAAAABCMuec7wyxMbOjkn7mO0dem6Rf+Q6B1KHdoBi0GxSDdoNi0G5QjKS1m+nOuUmjbZSpQipJzOywc67fdw6kC+0GxaDdoBi0GxSDdoNipLXdMLQPAAAAAEKikAIAAACAkCik/LnNdwCkEu0GxaDdoBi0GxSDdoNipLLdMEcKAAAAAEKiRwoAAAAAQqKQipiZbTKzfzezR83sbQUerzWzT+Yf/66Z9cSfEkkToN3sMbMfmtlDZna/mU33kRPJMlq7GbLdy83MmVnqVkhC6QVpN2Z2Xn6f8wMzuyvujEieAJ9T08zsq2b2YP6zaouPnEgWMztoZk+b2cPDPG5m9pf5dvWQmS2JO2MYFFIRMrNKSR+UtFnSfEkXmNn84za7VNKvnXMzJb1f0rvjTYmkCdhuHpTU75xbJOkzkt4Tb0okTcB2IzMbL+lNkr4bb0IkUZB2Y2azJF0jaZVzboGkN8ceFIkScH/zdkmfcs6dIul8SR+KNyUS6mOSNo3w+GZJs/Jfl0u6JYZMRaOQitZSSY86537inPu9pE9I2n7cNtsl3Zn//jOSzjIzizEjkmfUduOc+6pz7vn8ze9ImhpzRiRPkP2NJO1X7oTNb+MMh8QK0m52S/qgc+7XkuScezrmjEieIO3GSZqQ/75J0i9izIeEcs59Q9KzI2yyXdLHXc53JDWbWWc86cKjkIpWl6THhtx+PH9fwW2cc3+U9Jyk1ljSIamCtJuhLpX05UgTIQ1GbTf5IRLdzrkvxhkMiRZkfzNb0mwz+5aZfcfMRjqbjGwI0m5ukLTDzB6X9CVJb4gnGlIu7DGQV1W+AwAonpntkNQvaY3vLEg2M6uQ9D5JF3uOgvSpUm6YzVrler+/YWYLnXP/6TUVku4CSR9zzr3XzFZI+isz63POveA7GFAq9EhF6wlJ3UNuT83fV3AbM6tSrvv7mVjSIamCtBuZ2XpJ10na5pz7XUzZkFyjtZvxkvokfc3MjkhaLukQC05kXpD9zeOSDjnn/uCc+6mkHytXWCG7grSbSyV9SpKcc9+WVCepLZZ0SLNAx0BJQSEVre9JmmVmM8ysRrnJloeO2+aQpF3578+V9IDj4l5ZN2q7MbNTJH1YuSKK+QqQRmk3zrnnnHNtzrke51yPcnPrtjnnDvuJi4QI8jn1OeV6o2RmbcoN9ftJnCGROEHazc8lnSVJZjZPuULqaKwpkUaHJO3Mr963XNJzzrknfYcaDkP7IuSc+6OZvV7SPZIqJR10uc0eWQAAAMVJREFUzv3AzG6UdNg5d0jSR5Tr7n5Uucl35/tLjCQI2G5uljRO0qfza5P83Dm3zVtoeBew3QDHCNhu7pE0YGY/lPR/kq5yzjFyIsMCtpu9km43syuVW3jiYk4Uw8zuVu7ETFt+/tw+SdWS5Jy7Vbn5dFskPSrpeUmv9pM0GKNNAwAAAEA4DO0DAAAAgJAopAAAAAAgJAopAAAAAAiJQgoAAAAAQqKQAgAAAICQKKQAAAAAICQKKQAAAAAIiUIKAAAAAEL6fzoymqGxGdlHAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X, sample_rate = librosa.load(data2_df.path[216], res_type='kaiser_fast',duration=4,sr=22050*2,offset=0.5)\n",
+ "plot_time_series(X)\n",
+ "ipd.Audio(X, rate=sample_rate)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHiCAYAAADic/1bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4HNXVx/HflWTJvfcqbAzGFGMwNs2A6R1CQifthZACIZXEENMhdBJaKCGkUEMophhjY+OCcbdx7703ySqWLavd9w+tZJWVtKudnZmd/X6ex493Z2fnHq12V3Pm3nuusdYKAAAAABC5FK8DAAAAAIBEQyIFAAAAAFEikQIAAACAKJFIAQAAAECUSKQAAAAAIEokUgAAAAAQJRIpAAAAAIgSiRQAwFPGmA3GmAPGmH3GmB3GmH8ZY1p6HRcAAPUhkQIA+MFl1tqWko6XNFjSXR7HAwBAvUikAAC+Ya3dIWmcyhMqSZIx5hJjzLfGmDxjzGZjzP1VHvu3MeZ3ods9jDHWGHNb6H4/Y0y2MabW3zpjzEZjzImh2zeGnnd06P7NxpjRodtDjTEzjDE5xpjtxpgXjDHpocdeMsY8VeO4Hxtjfhu63d0Y84ExZrcxZr0x5g5HXywAgKdIpAAAvmGM6SnpIklrqmwukPQDSW0lXSLp58aYK0OPTZF0Vuj2mZLWSTqjyv2vrbVlYZpq6HlTQrdLJf1GUkdJp0g6R9IvQo+9I+laY4wJxd5O0vmS3g0lb59KWiipR+h5vzbGXBDZKwEA8DsSKQCAH4w2xuRL2ixpl6T7Kh6w1k621i621pZZaxepPIE5M/TwFEmnhxKXMyQ9Iem00GNVE6KaplQ5xnBJj1a5X/k8a+08a+1Ma22JtXaDpFeq7Pe1JBt6viR9T9IMa+02SSdJ6mStfdBaW2StXSfp75Kui/J1AQD4FIkUAMAPrrTWtlJ5L9EAlfcASZKMMcOMMZNCQ+RyJf2s4nFr7VqV91gdr/KE5jNJ24wxR6rhRGq4MaabpFRJ70k6zRiTKamNpAWhto8wxnwWKoKRJ+nPVdq2kt6VdH3omDdIeit0u4+k7qEhgTnGmBxJd0vq0viXCADgJyRSAADfsNZOkfQvSVXnHr0t6RNJvay1bSS9LMlUeXyKynuD0q21W0P3fyipnUIJUZh21kjaL+mXkqZaa/Mk7ZB0q6RpVYYDviRphaT+1trWKk+Gqrb9jqTvGWP6SBom6YPQ9s2S1ltr21b518pae3G0rwkAwJ9IpAAAfvNXSecZYwaF7reSlG2tLTTGDFV5z09VUyTdLmlq6P7k0P1p1trSetqpeF5Fr9XkGvcr2s6TtM8YM0DSz6sewFr7raQ9kl6TNM5amxN6aLakfGPMH40xzYwxqcaYY4wxJzX40wMAEgKJFADAV6y1uyX9R9K9oU2/kPRgaA7VvSofhlfVFJUnPBWJ1DRJzavcr0vN59W8L0m/V3nilq/yOU7/DXOctyWdG/q/4mcolXSpyoccrtehZKtNAzEBABKEKR/iDQAAAACIFD1SAAAAABAlEikAAAAAiBKJFAAAAABEiUQKAAAAAKJEIgUAAAAAUUrzOgA3dezY0WZmZnodBgAAAACfmjdv3h5rbaeG9kuqRCozM1Nz5871OgwAAAAAPmWM2RjJfgztAwAAAIAokUgBAAAAQJRIpAAAAAAgSiRSAAAAABAlEikAAAAAiBKJFAAAAABEiUQKAAAAAKJEIgUAAAAAUSKRAgAAAIAokUgBAAAAQJRIpAAAAAAgSiRSAAAAABAlEikAAAAAiBKJFAAAAABEiUQKAAAAAKJEIgUAAAAAUSKRAgAAAIAokUgBAICEM+iB8br+1ZlehwEgiZFIAQCAhJN7oFgz1mV5HQaAJEYiBQAAEtby7XlehwAgSZFIAQCAhHXRs197HQKAJEUiBQAAAABRIpECAAAAgCiRSAEAAABAlEikAAAAACBKJFIAACBwlm/PU+bIMVq8JdfrUAAEFIkUAAAInInLd0qSvli63eNIAAQViRQAAAAARIlECgAAAACiRCIFAAAAAFEikQIAAIGyame+nhq/yuswAAQciRQAAAiUf36zwesQACQBEikAAAAAiBKJFAAAAABEiUQKAAAElrVeRwAgqEikAAAAACBKJFIAACCwjPE6AgBBRSIFAAACpWry9OKktZqzIdu7YAAEFokUAAAItA/nb/U6BAABRCIFAAAAAFEikQIAAIFCpT4AbiCRAgAAAIAokUgBAIBAqVmp753ZmzR97R5vggEQWCRSAAAg8F6ftsHrEAAEDIkUAAAAAESJRAoAAAAAokQiBQAAAABRIpECAAAAgCiRSAEAgEAxDe8CADEjkQIAAEmAVXoBOItECgAABAopEwA3kEgBAICE99jYFcocOcbrMAAkERIpAACQ8F6estbrEAAkGRIpAACQBChBAcBZJFIAACBQSJkAuIFECgAAJAFKUABwFokUAAAIjMPuGqPi0jKvwwCQBEikAABAYFgr5R4o9joMAEmARAqIkLVWm7P3ex0GAAAAfMDTRMoYc6ExZqUxZo0xZmSYxzOMMf8NPT7LGJNZ4/Hexph9xpjfuxUzkterU9dp+BOTtGJHntehAEBS+3zx9mr3t+zlIhcA93mWSBljUiW9KOkiSQMlXW+MGVhjt5sl7bXWHi7pL5Ier/H4M5LGxjtWQJJmr8+WJG3JPuBxJACQ3H7x1vxq909/fFK1+5a6EgBc4GWP1FBJa6y166y1RZLelXRFjX2ukPTv0O33JZ1jjDGSZIy5UtJ6SUtdihcAAAAAJHmbSPWQtLnK/S2hbWH3sdaWSMqV1MEY01LSHyU94EKcAAAAAFBNohabuF/SX6y1+xra0RhzqzFmrjFm7u7du+MfGQAA8BQj+wC4Ic3DtrdK6lXlfs/QtnD7bDHGpElqIylL0jBJ3zPGPCGpraQyY0yhtfaFmo1Ya1+V9KokDRkyhO9WAACSWH5hsZqnpyk1xXgdCoAE52WP1BxJ/Y0xhxlj0iVdJ+mTGvt8IumHodvfk/SVLTfcWptprc2U9FdJfw6XRAEAgORTV4pUXFqmY+8fr3s+XuJqPACCybNEKjTn6XZJ4yQtl/SetXapMeZBY8zlod3+ofI5UWsk/VZSrRLpAAAAVY1ftjPs9uLSMknS27M26c2ZG90MCUAAeTm0T9bazyV9XmPbvVVuF0q6uoFj3B+X4AAAQGBMWL5LW/YeWr5i1OgluunkPh5GBCDRJWqxCQAAgKjc8c63XocAIEBIpAAAAAAgSiRSQIQqSj4u3pqrEx/6UnsLijyNB2hIdkGRnp+4WtZSsBQAAKeRSAFRemnyWmUVFGnmuiyvQwHqNfKDRXr6y1WauS7b61AAAAgcEikACKiCohJJUmkZPVIAADiNRAoAACQFRrkCcBKJFBChFdvzJElW/CUGAK9c+8oMr0MAAEkkUkDEtuUWeh0CEBWuviOIZq1nzh8AfyCRAoCAM8brCAB/WLkz3+sQAAQIiRQAAAAARIlECmgkRk0BAAAkLxIpIEpGjJNCYmCOFAAA8UMiBQABR+oPhFfGGmsAYkAiBUSJ8ucAEAw//Odsr0MAkMBIpIBG4io/ACS2r1fv8ToEAAmMRAqIEnOkkCjoPQUAIH5IpAAgoCqLTZD7AwDgOBIpAAg4elEBAHAeiRQAAAAARIlECmgkZp/A73iPAgAQPyRSQLQYJYUI5R4o9joESZLhPQsAgONIpIBocZkfEfhw/hYNemC8lm3L8zoUAAAQByRSABAHU1btliSt2pnvcSQAACAeSKQAIKjC9J4eLCnVvI173Y8FAICAIZECosQip0g0VadIPfTZMn33pelau3ufZ/EAABAEJFJAIzF/H4loaWjOVs5+fxTCAAAgUZFIAVFicVMAAACQSAGNxAA/1GdX3kFJ0pfLdnocCRAcny3a5nUIAFCJRAqIFh1SiMDSbbmSpDGLt3sWA/P5ECQHS0p1+9vfeh0GAFQikQKAODA+WgWXdApBYHkjA/AZEikACKi1uwskSde9OtPjSAAACB4SKQAIqOyCIq9DQAxyDxTrvTmbvQ4DAFCHNK8DAIKirMzKGGeGdG3NOaCmaSnq0DLDgcgAJKI/vr9IXyzdoYHdW+uYHm28DsdzDO0D4Df0SAEOyD1QrL53f65Xpq5z5HinPfaVTnx4giPHgjesR2d9+w6WKK+QNaKCYPe+8sqPhcWlHkcSbD97Y57XIQBIUCRSgAP2hE54GIaTvErLrO7/ZKl25BZ6Gscx943TcfeP9zQGIJF8sXSH1yEASFAkUgDggJnrsvSv6Rt05/sLvQ4FAAC4gEQKiBbj9BFGxUi+stANP5U/B4KAjxQAvyGRAhpp1c58r0MAIra/qESlZVWvAnBFAImFYhMA/IZECohW6KroXyes1ryNe72NBb7lVbGJugy8d5zufH+huKjvvcEPjteT41Z4HQYAIEYkUkAMNmfv9zoEIGIfzt+q+ZtyvA4j6e3dX6wXJ631OgwAQIxIpAAgIFiAFwAA95BIAVW8OGmNMkeOqTUsK3c/6/LA/855erLXIQBxY5nXB8BnSKSAKp4ctzLs9l+++63LkQDR20vCH0ikDwDgTyRSQAS25xyIaL91ewq0M8+5BVlLSsscOxbcFUv58935Bx2MBAgGQ6kUAD5DIgVEKdyf8qojAX/97gLH2rrpH7McOxbc1diqfR99u0UnPTJB8zdRERLlSB8AwJ9IpIAoNXR6XFhS6lhbM9dlO3YsJIaZa8t/56t2xLZO2dYGe1E5PUdiieccqbIyBlACiB6JFOCAGEZxRWTCsp3KHDlGv//fwvg2hMC45uUZXocAJIyLn/va6xAAJCASKcDnpq/do1v+M1eS9P68LR5Hg4bEYx3e0jKrdbv3Vd7P2newwVLnTs7VA4JuRYw9wACSE4kU4DPvzdlc7f7eAiqxJYIJy3dKkqavzXL82M9OXK2zn56iNbvKk6kTH56gEx76st7nlDQwVClrHwUt3LYjt1B7eN0BIDBIpIAIrN51qDcg3jNL/vDBoji3gHhYvSt+V7TnbiifN+VkL9Otb8xz7FiIzMmPTtSQhyd4HQYAwCEkUkCUmJIMIKiWbcvTkq25XocBAAkhzesAAD+yNv4FJBAM+w6WaPCD41VcWneKvSlrv3p3aO5iVEDjVBRd2PDYJR5HAgD+R48UECXyK1S1fndBvUmUJJ3x5CSNXbw9ouPFs8RzTW/P2uRaWwAABA2JFBCDcL1W8ajaFs6o0Yv16OfL3WkMMVuyrfZwqeXb87R4S/hhVNH2iDZmAeC7P1oc9XPgPoYTA4A/kUgBDXhp8to6H3MjaQrXQzFnQ7benLlJr0xdF/8AEDcXPfu1LnthmiPH2p1PNTgEm1sXqQAgUiRSQAP+OmFVg/tU/QNftSfBWqt3Zm9SYXFpnc99Z/Ym/emjxcrdX6wFm3Miimns4h0R7Qdv1Pf7BqLFcGL3/fOb9cocOYbPMoB6UWwCiFI0F0XHLtmhuz5crA1ZBbrroqPC7nPXh+XDq5Zvz9P8TZElUvC3Afd8odZNnft6rUjUy6zVf+cwrwmIt5enlI9EyNlfrK5tUj2OBoBf0SMFxFF+Yfliuku25mr2+ux69125I37rECF+3Kzu+PasTfrjB8xrQnJy67P2ycJt2pkX/VDZH/1ztu4ZvSQOEQHwKxIpoAEHS8oa3KehP/DfrMnSNa/MaFT7hoE9gWBkdNXfvtHlMcyJytlf7GBEAMK5451vG/W8ySt3642ZGx2OBoCfkUgBDtieU+h1CEgA8zflaFGoSl9Fb2VNNZOleRv3KrugKO6xOWH59jxljhyjqat2ex1KIHy7aa/XIfiKF8Um3FyOAEDiIZECwqjvT2fV/iFjygtK3PSPWbX223ewxJFhWAUHS2I+BtzX0OnXb99bGHb7+GU7JR3qifzuS9O1cmdiDPucs6F8+OqXoZ8BsSnjHB4AfI1ECohSzWF823LD90Yt2uJM4Yh7P2HMfRCt31PgdQgAGsDQagD1IZECYmBtPQuhOnQ1ubC44TlawPY6Eno3sc5PdBqziDLcxdA+APUhkQIcVnFu9O8ZG6J6nnGz/BviruZv04lfb33HWLdnX+wNOGTskh3K2Z8Y87oSAafy5XgdAPgNiRQQpUh7iMYtjd88EXIu/9hbR8KQV+ju3Lbf/Df8nCsv7Nl3ULe9PV8fL9iq8UtZPDpWr329TjPWZnkdRuDRQwggWiRSgMOiSXIOFJXGLxC4YkKEhRXW7Iqux+jxL1bU2pZICfTWvQf0q3cX6NY35nkdSsIbt3Snrv/7TK/DCLwFm2vPa2WOFID6kEgBDovmouZT41dWeV7kT0ykC6cLN+co9wDrH23NORDV/lk+L3l+oKhUO/O8n5cFOCXcmoHMkQJQHxIpIAbheggWbM7R0m25ET0/GRKMK178Rj8IUx4+KOI5t62utab84Lq/z9SwP0+stq3qxQDm/CHRJNIFKgD+QCIFhDF7fXZMz7/kuWkORZK4rLV6JtTjtnBLZIllkDUmrfjFW/Mdj8MpC8MMg6oq2h44oCHMYQLgNyRSQBgz17kzsXvi8uAuXLp4a66e+2qN12H4RmNOAZdsrZ6A1pyvsTXngEaNXuzp+2jL3v36xVvzZG31QVBFYYZJIbyyMqsXvlqdFD3UfhZtJ2rugWKVsWoykNTSvA4A8KNI/zRGe4F0/qa92pVXqKGHdVD7Funau//QiVPQhkKVcoIRs6rvj3CGP/6Vyqz05sxNLkVU2+mPT5IkTV29x7MYEt2klbv01PhVWre7QM9ce3yd+23MKlCZlQ7r2MLF6BDO3oIiDX7oS902op/uvGCA1+EA8Ag9UoCLvt2Uo5+9OV+3/HuO16EknSVbc/XMl6u8DiMmNSe++ylXPVBUSn2zKFVciKnovdvfQBXPM5+crBFPTY5zVKjqlEe/qlZUZeLynfpmzR5lh5Y9GLuY8v5AMiORAlxUXFp+wrR5b2zzRwLWeeWKS5+fpucmrnb8uP+bu7lRz2vMfI9v1vhjLaHN2ftrbWuSaqhvhrjy6v1VdQ2vm/89Vze+FtziOQCiQyIFBMTE5Tu1mKIOriuIcC2wIOW+4XpFMtJS3Q8Ejikts3r08+Veh5FwuHgAJDcSKSAGfuoZuvnfc3XZC95XC1y3e5+WbcvzOgzfCdIJV0mYMYWdWmVQYCJKfnpPzFibpVemrvM6DF+qby2p9XsKwvbQAkgOniZSxpgLjTErjTFrjDEjwzyeYYz5b+jxWcaYzND284wx84wxi0P/n+127Ai4OJfZ3Z1/UPuLSuLahlfOfnqKLn7ua6/D8J1FNXoLqyYj2QVFCX8y9q/pG/To2BVeh5FQJq3Y5XUIlUopLa7rXp2pDXsKon7eDJeqvALwH88SKWNMqqQXJV0kaaCk640xA2vsdrOkvdbawyX9RdLjoe17JF1mrT1W0g8lveFO1Eg2u/ILG9ynsdX2fv+/hY16HoJhY9ahxOnUxyZq+BOTPIwmdh8v2Op1CAknq+Cg1yHU6WBJZENWg+brNbWrT9ZcdgAAKnjZIzVU0hpr7TprbZGkdyVdUWOfKyT9O3T7fUnnGGOMtfZba+220PalkpoZYzJciRrJIZQcXfZ8w0PlGrtIZDyHv83dkK0xi7bH7fhwVmFx4g+Jq6/i3BU+GHKK6Bw56gut2pnvdRjVeNVpFm5oH6kVAMnbRKqHpKrlrraEtoXdx1pbIilXUoca+3xX0nxrrX8v7SFh7cyr/20V7R/2fYXODOdrqN3vvTxDt70935G2gmDOhmyvQ0hqCymCEpH65uLEve0wXyrMdQSA+iV0sQljzNEqH+7303r2udUYM9cYM3f37t3uBQdf+njBVv38zXlhH6s2lCVOlz5fmLQmLsetS+bIMVqxw5uToe/8bbon7YZz9cszvA6hmrkkdlD518yu/ELd98lSr0NRcSlzpAAgWl4mUlsl9apyv2doW9h9jDFpktpIygrd7ynpI0k/sNaurasRa+2r1toh1tohnTp1cjB8JKJfvbtAY5eEX0DxyFFfRH28/8zY4Mlwk2imZb03Z0v8Aklytzey129TgheWgDOspPs+Xqpd+eU93xX/eyH3QLFnbUeqsWu2AUC8eJlIzZHU3xhzmDEmXdJ1kj6psc8nKi8mIUnfk/SVtdYaY9pKGiNppLX2G9ciRtKINDeavylHXy7b2ag2ahapKCxOzsndiewz5qEhRqVVqjd+uynHszgSYc7Pw2NY5wqAv3iWSIXmPN0uaZyk5ZLes9YuNcY8aIy5PLTbPyR1MMaskfRbSRUl0m+XdLike40xC0L/Orv8IwCSpAONTIBqzkkItzZPpL5a0bhkDt6I5XcNxEO4dyTv03Lvzt4c2OUqAMQmzcvGrbWfS/q8xrZ7q9wulHR1mOc9LOnhuAcIJIjPFtIzkkj+8P4ir0MAqglXbGLF9uQrNhGuZ27W+mw99Nky3XfZ0eGfRL4JJK2ELjYBxEsiDHOpatHWuquieVkJDP6XCHNjgmx8I4cGIz5GjV4SdnvWviL97j3W/gNQHYkUksa/vlnvdQjVNHYh33CKSxN/HSJ4Y9AD470OAfA9Y6Rv1tZerLf8QXdjAeAfng7tA9x0/6fLvA4hbrxaqNILu/MPamNWgYZktvc6lKS0YLN3BRES1fo9BcouKPI6DDjIyQthABIXiRSS0u78g+rUKsPTGNbvKXClHROwy6WXvzBN23MLteGxSxrcN6+wWFe/5K81pBLdlS9SKDVaI56aHHa7ny6AhAvFR+H5Trg5ZQCSD0P7kJQaOhmM5k9kzn7vrzTXd3E0aHOktucWRrzv9DVZWrkzv9q20x77Ssu2+XMS/aSVu7wOAS6q77O5Z593a0pVIFeors6vWV4nIGmRSCEpbc05UO/j0ZxA/P1r9+deBauPyV1bcw7opSl1ruHtqR//c47XIcAnhjw8ocF99h0s0WYWd3ZFzZ59hvYBkEikgLCmr92jLB9cEa5LzTyPK8dA8rnm5Rka/sQkZw7Gd0i9Jq7Yqb3766hwSU4FJC3mSAGSpq7aXe3+/E05uvG1WR5FA+fE5+ywsLhUi7bUXXIeiLcnvlihZXFe54lOl0OKS8k0AdRGjxSS3oy1WfrB67NrbV+xIz/M3v7wj2mRDyekt6q2WCeKjxq9RNe8QhELOC9z5JiI9vvb5PgPT/XTd0dZmY+CqcnHoQGILxIpJD0/TOp20vilO7wOIfBW7PBnsQokltI6koMpNXrIayoqSb5146atqWMNJwDwEIkUEABVh+Dc+sY87wJx0V8nrIpgL8Ymwb+e/GJl2O0/DNNDXtURo8Y6Hku4CoJ+GtrHouMA/IhECgg4P50MOemvE1ZHsBdjbuBf+QdLvA6hkp+G8YXjt/hMnXcAJBMSKSQ9n/19dpxbJyDbcg7o39M3uNMYgLj71/QNKiwu9ToMXwr63w0AkSGRAgLAD1drf/zPObrvk6VehwHAIaVlVn+JaAhtkvPB9y8Ab5BIIekxKsMZuQfqWGPFh/YdLOFKOxCBvAT6XLup5t+NL5Zs9yQOAN4ikQKQdCav3K1znp7idRgAIuT3Tp+fvTnf6xAAeIBECoAjduQVxr2NXfnOtbE154Bjx0LDRo1erGXb8hKq5zJRxLouWv3HjtuhE9rZT08+dIdhDUDSIpFC0uM8IXEs2pxb52MlpWVas2ufi9EgGm/O3KSLn/taFz/7tdehBM7oBVvjdmy/JFJ+G2JYbQkwn7xGANxHIgUgYW2r0qv05PiVOveZKVq4OUdnPzVZq3bm++YkEIfQE+i8bTmx99TW9VE54JO5hNkFRV6HAAC1kEghae10YShaPCTzCUXNk737q1QJnLthryTpjne/1bo9BXpx0hoXIwMSW10XHT5ZuM3dQOoQbsFgv/h2c47XIQDwCIkUktawP0+UlHjD20946EuvQ/C1jVn7K2/HazFik3DvGqB+xaVlXodQLz/3Ln8cx6GVAPyNRApJz8d/n9GA+n53YxfvaPD5f5+6Lq4T9QE3PDlupRbG2CvCGnCNV/Oyyoy1WZ7EAcB9JFJAwC3emqu1u70vwvCXL1fFLWmx1mrexr3VthWVljV4FfuRz5dr+fb8uMQEuOnvX6/zOoS48vPljoKi6vPI/jFtvUeRAHAbiRSS3r7CEq9DiKt5G/f6Ys2kZyeuVt6B2F7ruhKxpdvyGn3MMnqkEAC8i/2E3waQLEikkNRmr8/W3R8t9jqMmMVrLlCkIp5f4XCcFTlQaRknLkhyfAQAwHVpXgcAeOmaV2Z4HULM3pi5sVqBBbfbttZqgUtVq0yUGWMku3udhCarDXsK1Lt9c6Wk8Atwgp+r2jkhkTqOEylWALGhRwpIcPeMXhLRfvFYv+ee0Ut078dLNWbR9oj2/2JJZPvVJdo5VpHs3pgKfPSAxebbTXt11lOTKVHvoCCfvOcVFuvxL1Z4HQYA1EIiBSSJ0x77yusQ9MpUdyfEL9/RcCGJxvRILdve+DlZkD76trxc9JwaBULQeGOX7NBJj0zwOoy4+HrVHq9DiEqAc1oANZBIAYiZX08cnpu4usF9GNqHoNidf9DrEAAgqZBIAXBNrDlL7YQt9hSuvqF9u/ILlTlyTMxDElFdxTA0clgAQCIjkQKSSGmZ1ZpdrJtUVX09UhVrTL01a5NL0SSHitfcrz2ZyWZ7bv3zJ9+cudGlSIKBRb6B5EEiBSSRR8Ys17nPTHV+gd4Izxu25xY62mx+YYlKIi29Xgcj6fIXpmnkB4ucCSoBfbxgq6vtcZ7pLyWl9f9CRkVY0AYAkg2JFJBEXv9mvSTn51IURZjM7C8qbXQbT45boZ++Ma/atlnrs3X+X6Yq90Bxo48rSYu25OrdOZtrbQ93ZTmIV5t/9e4Cr0MAwrLW6qHPlnkdRlSC9w0BoC4kUkASSsS5KS9OWht2+7o9BfrB67MbfdzI1po6tNMjY5Y3ui0/25ztzVpk8J6frw1kFRRpR56zPdkA4BQSKSAJ+fi8yQPRpZVvzgrmfJHhT0xyra2gLx6baFjPCwAah0QKQFKrr0cq2U73i0rK9PT4ldpfVBLXdt6cSfGjDPqBAAAgAElEQVQOP/nv3NrDWtF4k1fu1pKtuV6HAcAFJFJAEior8y5FmLRyl2dth1NXHmWt1XuheVNTV+1WUUlZ4E+O3pm9Sc9/tYYeigSWOXKMnhy3wuswkt6lz0/TToYkAoFHIgUkoXFLd3jW9o//OceztsM5++kpYbe/9vV6jV1y6HV66LNluvT5aSosjq1KoJ8VlZT/bAcD/DO6bW9Bkett/md6cIafJuJ8zgr5hfHt2QXgPRIpIAmV+nl2uU9MXb272v1FW3I8iiS4pq7arWtfmeHY8YpKypQ5coxemRK+MIkXYimEguqFXgDAb0ikgCREHhW9hVuCPayvKjffHrPWZzt2rIKD5T0AL/kokVq5gwWwASCoGkykjDHNjTH3GGP+Hrrf3xhzafxDAxAv5FEIoor3dXFJmfIKY1tbDIhVSVmZCosbv3YeAP9Li2Cff0qaJ+mU0P2tkv4n6bN4BQU46WBJqe77eKnXYfhKEBeVReyem7haUuLNS/npG3OVta9IczfulSQVFJXquPvHa8Njl3gcmUcS7RdYj0T+Ua5+eYbyC0uS930IJIFIhvb1s9Y+IalYkqy1+5XY321IMmMX79C7cyjvG868jdnalU9lqXCScW5G/kH/T4631mpxaJhldkGR3pixQeOW7qxMoqp6fdp6rdiRF9Fx8wqLtXb3PidD1YGiUhWVUrgjWVFsAgi+SHqkiowxzRQaNWGM6SfpYFyjAhxURu9LLRUvyXdfmqEOLdI1757zvA0IvlLXJ2b+ptrJitvemrVJo0Yv0emHd9S0NXvq3ffBz5ZJkqbeOUK9OzSvd99rXp6hFTvyHe09+NNHix07VrJKwusZABJIJD1S90n6QlIvY8xbkiZK+kNcowIQV1WTyywPyjP71ZUvfqOSUA8C52+1XfW36a62l1dYrFGjF1ebZ1JRvKGhJKqq3AP1z5e69pXyJMppa/cUOH7MSPDeBQB3NJhIWWu/lHSVpB9JekfSEGvt5PiGBTiHDqnaeE3CW7A5R9kkltVOxB8du1zf/8esuLb3TR1J0fMTV+vNmZv09qxNksqH9b0xM/o1klIa+EvnZOXAoJq1LsuTdg1pIQAfq3NonzHmhBqbtof+722M6W2tnR+/sADnkDPUNm7pDi3emjzlvKNRFnrDJPOQoqqfmVemrIt7eze+Nksv3XiCLjq2W7XtFdOLFm3J0Wtfr9PDY5Y36vhpDWVSSWx8hItzT1+bpWF9O8Q5mtoWsn4bAB+rb47U06H/m0oaImmhyi9UHidprg5V8QOQYPIKS5QX41CmrH3BnCpZZq2ueGFaUq0bVdM/pq3XnRccqaZNUiu3vfZ1fBOqn781X/NGnasOLTNqPTZ6wTaNXrCt0cdO9SiPWu9w8Yp4uNvH87jmbcxmQWMAvlbnnxdr7Qhr7QiV90SdYK0dYq09UdJglZdABxICpb6dl7u/WCc+PMHrMOLiwU+XJXUSVeHThdUTl8b2BkXjihe/Uc5+54dWvv7NhspKf1J5NT2nK/SFkxegqm1e9NB+s8ab4YQAEKlIrtMdaa2tvGRlrV0i6aj4hQTA75Ztj6ykdCL6IsKhTkHnxeWHLXsP6PgHv3T8uG/P2qTLXphWef/2t+frnKenqKikTFtzDjjeXmLx7xjWoFwD+++cTSoqoQw+EESRlD9fZIx5TdKbofs3SloUv5AAZwXkbzHgKj/05MarF6Si4l/O/iKd9thX8WnEQ/FYA+2vE1brlL4dPJknlej++MFibcsp1Kz1WTqhdzv94cIBXocEwCGR9Ej9WNJSSb8K/VsW2gYkhLIy708IEZsP5m3xOoSk43Ue9Z8ZG/T6N+vjcuyKPGPonyfG5fiJJJqc67Vp8fl91MUG6DJYdkGRZq7L1t8mr/U6FAAOiqT8eaG19i/W2u+E/v3FWlvoRnBArErLrEZ+6N/J1Ilqj8uFJt6evcnV9lBevXDi8p2etX/vx0sdT+Ye/HRZRPtZa33RI+c3br8kQfoVNKZsPwD/azCRMsasN8asq/nPjeCAWB17/zivQwgkt08KduVz7cZtZdbq5n/P9aTt2XFa16mih6uwuP75Kofd9bmu//vMuMTghqCU7n924mqvQwCAekUyR2pIldtNJV0tqX18wgGctb+o1OsQEkLugWK1adYk4v237nV3gv7m7GQvCOC+UaOXeNb2Na/M8KztCjPXxZbM/eH9hQ5FEr2c/cXad7BELTMi+RMfjQB1EQGAAyIZ2pdV5d9Wa+1fJV3iQmwAXDLogfFR7U+lMwTVtNV7HDnOe3O9nde3Masgov2i6bwK0lA7P3hlylpNXrnL6zAAxKDBy1XGmBOq3E1ReQ+V05e5AADw3E3/mOV1CI74dlOOju7epsH9ohkGSB7lrEfHrpAkbXiMa9NAoookIXq6yu0SSeslXROfcACgurzCYq9DQIBkjhzjdQiu+Hzxdt10ch9Hj/nVil2y1qq0zOrJcSv187P6qW3zdEfbSAZ79h1URlokRZMB+F0kidTN1tpqxSWMMYfFKR4APrN0W65WbM/Xd0/s6Un7xSxkCUQtJU4VJ2asy1LO/mK9MnWdtuUW6vnrB8elnSAb8vAEtW9ROwH92+Q16tKqaa3v2kkrdmnx1lzdcU5/t0IEEKFILom8H+E2AAFz21vzdclz0/S7/x2aOD99jTNzSCIVj8VFgaCL5GMzfe0e7cyLbimD/MISjf52qyTp04XbGhNaRIpLg30BJbugqNa2J75YWe27tsKP/zVHz3y5yo2wAESpzh4pY8wASUdLamOMuarKQ61VXr0PQIBkjhyj/956sob17VC5bczi7bX2u+E1d+eQfDifxXiBaEVyAeKGv0f/Wba2vMpnvOUXlsS9DT/5bFH8klIA8VPf0L4jJV0qqa2ky6psz5f0k3gGBThh9c58r0NIOG/P3lQtkarq6Hu/0Fs/OdnliKSHxyx3vU0AdbFKd2F+T0oSdUT3vWuMyqjkASSkOhMpa+3Hkj42xpxirfV+UQ8gSuf9ZarXISScFGM0d0O2/jd3i6au3l3tsYKiUr06da0j7bw4aY1uG3G4I8cCUNuSrblxO3aT1EOJ1N6CIrULM98nVsk0pLeuJOrjBVvVsWVG5f3nJq5mnhTgM/UN7fuDtfYJSTcYY66v+bi19o64RgbAdR99u1UfheY/hGOiWnWmbk+OWxlRIvXtpr2OtAckm3gVm/jjB4urDe0b/NCXcSnfnUw9UnX51bsLqt1/5stV+r/TD4vDQssAGqu+T2PFeJq5bgQCwP82Zke2yKdT5mzIdrU9ICj27CsvIjFm0Xa1yEjVWUd2duS44eZHjXhqsnq2a6Y3bh7mSBtSean1ZPXenM36dnNO2MeOuW+cxv5quI7q1trlqACEU9/Qvk9D///bvXAA+NmSrXmutmeZNwCfWb49Tyt35OvKwT28DqVBVdfMiueir+v3FGj9HmcvstTsjUkmf/hgUb2Pr9qZTyIF+ER9Q/s+VT0LmVtrL49LRACSwubs/erVvnm9+5BHwUt3f7RYj1x5TLX5Ohc9+7UkJUQiVZ/N2fvjclwbuvqRTHOc3DZh+S5dcXxiv/+AoKiv9M5Tkp6u5x8ANNrwJyZpUgPDd8rokoKH3p61qdpQtr1V1v7JHDlGqxKoMuiP/jm7MnnaW1Ck4U9Miks7V7z4jQ676/O4HBvlqq7f9fGCrRpwz1gdLCn1MCIgedWZSFlrp1T8kzRD0l5J2ZJmhLYBQEymrNpd7+Nrdu1zKRIgvAPF5SeoRSVlGvzQl9Ueu2f0ksoeGL+bvHJ3ZfKUE8d1oBZtiV+1QBzy3MTV2phVoIfHLFdhcZly98d/bS8AtTW4GIQx5hJJayU9J+kFSWuMMRfFOzAAwbe/qES/fW+B8grDnwR8OL/uCoKAGwoOlqqszKo0TI3qWeuzdfXLtVcHeWPmRjdCa7RwP4vT9h1MrgV13fbMl6t05pOTVVRSJql6SXoA7omkhubTkkZYa9dIkjGmn6QxksbGMzAAwffe3C2SpE6tMnTXRUdVbrfW1lm1CnDTuc9M0S/O6qcju7YK+/jcjbVL9N8zekm8w4pJvIbMFhYfGl52zH3jdOlx3fTCDSfEpS2UKy4tT6TcWCQZQG2RfPLyK5KokHWSEmdgOJLSS5OdWTgW7nhlyjrd+NpM7covlCS9PXuTrvrbdI+jAsr9bfLaeqvIvT5tvYvRxCZz5Bj97M15cTn2gHu+qHb/s0Xb49IODqnokUpLpbgH4IVIEqm5xpjPjTE/Msb8UNKnkuYYY64yxlwV5/iARnn8ixVeh4AofbMmS69P26Di0jL96SN/X9EHqnp07PKGd/KRdbvdXQ8O8VMSGqY59JGJHkcCJKdIEqmmknZKOlPSWZJ2S2om6TJJl8YtMgBJ5+UpazVtzR6vwwCiUnWk3IEiqqfVZcnW3Mpe5/pUXf8Kkck9UKwpq3Yrc+QY/XfOJq/DAZJGg3OkrLU/diMQwCkVY8aRmH78zzlehwBEpeqMo5MfpWegqvs/Wap7Lx0oY6RLn5+mlhlpWvLABV6HFUg/fH22JOmPHyzWtSf1rvbY9LV7NPKDxdqUvV///NFJGjGgsxchAoHTYCJljDlM0i8lZVbdnwV54VePj2VYHwD3lJZZLdqSo2N7tKm27hSkf03foH9N31B5f9/BEmWOHKP595yn9i3Sa+1f5kJFwWTwxowN+nThdl1+fHcVl5bpgU+XVT7243/N0YbHLpEkzVqXpV7tm6t722aVj5eVWVlJqSnMuwIaEknVvtGS/qHyuVGOXuo3xlwo6VlJqZJes9Y+VuPxDEn/kXSipCxJ11prN4Qeu0vSzZJKJd1hrR3nZGxITHsLivRaAk38BhAMczbs1ZPjVnodRsJYsT1PnVs31Zpd+erWpplGL9iqzdn7NWF5/Yt0IzL3fLxUkjR7Q3bYxzNHjtE1Q3pWVk7NSEvR5DvP0pSVuzXyw8WV+9110QD99Mx+8Q8YSFCmocUEjTGzrLXDHG/YmFRJqySdJ2mLpDmSrrfWLquyzy8kHWet/Zkx5jpJ37HWXmuMGSjpHUlDJXWXNEHSEdbaegenDxkyxM6dO9fpHyUQ1uzK1868gzrt8I61Hlu8JVdtmzdRRpMUdW7V1IPoIsfYegBeOLVfB01fm+V1GEBcrHnkIm3IKlCPts2Ve6BY63bv06lhzheAoDDGzLPWDmlov0h6pJ41xtwnabykgxUbrbXzY4hPKk+C1lhr10mSMeZdSVdIWlZlnysk3R+6/b6kF4wxJrT9XWvtQUnrjTFrQservTKiD63ZtU/nPjOl8v6tZ/TV8u15OqF3Ox3bo43+M3Ojpq7aXe05R3VrreXb8yrvD+jaSit21F+Fvl+nFlobx+pMn98xXBlNUvTkFyt1RJeW+mZtluaFWVNFkpY+cIGKSspkJRlJ+YUlev2b9fp4wVZ1b9tMa3btU892zdQ8PU33XTZQvdo3V7vm6WqSarQxa79mrMvSXR8u1gc/P1VPj1+pQb3aasKynXr7JyfrpEcmxO1nBIBIkEQhyA7/U/ilQ++5dKDyC4t1xfE9tGRrrs4/uosy0lIlSZ8s3KbsfQeVc6BY6WkpeuKLlXr7lmE6vHNL/e5/C/X16tqFha4+sadmb8hW22ZNtHBLbr0xPXjF0TKS2jRP1x3vfFu5vWPLDO3Zd1BPXz1ILTLS9MS4FZWVKvt2bKF1ewp07lGd1at9c2WkperlKbWXS+nauql+dmZffbF0h9buLtCgnm21d39RrXOcAV1b6cNfnKqMtFSNXbJdi7fm6udn9tOzE1er4GCJbh/RXyVlZfrD+4t0xhGd1KFlut6ft0VXndBTbZo1UZtmTdSqaZqapqXKymrd7gL17dRC9368VGf076QrB3fXU+NXqVe7ZrphWG+98NUavTtns6TyXsRBvdqqQ4t0jRjQWf07t9S8jXs1YflOtWnWROcP7KqN2ft11pGddLC4TKVlVqkpRlZW78/boptO7qPBvdqqqLRMTVJSlJJitC3ngG56bZbW7al+7njjsN56+MpjJElvztqkf36zXo9ceazW7MrXU+NX6bqhvTTiyM5asjVX6WkpyuzQQkUlZWrfMl3bcg5o5rosHSwu08XHdtP8TXvVtEmqrjupl0qt1cLNucrs0Fxtm6erQ4t0pSTYkNJIeqQelfR9SWt1aGiftdaeHVPDxnxP0oXW2ltC978vaZi19vYq+ywJ7bMldH+tpGEqT65mWmvfDG3/h6Sx1tr362vTLz1S9JoAAAAAh3z1uzPVt1NLr8OQFHmPVCTlz6+W1Ndae6a1dkToX0xJlJuMMbcaY+YaY+bu3r274Se44PM7hnsdAgAAAHzsjCM6eR2Cqw7r2MLrEKIWydC+JZLaSnJ6BuhWSb2q3O8Z2hZuny3GmDRJbVRedCKS50qSrLWvSnpVKu+RciTyGA3s3rqyYo7bduQWqnOrDOUcKNb8jXt17sAu2py9X8OfmCRJumpwD334bflL+dkvT9eRXVupSWok+bb7rLXanH1APds1U0qK0aas/corLNalz0/zOjQAAJLeyocvVFFJmVo1beJ1KEBcRDK0b7Kk41ReDKJijpS11l4RU8PlidEqSeeoPAmaI+kGa+3SKvvcJunYKsUmrrLWXmOMOVrS2zpUbGKipP4Um3BGcWmZ0lKMyqejJR6GTgIAktm1Q3rpv3M317vPBUd30bilOyvvt2veRHv31y7fn56aoom/O1OTV+7S6f076ZExy9S+RbpOO7yjduUd1FlHdlLfTi0pl45AiXRoXySJ1JlV70oaLuk6a+3RsYUoGWMulvRXlZc/f91a+4gx5kFJc621nxhjmkp6Q9JgSdmhdiuKU/xJ0v9JKpH0a2tt+JmQVZBIJYdZ67J07aszvQ4DQBKhal90zh/YRQ9deYwWbcnVeQO7KPdAsUaNXqJPF27zOrRA2PDYJdqyd7+6t2mmhVty9J2/Ta/2+Ke3n65je7aRJB0oKlVeYbG6tG6q4tIynffMFN16Rj9ddUIPpaemJNzkf8AJjiVSoYMNlnSDyudLrZf0obX2+ZijdBmJVPKgVwqAW4yR1j96ia5+ebrmbAhfuRSHXHRMV71004lhH+O7u/GqVvOtOX2g4nV97vrBykhL0QVHd3U9PiCRxFz+3BhzhKTrQ//2SPqvyhOvEY5FCQAhnVplaPyvz9Dgh770OhQgKh/+/FRJ0v9+dqqOf3C8csIMj0p2b9w8VB1bZmhA11YJO2zc77749Rk695kpuuqEHnXuc/mg7i5GBARffcUmVkj6WtKl1to1kmSM+Y0rUQFIOm/dMkztWqR7HQYQtbIqAztKy3xR06helw/qrk9cHkI3vH9k1cc++Pkp+u5LCbEkpK/cecGRkqQJvz0z7OPPXne8IhiABCBK9ZVju0rSdkmTjDF/N8aco/I5UgDgqI4t03VEl1aSpOevHyxJevy7x3oZElDple+fqB5tm9X5eNXkqSwBEqnnQp+xeLp8UHd99bszdfaAzrptRL+In3din/ZxjCqYyl/jw+vd54rje+jKwXX3VAFonDp7pKy1oyWNNsa0kHSFpF9L6myMeUnSR9ba8S7FCCDgLj3u0HCTywZ112Wh4Sd//GCxVyEBlXL3F+v1H52kZyeu0ueLd9R6vE+H5pW3S31+2f/35x8Rt2P/32mH6cNvt1QObezbqaVe/9FJcWsPtedCAXBXg+tIWWsLVF5q/G1jTDuVF5z4oyQSKQAxm3/PeWrTjDVG4F+5B4p1ZNdWevJ7g2olUnNHnauOLTMq7/u5Q2rBveepdRzX8/nxaZka1KuNfvXugpiO07lVhnblH2x4xyT38W2neR0CkPSiWmnVWrvXWvuqtfaceAUEILm0b5HO+iPwtaO7t5YkNW2SWuuxqkmUJF0zpKcrMUXqyC6tlGKkib87U22bp8e1lHVaqtGFx3TV1Sf21KhLjmr0cd7/2akORhU8/Tu31Ge/PF2DerX1OhQg6TXYIwUA8VJ1SBTgR1/8ergGdC1PpFJTjE7o3VbzN+XUuf8x3du4FVpExv3mDNfaSjVGGWmpevLqQTEdpzffC/U6omsrHdPDX+8zIFlF1SMFJIqF953vdQiIQJnP55MAFUlUhYuO6Vbv/tee1Cue4fgan2ZnnZTZzusQADSARAqB1KZZEybhOmDoYdUraDn9mj5+1XGOHg+Itx+dlqlHvnOMfnveEXrl+7UXlTXGaMJv3esFaqz0NOf//Jf4eYJYAmiZkaZjq/Q03XPpwLD7nX1kZ7dCAtAAhvYBqOWILi3Vrnm6/vvTUyRJmSPHON7GhN+eqcM7t3T8uEA8NUlN0Y3D+tS7z+GdW7kUTePNuuscRxa/Xv7ghTr76cnanluYEKXf/WzuqHPVtEmq5m7I1juzN+vYHm3Uu31zbcs5UJmkTv79Wcrs2MLjSAFUIJECUM3vzjtCvzynf9zbiSSJat00TXmFJXGPBUg2Tix+3bFlupqlp+rNW4bpnVmb1LNd3WttoWHpqeW9hEMy22tIZvlogEm/P0uS1O/uzyVJLTI4bQP8hKF9ABr06e2nVy6U+8DlR7vWbjwrjAEN+eu1x3sdQkxuHNY7bse+6eTemn33uZKkfp1aatSlA2UMn9do1Hy5wr18qSmGqqaAj5FIAagm3OCcY3u2qVwkt3OrjDB7xMewGnO0ALecM6Czrhzcw+swYnLz6YfF7dhGJq4XOn54Sv3DJxPd3FHnasE91YsikYgCiYdECkA1Df0pP61/R1fikMSVWHgm1tk+N8SxNygZBH22VceWGWrTvIkevCKyHv6OLWMfignAeQy2BRCV1k2beB0C4HvNwyze67Z4JiM28KmOO35wSqauH9pbBQfrnwt6UmZ7jV2yQxlNuP4N+AmJFIBqbjo52ENqgEhk7TsY0/P9MEqrY0v3huGi8Zqkpqht8/p7nP5y7fH61bkFXMgCfIZLGwAkSXdecKRWP3JRRNW8Hr3qWBciks7o38mVdoCatucWeh1CTFY/cpHaNEvck+4gr9X97HXRFzFp2iS11uLQALxHIgVAktQiPVVNUiP7Sujr0jom157US/PvOc+VtoCqduXH2iPlbZdUpJ/lxop3otO3U3DXSgpykggkGxIpAJKiO/GL9STx6z+MiLid9g6sdwNEK5F7c9zQtnl8X58fnpIZ1+N7qX8XFiIHgoI5UkASu/WMvnp16jpJ7s7p6NW+eVT7p6UYlZRxGRfuuPS4bvpVjItS+2CKVFyclNlOlx/fQ9cM6RnXdoK6hty8UeeqA3PXgMCgRwpIYndffJRuOjn6Ms1+mEgPxMODVxytF244Qf27tPI6lEZb+sAFjh+zopy7MUbfP7mPMtK8r0qYiEiigGAhkQKSXEUVqObpkXdQk0chUf1keP2L1P7AqSFlHn5IIl1/beqdI/T2LcMi2vcXZ/WTJJ13VJdGxwUAQcPQPiDJ3XFOf7Vvka7vDO7hdShAXA3o2kp/umSgTspsr1vfmOd1OHETaY9x7w7N1SHChV57tmuuhfeer9bNOG0AgAr0SAFJrmmTVN0yvG/EV7ElqUUGJ1NB9fh33Slt74WrTii/WODGbDvjYZdUSlSFYyI/bpvmTTyvRpjIHr7yGK9DAOAwEikE2h0xThhHeEd1ax33yeZeOaZHcq/VcljHYFYU+8VZ/fST4X0lSTbg9aejSqR8PFD3x6dleh2Co5qk+ve1BtA4JFIItLaUMI6bK493byjgT87o60o7L9wwWH+6eKArbflVXUnGuUd11t9uPMHlaJzTrElqZW9KwPMoRVPwzs8dTPdddrTXIThqxIDOXocAwGEkUgi0Y3q08ToEOOCPFw5wpZ1+nVpq2GHtXWkr0aQYoy6tm7rebrc2zrSZVmWB2op1fK46oYcG927ryPH9JLo14eIYCCp1b9NUnVu5//kBEF8kUgi0oYe1j3jxV0QpYCdgbZo10VHdWgd2/ZpIHdfzUGLRr1OLyttunnC/cMNgSeVrFl10TDdHjplW5fd6eOdWWnz/+XrmmuPjVmQlUd5GaSmcBriBuWVAMDFjHIHXkXU7EIETAtgz0RjN0lPD3i6fS+POmLhLj+uu/MISnXtUF/1v3mZHjplWY35Kq1DZ/++f3EcDu7XW916e4Ug7Fbw6b37mmkFR7R9NkRkAQHVcigIAuZUiJIapd47QW7cMqzaXyBipW5tmrsVw/dDe6tQqo1pPUizS08L/uTPG6PhewUmirzoh+iIwzdNZXDdefnveEV6HACCOSKQQeIyoiA8/V/tqjJtPr3+h1mTSu0NznXZ4x2qJVLP0VHVv614iVaG0zJnjtKhnwel4DLtq1zyy9Zn8wM+f5Hd+crLXITTarLvPYX0+IOBIpBB4Qa/QBWcM79+p8vaoS44Km1glW2n0528YrOH9Oyo9NUWPXXWcJzEMPaxdtfvLHryg8vZXvzsz4uMc17PuwjPxSCR+dGqmHrvqWF19ov+XCfDz/J1T+nXwOoRG86I4CwB3kUgBaBQfn3tFZcG952nmXedU23bL8L46unvtpKln2+ZuheUL/Tq11Bs3D9OqRy6qc2hcvJ3Yp71WPnxh5f3mVXqW+nZqqf/97JQGjzF95Nnq26nu9bHi8V5OS03RdUN7J8QcJP9HCAD+RLEJBJ5l9gvq0baOIVh9OlRPmqpWsIO7MtJStfDe81VRYO7hK49RZofy38dJme01++5zNHbJDt33ydKwz29oSKKfe2RckeQ/PgA0Fj1SCLygzeXxi6O6tXasEIAfndin+npSaSkp+skZwZ5H9cuzD/c6hDq1ad6kstLeTSf30en9O1Y+1rl1U10zpJcyOyRXjyEAwFskUgi8ZumpusPHJ4heueOc/jE9v02zJlrz54ujft4lxzqzLpDbfn5WP53Yp72WPHBBwzsnqJQE7plplp6qyXfGtmZcm2ZNHH7XvDEAAB9bSURBVIrmkMM71z2k0C8S97eeOBL4owWgHiRSSAo3DOvjdQi+0D90Uvfq90/0rCzvizee4Em7sbqS6lsJYdofR+j6ob2ift5frz1en95+uuPx/N9p/u/FTPqhjQDQSMyRQlLgPKFcp1YZ+vK3kVc6S3atmqYpv7BEz18/uHJbkN9KQZhN2LNdcw3oGn11xXglyikJMPyV70fnVRSr6dmumX58WqZuHNbb44gAxAOJFJICJwpojEm/P0t7C4rUv0srr0NxhwdrBfzo1Eyt2JGnmeuyHTtmRZn6K47vrhuGcgLbEL4enff2LeXrXxljdN9lR3scDYB4IZFCUqDgROL74tfDtTFrv376xjzX2uzYMkMdW2a41p7XMpqkut5mzYsc4crOR+vEPu01/57z1L5F4iyKi2Bp09z5+XYA/IdECkkhownTASXvFyduldH4r5wBXVurSyvvF7jM8Gg9JTfcMtz9+TxVL3I8cPnR+s4JzgyxI4mKHHOkAKBxgntGAFTRuilXB68f2ktPXn2c12HEpJ0PTo7TUoP7tZmR5n6PVIo5lOAf0aUVn1UPnD+wi9chAEBCCu4ZAYBqHr3qOPVsxzo78BdjDhW5oGPEG0My2ze8EwCgFhIpAK7p2sb7oXnwh8sGdZeU2GtXAQCSG4kUAFc8f/1gvXXLMMeP25ZJ3QnpqG6hSojkUZ7jV+Csx6461usQALiERAqAKy4b1F2dWzvfI3XZcd0b/dzbRvRzMJLE1iHC+WdzR52roQ4MBauYF5ViTOWitUckS5l5AEAgkEgBSCgn9mlX7X7FyLALj+4a1XGuH9pbd14wwKmwEl6kI+w6tsxQ62ax9wLaUCZlJF14TFdteOwSKu0hEBitCiQPEikgCZx+eEevQ3BMXeXHT+7LhPnYRHP2F3sd/ao9UgAAJCISKSS1v1w7yOsQ4u7Rq47VGzcP9ToMx3SosUBu1dPw359/RMTH4fy98ZxYj+z0/uXJ/VlHdor9YAi0o7rFvkgzAMQDiRSS2tHd23gdQtwZBWvBzT9/55hq9yt+Nivp9rP7exBRMLj9Fhncu502PHYJpbcROKkpnFoByYJPO4CYLHngAjVPd28h11ZVFmzt26lF5e1oe0mc6FUBgJquOL7xBXAAJBYSKSQ1TqZj1zIjTWkp3vR4vffTUzxpN4jcnSEFP/F7h7VNsC/qJqmcWgHJgk87gITTqmmapPIKchUqTrUuOa5btX27sQiw4xLtxBaxOaJLS69DAABfSvM6AADxFcRT3pl3naOSslD57NDV9IqT+z7tm1fb9/TDO+p/87a4Gl8i8nuvBOKnSwPru/3vp6e6FAkAJBZ6pJC0zh7Q2esQ0EgtMtLUJrSWkYlqUNohFb1ajdGnQ/OGd0ow0byOQUzOk9lph3fUW7cMC/uYMVKb5rGvGwYAQUQihaT1+o9O8joEVxzfq63XIbiqoZ6VtX++WHdfPEC/OTfyUuk1pXo0JwyIl9PqWGvOD6M4X7rpRK9DAICwGNqHpGYDfm197Z8vduWkv1XTJsorLIl7O+HUTJxq9qzU/A2nphjdeka/2NqM6dn+FM3QPj+cXCN5HNaxRcM7AYAH6JECEswLNwyOeF+3ek7e+cnJrrQTTutQOfTm6eXXhYKeHPtBxSt88bFdPY0DAAAvkUghqXl1Zf2jXzR+8valx/lvjZLeHs4Z+tlZfTXqkqN0zZCensUQBI1Jub93Yk8N6dPO8VhQt/Q0/mwDgF/wjQxIOrJLK1fbG9w7/iefmQEsiBBORlqqbhneV2mhtVtqDu0L4jA8v0gxRn//wRC1zGCUuFsuObZbwzvBdafXMccMQLCRSAEINMp6R+aX5/Rv1PPatUjXkgcucDga1OWobq30yvcpvuA3balsCCQlEikkja71rJXCyXZwxWP4pgnYG2bCb8/Q9UN7R7z/90/uI0ka2L11vEJCPQZ0da8HvX2LdNfaAoBEQyKFpDH1DyO8DgHwnbOO7KTDO0d3Yn7ewC7a8Ngl6twq/MWJwzu3dCI0hGGt1KdDi6iKzsTiuevcaachsaz71lijbztNGx67JKJ9g3ZxBUBkSKSQNMJN0qaMc/DxK67ftUN6OX7MugpQUJjCOTWLztw2op++jsPFIr8MWRv7q+Gut5lsa/ABiB6JFABHtUhP9ToEROGiOBQvqOvi/H9uHup4Wyg3qGdb9Wof3AIzPdsF92cDkLhIpJDU2oSuth7Xs43HkQTH7D+d62n7tRfojUMbcThmsIR/hSrW+gKChu8EIDmRSCGp9WjbTJ/cfpoeuvIYr0NxVJ8OzXX/5Ud70nYLj0th1xyu6cepC51aZXgdQly1zKBXMhaTf39WnY8xVBUA/INECknvuJ5tlZEWrBO/KXeO0FlHdvY6DF/w4zy4Kwb5b1FlJ/Xu0MLrEBJa59bBTrSDyI8XbADEH4kUkOA+v2O4TujNpOgKnNAgGfnwegEABB6JFOAyp8v4DuzeWhce09XRY6J+sSZrQU/2Av7juaKutaLq6mH1Y89rMuE9DyQnEinAZbPv9rYYQ9Clp/r/ay3oa8409ON1a1P34tiQjIzOPLJT2McsfU+u+/i207wOAYBPUUIJcFkzyoPH1U/O6KuColK9PGWt16EgjC9/c4Y6tmQOUF2eunoQ3xE+M6ie9aR6tG2mrTkHAn9xBEB4/r90CwBRaNokVSMvGqATerfVvZcOrPbYwwGrzpiI+ndppXYt0r0Ow7e+d2JPSdKVx/fwOBIAQENIpIA61DVHwY+Mz0boZ6R5/9Xy4S9O0/+dfli1bTed3MeRY/vt9fYbXp/qbhzWO+rnHNWtddjtdc+FYsifk1668YSo9ucdDyQn7892ADRau9CCwhV+dGqmVjx0oUfRHDL7T+fqL9cO8joM3wr6SRejnKp7+MpjtO7PF3sdBiLUvkW6Ljq2W3RP4j0PJCVPEiljTHtjzJfGmNWh/9vVsd8PQ/usNsb8MLStuTFmjDFmhTFmqTHmMXejB/yj5rj8tBSjpk28n1/RplkTdWp5qKBA2xoJH4KNc8rqjDFKSeFVCaJhh7WXJF0zpJfHkQDwglc9UiMlTbTW9pc0MXS/GmNMe0n3SRomaaik+6okXE9ZawdIGizpNGPMRe6EDfiLpeZxg+gd8Ye3bxnmdQi+17W1/6oZdvFhTH7So10zbXjsEp3ct4PXoQDwgFeJ1BWS/h26/W9JV4bZ5wJJX1prs621eyV9KelCa+1+a+0kSbLWFkmaL6mnCzEjySRCjmIr/0+AYD3SJFQO/SfDD2tgz8iNuvQo9WjbLKrnVC353a9zS8diSRSnHt7R6xB8z2/V+hbdf77+v717j5Kzru84/vnuPdl7srvJZjfZ3DaXZXNbNoGQTcidQEKC4XICjVxMREXulCMKFOTiSUVtyynFIo0gtraUVkkRTQVvp7RecsSjSCugTTWAEgWxHkTB/vrHTJbNZmb3eWbnmd/zzLxf5+xh55mHmU+S384+3+d3a61nhUUAyMZXITXJOfdi+vufSZqU4ZwOST8d8vhQ+tggM2uSdLpSvVrAqIq9d6LY/3xjMW1ibd5ea2V3q564bm2o/2fckCGXWxdNyVuWsRgf0YU77bDworjx01DDkFwAGElkhZSZPWZmT2X42jb0PJcamxT6V4CZVUj6jKQ7nXM/HuG8i83sgJkdOHz4cOg/BxBnw69Xk9CLVkxqKnP7CK2pLNfMlvwVdrlqHMeFcpz4rj9PmsXwNAAII7JCyjm33jnXm+HrYUk/N7N2SUr/96UML/G8pKGzNzvTx464R9Kzzrk/HyXHPc65fudcf2tr5p3iUTqWdqUmBjfUFNde1HFfbjre6RCVjT2ZBhtgLLYszLyaXD7uoaxg+KUk5p4CCM7X0L59ki5If3+BpIcznLNf0kYza04vMrExfUxmdpukRklXFiArisgHNs+XJHU2jx/13Flt/nsMkmTP9gW69/z+wcdDh3cNX10Qo5vcUKPejsx7CSUFl6PhDP/7qio/+lf0R85epK48DlHF2FFzAaXNVyG1R9IGM3tW0vr0Y5lZv5ndK0nOuZcl3Srp2+mvW5xzL5tZp6TrJfVI+o6ZfdfMdvv4QyB5KgIuQXzpmtm646xo90HanOXOclLtWDZN60usB2LZjPwMhVo9t/WYi+ZTF0yOvIdg7by2SF437j2kcfHIZQO+I2CMuEcElDYvhZRz7pfOuXXOue70EMCX08cPOOd2Dzlvr3Nudvrrk+ljh5xz5pyb75xbnP6618efA8Vrfc8k1VZHO/zvrvP6In19RO/jO3P/Nxx6I/u+i5bpmduP3cXhzL6jFyS9cn13zu+XyQe3HpfX14M/+egZmTZh9J56AMBbfPVIAV6NdM3x/lPnaVFnY8Gy5APLn/sxvmrsxfbFq2ZmfW7OpHod3LN58PGizqYxv99QFeX8CsBbss2/KjWjDUUe+jO5JqJeXQDJwG9RlJQgwzDedfKsxMzpGV4+JSR2Udk9MLb9qXYsnZrxeJKHx/VMSc3tOj0my7wXi6gXQUjK517Uwvw9901rjjAJgLijkAJy1Dcte+9AdUVhfrRY/nx0O0/sUmW5aV1Ed443BJ0XFvIaNcm9jFObx+vgns2x2S8rsahrYuM7N27wHQFADFFIoaTks9CorijXHWctzPjcTacXdu5JHHsv4pJofnuDnr39NE1pGhfJ6we+ix+g7XU2R5MRyRD2Z+Zb16/TkvQNnSQX3kkwobbKdwQAMUQhBaS9c+WMUKuY1VSWZb2IDro6YKngbyOYz16ywneEnNHkIzBKbdRWX6MpjRTfAOALhRRKykidB9dv7tHeC5cGfq33nTovD4mQdLlOK1nZnVravHFc5eCx1vrqfETy4onr1vqOgDz49K4TfEdIjBWz87P9AYDkinZ9Z6CI1ddUjn4SkMWNW3r0zpUzNbEuucXTUO30jBSFge5o9y5LskcvX6kfHf6NJOnJGzdofHW550QAfKNHChjB8pnZ7zg657Kv7pTHYU4bR1jMgFkR/uX6T11ZXqapI+zbk7FpDXuzD5+5ULPb6nJMkH/1Nel7cwzzywk/zyO7av0cr+/fM6VhcCXK5toqVVdQSAGljkIKJSno8rZ/u/sE/ehDp0WcZmRzJ9ePek4sJ5pzMT0mvR2j72V2ztKpOmNxDFfGi2FzjKOZrbWhzs80J7O6MvVrvLwEli6/Is8bUgPAWDG0DxhBWZ5n0H/2kpNCnf/ArmVaMq1Z//v6m7rv3w8e8/zwdCVwLVX0etob9PSLv9a8AAV03ND8wsnHhs43bTlO7Y012njc5DwkAgCEQY8USlLkG09muSO/JOTmjV0TalVXXaGbtwZbTp19pIDS0ji+UteeMk/lLJuYN3yMAgiKQgolKczO9UkQx32kSgW9gG8prp+qwhvelCrKaVxJM3QVTgDFj0IKJSVpBUcs5z7lIMh8n2LX3lQT6Lyt6TlPkxvfOv/kOa2RZIpMsn7MYuufLzlJV6xjXlBS3HVenx65bMB3DAAFRCEFRIELyUFVFWW664/6fMeITEVZsI/R+y5aFui8d62aqf+6dZNaAi6LPqG2OJZPx7HmTW7QVRv8rlSH4DYvbB9xJU4AxYdCCoix0XrQZrbGZ+nr4Y5kXzK1SXXVxbuuzcLORl17ylx97JxFkqQFWXrfKsuDfdyamWoqgy+rvGPp1MDnAkF0NI3Tqb2lu3gF98EABEUhhZLSOSG1aeiugRljfq3JDcGGakVhYHZq08xL1872lgEpZqb3rpk92INU6DkSZWWmJ2/cUND3RG76u5p1eQJ+Zp+4bq3u3nm87xjeFMeAagCFULy3iYEMGmoqdXDP5jG/zrnLpqkiYA9DFDqbUwVhU/qivVjmUiWZz0Unmmur/L35UDTDET30npP0+ht/0J1ffm7w2PnLu/TY0z/XC6++7jEZACAX9EgBEahIL0VcVVEWSc/VzVuP08d39oVeTh0oBFYyDO6Wbb16YPcJkqhDASBp6JECxiDbhc+WhVP09Au/1mVru1VWJi24+V/z+r41leXa1Ns++DhpqxEinG2Lp+hrzxxWd1t858QhdzMm1urCk6Zr54ldvqMk2rjKcv32jT/4jgGghFBIATkY7Y57VUWZbtjSU5gwMdVan5oztGhqk+ckybe9r1Pb+zp9x0AeZPrsKCuzwJtuI7uT57Tqiz/4me8YAEoIhRSASMxuq9Ojl6/UnEn0onzi/H7fERAT1RXBV2REYZ2xeIo+990XdN2meb6jAEgI5kgBCXHbGb16YFewvYjiomdKg9dFOXzItPDHhp5JeXv9x685OW+vlW/LZ02UJFWV2L95oTjHLKooVZSX6eCezdqxbJrvKAASgh4pIAdHrmeCzkx68F3L9Yvf/G5M78n8iXgr1Dy1WTHeO+zOc5fo0CuvhdoHC6M7s69T//SdQ75jAACG4bYhUADLZkzQaQvaRzzninXdOb8+y58jDmoqyzW7rf6Y40fmywEAUEwopIAA2hszL2Gez/Llqg1z8vhqQDx8/+aN+vq1a3zHAAAg7yikgAAefu8KnZSe/xFHLH9eWvZfuUqfeke4+XK+5i3V11RqXBVD/caCHmcAiCcKKSCAtoYarZjdkvfX/c9bNh31+FwmOSOAuZPrtWpO61HHtiwceejon5xe2svxFwNjp+NBf7yRHnwA/lFIAQFFsWLW8Dv1ZcOuk7huQlB/eV6f7whA5D70tgXae2G/Ll2b+5xSAMgXCikgB8MLnLOOz89mqRROyRfXFappWygG550wTWvnZd5O4N2rZxU4DYBSRyEF5Nn4McwHuWbDXJ3T/1ZRFteLchwrW6Gyfn5bYYMAJWrx1CbfEQCUGAopYAyOzJs6d9nUwWP/ctlAzq/XXFulD5+1SFMnjBtzNsQFXUEAABQjNuQFcnCkp6ijaZwO7tl81HM+Nkzt7WiUJPVPby74e2NkvofUdTSN0/O/+q3fEAAAFCF6pIAYCjukb/msiTpww3pt6h155TaUnuGr+wEAgPygkAJiLExvRktddXRBAKDILexs9B0BQMJQSAEx0N1W+OGAKG3vWDHDdwQgNrYv6dDbT+zyHQNAwjBHCvDsWx9Yp9pqfhSLxUjDMh9693JVVcTj/hUb9Pozq7VWizpZYS5OZrXVseExgNC4egM8a2uo8R0BeRDkEqx/+oTIcwy3sLNRn/mWNLOFXs+4ePya1b4jAADygEIKiDH2kUq2+poKXeJ5k9AdS6dq6fQJms3wUQAA8opCCshB1CNAGGFSHL5/8ym+I8jMKKIAAIhAPAbrAzgKPVHJtnpuq846vtN3DKDknM3PHYACopACclCoQoeeqWS676Jl+sjZi3zHAErOHWcvOmaTdACICoUUAAAJ4OiqPspjV6/yHQFAiaOQAvKov6vZdwR45sTFLvLLAq0JWXpmt9X7jgCgxLHYBJAnX7t2tVrqqn3HgC8JutbtaW/wHQEhUJxHb1V3q+8IABKIQgrIk66Jtb4jAIF8/vIB3xGQAzaMzb99l67QQjZHBpAjhvYBQInhghwAgLGjkAJi6OoNcyRJrfUMFQSAsPjsBFAIDO0DYmh7X6e297EfCgAAQFzRIwXkgJFRyIYVqoHCYc8oAD5RSAE54GIZw7FENQAApYVCCgAAFJXL13UHOo8bIADGgkIKAAAk1v3vWKZHL1951LG3n9gV6P9ljy4AY8FiEwBQhP5ix2JNaRrnOwYQuZPnsJkuAD8opACgCG1b3OE7AgAARY2hfQAAoCQxRwrAWNAjBQB50DS+UpI0s7XOc5LsHrlsQL9+/Q3fMQAAKAoUUgCQB/PbG/TpXSeof3qz7yhZ9XY0+o4AAEDRoJACgDwZ6G7xHQEAABQIc6QAAEBJamuo9h0BQIJRSAEAgKJXW1V+1OMvXrlSkxpqPKUBUAwopAAAQNHbf9Wqox5PrKU3CsDYUEgBABBjXRNqJUktdVWekyRbZ/N43xEAFBkKKSCg1XPbfEcAUILeu2aWPnnRUj6DACBmKKSAgHo7GnX723p9xwBQYirKy7SGIgoAYodCCgAAFLV/e98a3xEAFCEKKQAAUHTO7Osc/J75UQCiQCEFAACKzkfPWeQ7AoAiRyEFhOCc7wRAdj+8bZPvCAAAlAwKKQAoEtUV5aOfBAAA8oJCCgjBzHcCAEA+ODHEAMDYVPgOAAAAEIUvXLFSr/3+zWOOv2f1LLXWVXtIBKCYUEgBAICiNL+9IePx922aV+AkAIoRQ/sAAAAAICQKKQAAAAAIiUIKAACUhDVzW31HAFBEmCMFAABKwt07j9crr/3edwwARcJLj5SZTTCzL5nZs+n/Nmc574L0Oc+a2QUZnt9nZk9FnxgAACRdTWW52hvH+Y4BoEj4Gtp3naTHnXPdkh5PPz6KmU2QdJOkEyQtk3TT0ILLzLZL+k1h4gIp6+dPUl11hc5f3uU7CgAAADzyVUhtk3R/+vv7JZ2R4ZxTJH3JOfeyc+4VSV+StEmSzKxO0tWSbitAVmDQpIYaPfXBU7IuqQsAAIDS4KuQmuScezH9/c8kTcpwToeknw55fCh9TJJulfRRSa9FlhAAAAAAsohssQkze0zS5AxPXT/0gXPOmZkL8bqLJc1yzl1lZtMDnH+xpIsladq0aUHfBgAAAACyiqyQcs6tz/acmf3czNqdcy+aWbuklzKc9ryk1UMed0r6qqTlkvrN7KBS+dvM7KvOudXKwDl3j6R7JKm/vz9wwQYAAAAA2fga2rdP0pFV+C6Q9HCGc/ZL2mhmzelFJjZK2u+cu9s5N8U5N13SgKRnshVRAAAAABAFX4XUHkkbzOxZSevTj2Vm/WZ2ryQ5515Wai7Ut9Nft6SPAQAAAIBXXjbkdc79UtK6DMcPSNo95PFeSXtHeJ2DknojiAgAAAAAWfnqkQIAAACAxKKQAgAAAICQKKQAAAAAICQKKQAAAAAIiUIKAAAAAEKikAIAAACAkCikAAAAACAkL/tIAQCisXtghga6W3zHAACg6FFIAUARuWFLj+8IAACUBIb2AQAAAEBIFFIAAAAAEBKFFAAAAACERCEFAAAAACFRSAEAAABASBRSAAAAABAShRQAAAAAhEQhBQAAAAAhUUgBAAAAQEgUUgAAAAAQEoUUAAAAAIREIQUAAAAAIVFIAQAAAEBIFFIAAAAAEBKFFAAAAACERCEFAAAAACFRSAEAAABASBRSAAAAABCSOed8ZygYMzss6X9850hrkfQL3yGQOLQb5IJ2g1zQbpAL2g1yEbd20+Wcax3tpJIqpOLEzA445/p950Cy0G6QC9oNckG7QS5oN8hFUtsNQ/sAAAAAICQKKQAAAAAIiULKn3t8B0Ai0W6QC9oNckG7QS5oN8hFItsNc6QAAAAAICR6pAAAAAAgJAqpiJnZJjP7oZk9Z2bXZXi+2sz+If38N81seuFTIm4CtJurzexpM/uemT1uZl0+ciJeRms3Q84708ycmSVuhSTkX5B2Y2bnpD9zfmBmf1fojIifAL+nppnZV8zsyfTvqtN85ES8mNleM3vJzJ7K8ryZ2Z3pdvU9M+srdMYwKKQiZGblku6SdKqkHknnmlnPsNN2SXrFOTdb0p9J+tPCpkTcBGw3T0rqd84tlPSQpA8XNiXiJmC7kZnVS7pC0jcLmxBxFKTdmFm3pPdLWuGcO07SlQUPilgJ+Hlzg6QHnXNLJO2Q9FeFTYmYuk/SphGeP1VSd/rrYkl3FyBTziikorVM0nPOuR87534v6e8lbRt2zjZJ96e/f0jSOjOzAmZE/IzabpxzX3HOvZZ++A1JnQXOiPgJ8nkjSbcqdcPm9UKGQ2wFaTfvlHSXc+4VSXLOvVTgjIifIO3GSWpIf98o6YUC5kNMOee+LunlEU7ZJulTLuUbkprMrL0w6cKjkIpWh6SfDnl8KH0s4znOuTclvSppYkHSIa6CtJuhdkn6QqSJkASjtpv0EImpzrnPFzIYYi3I580cSXPM7Akz+4aZjXQ3GaUhSLu5WdJOMzsk6VFJlxUmGhIu7DWQVxW+AwDInZntlNQv6WTfWRBvZlYm6WOSLvQcBclTodQwm9VK9X5/3cwWOOd+5TUV4u5cSfc55z5qZsslPWBmvc65//MdDMgXeqSi9bykqUMed6aPZTzHzCqU6v7+ZUHSIa6CtBuZ2XpJ10va6pz7XYGyIb5Gazf1knolfdXMDko6UdI+FpwoeUE+bw5J2uece8M599+SnlGqsELpCtJudkl6UJKcc/8hqUZSS0HSIckCXQPFBYVUtL4tqdvMZphZlVKTLfcNO2efpAvS358l6cuOzb1K3ajtxsyWSPprpYoo5itAGqXdOOdedc61OOemO+emKzW3bqtz7oCfuIiJIL+nPqdUb5TMrEWpoX4/LmRIxE6QdvMTSeskyczmK1VIHS5oSiTRPknnp1fvO1HSq865F32HyoahfRFyzr1pZpdK2i+pXNJe59wPzOwWSQecc/sk/Y1S3d3PKTX5boe/xIiDgO3mDkl1kv4xvTbJT5xzW72FhncB2w1wlIDtZr+kjWb2tKQ/SLrWOcfIiRIWsN1cI+kTZnaVUgtPXMiNYpjZZ5S6MdOSnj93k6RKSXLOfVyp+XSnSXpO0muSLvKTNBijTQMAAABAOAztAwAAAICQKKQAAAAAICQKKQAAAAAIiUIKAAAAAEKikAIAAACAkCikAAAAACAkCikAAAAACIlCCgAAAABC+n9oQK0VjTEOWgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 46,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x = pitch(X, sample_rate)\n",
+ "plot_time_series(x)\n",
+ "ipd.Audio(x, rate=sample_rate)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 800/800 [00:33<00:00, 23.54it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Augmentation Method 1\n",
+ "\n",
+ "syn_data1 = pd.DataFrame(columns=['feature', 'label'])\n",
+ "for i in tqdm(range(len(data2_df))):\n",
+ " X, sample_rate = librosa.load(data2_df.path[i], res_type='kaiser_fast',duration=input_duration,sr=22050*2,offset=0.5)\n",
+ " if data2_df.label[i]:\n",
+ "# if data2_df.label[i] == \"male_positive\":\n",
+ " X = noise(X)\n",
+ " sample_rate = np.array(sample_rate)\n",
+ " mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13), axis=0)\n",
+ " feature = mfccs\n",
+ " a = random.uniform(0, 1)\n",
+ " syn_data1.loc[i] = [feature, data2_df.label[i]]\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 800/800 [02:32<00:00, 6.17it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Augmentation Method 2\n",
+ "\n",
+ "syn_data2 = pd.DataFrame(columns=['feature', 'label'])\n",
+ "for i in tqdm(range(len(data2_df))):\n",
+ " X, sample_rate = librosa.load(data2_df.path[i], res_type='kaiser_fast',duration=input_duration,sr=22050*2,offset=0.5)\n",
+ " if data2_df.label[i]:\n",
+ "# if data2_df.label[i] == \"male_positive\":\n",
+ " X = pitch(X, sample_rate)\n",
+ " sample_rate = np.array(sample_rate)\n",
+ " mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13), axis=0)\n",
+ " feature = mfccs\n",
+ " a = random.uniform(0, 1)\n",
+ " syn_data2.loc[i] = [feature, data2_df.label[i]]\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(800, 800)"
+ ]
+ },
+ "execution_count": 49,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(syn_data1), len(syn_data2) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "syn_data1 = syn_data1.reset_index(drop=True)\n",
+ "syn_data2 = syn_data2.reset_index(drop=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "800"
+ ]
+ },
+ "execution_count": 51,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df4 = pd.DataFrame(syn_data1['feature'].values.tolist())\n",
+ "labels4 = syn_data1.label\n",
+ "syndf1 = pd.concat([df4,labels4], axis=1)\n",
+ "syndf1 = syndf1.rename(index=str, columns={\"0\": \"label\"})\n",
+ "syndf1 = syndf1.fillna(0)\n",
+ "len(syndf1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 250 | \n",
+ " 251 | \n",
+ " 252 | \n",
+ " 253 | \n",
+ " 254 | \n",
+ " 255 | \n",
+ " 256 | \n",
+ " 257 | \n",
+ " 258 | \n",
+ " label | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " -42.655028 | \n",
+ " -41.631001 | \n",
+ " -42.889592 | \n",
+ " -45.655462 | \n",
+ " -43.978180 | \n",
+ " -43.158309 | \n",
+ " -42.575014 | \n",
+ " -43.440535 | \n",
+ " -46.040724 | \n",
+ " -46.640464 | \n",
+ " ... | \n",
+ " -39.005377 | \n",
+ " -38.213447 | \n",
+ " -38.433231 | \n",
+ " -39.303873 | \n",
+ " -39.492250 | \n",
+ " -40.346354 | \n",
+ " -40.741678 | \n",
+ " -41.220059 | \n",
+ " -44.056411 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " -55.219944 | \n",
+ " -52.616484 | \n",
+ " -52.286107 | \n",
+ " -52.161278 | \n",
+ " -53.126588 | \n",
+ " -55.292935 | \n",
+ " -54.199089 | \n",
+ " -52.846805 | \n",
+ " -53.711407 | \n",
+ " -55.357601 | \n",
+ " ... | \n",
+ " -52.011125 | \n",
+ " -52.840875 | \n",
+ " -54.944207 | \n",
+ " -53.116663 | \n",
+ " -52.679384 | \n",
+ " -53.999925 | \n",
+ " -53.172648 | \n",
+ " -53.296122 | \n",
+ " -54.285751 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " -32.440129 | \n",
+ " -31.861092 | \n",
+ " -34.672080 | \n",
+ " -34.073788 | \n",
+ " -32.633722 | \n",
+ " -33.913732 | \n",
+ " -33.039583 | \n",
+ " -33.686151 | \n",
+ " -33.661578 | \n",
+ " -31.001432 | \n",
+ " ... | \n",
+ " -16.046093 | \n",
+ " -17.121549 | \n",
+ " -15.584639 | \n",
+ " -14.820404 | \n",
+ " -14.208298 | \n",
+ " -14.230996 | \n",
+ " -13.517215 | \n",
+ " -13.323313 | \n",
+ " -12.951925 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " -61.922411 | \n",
+ " -62.215679 | \n",
+ " -58.022851 | \n",
+ " -57.290941 | \n",
+ " -61.027303 | \n",
+ " -59.469569 | \n",
+ " -58.475640 | \n",
+ " -59.944717 | \n",
+ " -60.281107 | \n",
+ " -60.326236 | \n",
+ " ... | \n",
+ " -60.675019 | \n",
+ " -60.296145 | \n",
+ " -61.405229 | \n",
+ " -62.748245 | \n",
+ " -60.925061 | \n",
+ " -60.605445 | \n",
+ " -61.236013 | \n",
+ " -60.299258 | \n",
+ " -59.810118 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " -61.966295 | \n",
+ " -59.694255 | \n",
+ " -59.229291 | \n",
+ " -58.562706 | \n",
+ " -58.993120 | \n",
+ " -60.443855 | \n",
+ " -61.110881 | \n",
+ " -58.887908 | \n",
+ " -60.432024 | \n",
+ " -61.621168 | \n",
+ " ... | \n",
+ " -59.579235 | \n",
+ " -58.850751 | \n",
+ " -59.550176 | \n",
+ " -58.473981 | \n",
+ " -58.458420 | \n",
+ " -57.595753 | \n",
+ " -57.773556 | \n",
+ " -59.198322 | \n",
+ " -60.918181 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 260 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4 5 \\\n",
+ "0 -42.655028 -41.631001 -42.889592 -45.655462 -43.978180 -43.158309 \n",
+ "1 -55.219944 -52.616484 -52.286107 -52.161278 -53.126588 -55.292935 \n",
+ "2 -32.440129 -31.861092 -34.672080 -34.073788 -32.633722 -33.913732 \n",
+ "3 -61.922411 -62.215679 -58.022851 -57.290941 -61.027303 -59.469569 \n",
+ "4 -61.966295 -59.694255 -59.229291 -58.562706 -58.993120 -60.443855 \n",
+ "\n",
+ " 6 7 8 9 ... 250 \\\n",
+ "0 -42.575014 -43.440535 -46.040724 -46.640464 ... -39.005377 \n",
+ "1 -54.199089 -52.846805 -53.711407 -55.357601 ... -52.011125 \n",
+ "2 -33.039583 -33.686151 -33.661578 -31.001432 ... -16.046093 \n",
+ "3 -58.475640 -59.944717 -60.281107 -60.326236 ... -60.675019 \n",
+ "4 -61.110881 -58.887908 -60.432024 -61.621168 ... -59.579235 \n",
+ "\n",
+ " 251 252 253 254 255 256 \\\n",
+ "0 -38.213447 -38.433231 -39.303873 -39.492250 -40.346354 -40.741678 \n",
+ "1 -52.840875 -54.944207 -53.116663 -52.679384 -53.999925 -53.172648 \n",
+ "2 -17.121549 -15.584639 -14.820404 -14.208298 -14.230996 -13.517215 \n",
+ "3 -60.296145 -61.405229 -62.748245 -60.925061 -60.605445 -61.236013 \n",
+ "4 -58.850751 -59.550176 -58.473981 -58.458420 -57.595753 -57.773556 \n",
+ "\n",
+ " 257 258 label \n",
+ "0 -41.220059 -44.056411 male_negative \n",
+ "1 -53.296122 -54.285751 male_negative \n",
+ "2 -13.323313 -12.951925 male_negative \n",
+ "3 -60.299258 -59.810118 male_negative \n",
+ "4 -59.198322 -60.918181 male_positive \n",
+ "\n",
+ "[5 rows x 260 columns]"
+ ]
+ },
+ "execution_count": 52,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "syndf1.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "800"
+ ]
+ },
+ "execution_count": 53,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df4 = pd.DataFrame(syn_data2['feature'].values.tolist())\n",
+ "labels4 = syn_data2.label\n",
+ "syndf2 = pd.concat([df4,labels4], axis=1)\n",
+ "syndf2 = syndf2.rename(index=str, columns={\"0\": \"label\"})\n",
+ "syndf2 = syndf2.fillna(0)\n",
+ "len(syndf2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 250 | \n",
+ " 251 | \n",
+ " 252 | \n",
+ " 253 | \n",
+ " 254 | \n",
+ " 255 | \n",
+ " 256 | \n",
+ " 257 | \n",
+ " 258 | \n",
+ " label | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " -57.753215 | \n",
+ " -57.455891 | \n",
+ " -58.015750 | \n",
+ " -58.366476 | \n",
+ " -58.366476 | \n",
+ " -58.366476 | \n",
+ " -58.366476 | \n",
+ " -58.366476 | \n",
+ " -58.366476 | \n",
+ " -58.366476 | \n",
+ " ... | \n",
+ " -48.784671 | \n",
+ " -50.291433 | \n",
+ " -50.476648 | \n",
+ " -49.922888 | \n",
+ " -49.717019 | \n",
+ " -50.676514 | \n",
+ " -53.910571 | \n",
+ " -55.820576 | \n",
+ " -57.067588 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " ... | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " -62.773059 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " -47.605232 | \n",
+ " -46.625293 | \n",
+ " -47.425215 | \n",
+ " -49.043574 | \n",
+ " -48.964560 | \n",
+ " -48.288764 | \n",
+ " -48.906125 | \n",
+ " -51.401454 | \n",
+ " -49.835744 | \n",
+ " -47.608633 | \n",
+ " ... | \n",
+ " -21.055637 | \n",
+ " -21.569586 | \n",
+ " -20.796359 | \n",
+ " -19.045929 | \n",
+ " -18.160538 | \n",
+ " -17.901236 | \n",
+ " -17.885066 | \n",
+ " -17.290123 | \n",
+ " -19.650012 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " -69.802849 | \n",
+ " -70.034258 | \n",
+ " -69.537954 | \n",
+ " -69.222710 | \n",
+ " -69.773514 | \n",
+ " -69.773514 | \n",
+ " -69.773514 | \n",
+ " -69.617643 | \n",
+ " -69.773514 | \n",
+ " -69.773514 | \n",
+ " ... | \n",
+ " -69.773514 | \n",
+ " -69.773514 | \n",
+ " -69.773514 | \n",
+ " -69.773514 | \n",
+ " -69.773514 | \n",
+ " -69.773514 | \n",
+ " -69.773514 | \n",
+ " -69.773514 | \n",
+ " -69.773514 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " -71.245390 | \n",
+ " -71.097453 | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " -70.730889 | \n",
+ " ... | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " -71.614492 | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " -71.678199 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 260 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4 5 \\\n",
+ "0 -57.753215 -57.455891 -58.015750 -58.366476 -58.366476 -58.366476 \n",
+ "1 -62.773059 -62.773059 -62.773059 -62.773059 -62.773059 -62.773059 \n",
+ "2 -47.605232 -46.625293 -47.425215 -49.043574 -48.964560 -48.288764 \n",
+ "3 -69.802849 -70.034258 -69.537954 -69.222710 -69.773514 -69.773514 \n",
+ "4 -71.245390 -71.097453 -71.678199 -71.678199 -71.678199 -71.678199 \n",
+ "\n",
+ " 6 7 8 9 ... 250 \\\n",
+ "0 -58.366476 -58.366476 -58.366476 -58.366476 ... -48.784671 \n",
+ "1 -62.773059 -62.773059 -62.773059 -62.773059 ... -62.773059 \n",
+ "2 -48.906125 -51.401454 -49.835744 -47.608633 ... -21.055637 \n",
+ "3 -69.773514 -69.617643 -69.773514 -69.773514 ... -69.773514 \n",
+ "4 -71.678199 -71.678199 -71.678199 -70.730889 ... -71.678199 \n",
+ "\n",
+ " 251 252 253 254 255 256 \\\n",
+ "0 -50.291433 -50.476648 -49.922888 -49.717019 -50.676514 -53.910571 \n",
+ "1 -62.773059 -62.773059 -62.773059 -62.773059 -62.773059 -62.773059 \n",
+ "2 -21.569586 -20.796359 -19.045929 -18.160538 -17.901236 -17.885066 \n",
+ "3 -69.773514 -69.773514 -69.773514 -69.773514 -69.773514 -69.773514 \n",
+ "4 -71.678199 -71.678199 -71.678199 -71.678199 -71.614492 -71.678199 \n",
+ "\n",
+ " 257 258 label \n",
+ "0 -55.820576 -57.067588 male_negative \n",
+ "1 -62.773059 -62.773059 male_negative \n",
+ "2 -17.290123 -19.650012 male_negative \n",
+ "3 -69.773514 -69.773514 male_negative \n",
+ "4 -71.678199 -71.678199 male_positive \n",
+ "\n",
+ "[5 rows x 260 columns]"
+ ]
+ },
+ "execution_count": 54,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "syndf2.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 250 | \n",
+ " 251 | \n",
+ " 252 | \n",
+ " 253 | \n",
+ " 254 | \n",
+ " 255 | \n",
+ " 256 | \n",
+ " 257 | \n",
+ " 258 | \n",
+ " label | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " -56.912843 | \n",
+ " -56.485269 | \n",
+ " -56.501424 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " -57.221756 | \n",
+ " ... | \n",
+ " -46.451407 | \n",
+ " -46.669580 | \n",
+ " -46.596475 | \n",
+ " -47.113484 | \n",
+ " -46.768849 | \n",
+ " -48.650488 | \n",
+ " -52.294436 | \n",
+ " -51.852247 | \n",
+ " -47.143469 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.037936 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " ... | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " -62.104853 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " -45.968127 | \n",
+ " -45.818262 | \n",
+ " -44.713754 | \n",
+ " -43.853780 | \n",
+ " -44.876142 | \n",
+ " -45.742182 | \n",
+ " -44.462401 | \n",
+ " -45.629232 | \n",
+ " -45.794369 | \n",
+ " -44.506374 | \n",
+ " ... | \n",
+ " -17.049920 | \n",
+ " -18.028540 | \n",
+ " -16.300012 | \n",
+ " -15.349774 | \n",
+ " -14.373643 | \n",
+ " -14.399101 | \n",
+ " -13.917189 | \n",
+ " -14.184953 | \n",
+ " -14.288989 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " -67.736151 | \n",
+ " -67.778018 | \n",
+ " -66.746144 | \n",
+ " -65.957883 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.258683 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " ... | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " -67.736151 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " -69.673289 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.620774 | \n",
+ " -69.693311 | \n",
+ " -68.906572 | \n",
+ " ... | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.383522 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " -69.693311 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 260 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4 5 \\\n",
+ "0 -56.912843 -56.485269 -56.501424 -57.221756 -57.221756 -57.221756 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.037936 -62.104853 -62.104853 \n",
+ "2 -45.968127 -45.818262 -44.713754 -43.853780 -44.876142 -45.742182 \n",
+ "3 -67.736151 -67.778018 -66.746144 -65.957883 -67.736151 -67.736151 \n",
+ "4 -69.673289 -69.693311 -69.693311 -69.693311 -69.693311 -69.693311 \n",
+ "\n",
+ " 6 7 8 9 ... 250 \\\n",
+ "0 -57.221756 -57.221756 -57.221756 -57.221756 ... -46.451407 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.104853 ... -62.104853 \n",
+ "2 -44.462401 -45.629232 -45.794369 -44.506374 ... -17.049920 \n",
+ "3 -67.736151 -67.258683 -67.736151 -67.736151 ... -67.736151 \n",
+ "4 -69.693311 -69.620774 -69.693311 -68.906572 ... -69.693311 \n",
+ "\n",
+ " 251 252 253 254 255 256 \\\n",
+ "0 -46.669580 -46.596475 -47.113484 -46.768849 -48.650488 -52.294436 \n",
+ "1 -62.104853 -62.104853 -62.104853 -62.104853 -62.104853 -62.104853 \n",
+ "2 -18.028540 -16.300012 -15.349774 -14.373643 -14.399101 -13.917189 \n",
+ "3 -67.736151 -67.736151 -67.736151 -67.736151 -67.736151 -67.736151 \n",
+ "4 -69.693311 -69.693311 -69.693311 -69.383522 -69.693311 -69.693311 \n",
+ "\n",
+ " 257 258 label \n",
+ "0 -51.852247 -47.143469 male_negative \n",
+ "1 -62.104853 -62.104853 male_negative \n",
+ "2 -14.184953 -14.288989 male_negative \n",
+ "3 -67.736151 -67.736151 male_negative \n",
+ "4 -69.693311 -69.693311 male_positive \n",
+ "\n",
+ "[5 rows x 260 columns]"
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Combining the Augmented data with original\n",
+ "combined_df = pd.concat([rnewdf, syndf1, syndf2], ignore_index=True)\n",
+ "combined_df = combined_df.fillna(0)\n",
+ "combined_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "StratifiedShuffleSplit(n_splits=1, random_state=12, test_size=0.2,\n",
+ " train_size=None)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Stratified Shuffle Split\n",
+ "\n",
+ "X = combined_df.drop(['label'], axis=1)\n",
+ "y = combined_df.label\n",
+ "xxx = StratifiedShuffleSplit(1, test_size=0.2, random_state=12)\n",
+ "for train_index, test_index in xxx.split(X, y):\n",
+ " X_train, X_test = X.iloc[train_index], X.iloc[test_index]\n",
+ " y_train, y_test = y.iloc[train_index], y.iloc[test_index]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "male_negative 1152\n",
+ "male_positive 768\n",
+ "Name: label, dtype: int64"
+ ]
+ },
+ "execution_count": 57,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_train.value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "male_negative 288\n",
+ "male_positive 192\n",
+ "Name: label, dtype: int64"
+ ]
+ },
+ "execution_count": 58,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_test.value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 59,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X_train.isna().sum().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X_train = np.array(X_train)\n",
+ "y_train = np.array(y_train)\n",
+ "X_test = np.array(X_test)\n",
+ "y_test = np.array(y_test)\n",
+ "lb = LabelEncoder()\n",
+ "y_train = np_utils.to_categorical(lb.fit_transform(y_train))\n",
+ "y_test = np_utils.to_categorical(lb.fit_transform(y_test))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[1., 0.],\n",
+ " [0., 1.],\n",
+ " [1., 0.],\n",
+ " ...,\n",
+ " [1., 0.],\n",
+ " [0., 1.],\n",
+ " [0., 1.]], dtype=float32)"
+ ]
+ },
+ "execution_count": 61,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_train"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(1920, 259)"
+ ]
+ },
+ "execution_count": 62,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X_train.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# VIII. Changing dimension for CNN model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x_traincnn = np.expand_dims(X_train, axis=2)\n",
+ "x_testcnn = np.expand_dims(X_test, axis=2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set up Keras util functions\n",
+ "\n",
+ "from keras import backend as K\n",
+ "\n",
+ "def precision(y_true, y_pred):\n",
+ " true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n",
+ " predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))\n",
+ " precision = true_positives / (predicted_positives + K.epsilon())\n",
+ " return precision\n",
+ "\n",
+ "\n",
+ "def recall(y_true, y_pred):\n",
+ " true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n",
+ " possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))\n",
+ " recall = true_positives / (possible_positives + K.epsilon())\n",
+ " return recall\n",
+ "\n",
+ "\n",
+ "def fscore(y_true, y_pred):\n",
+ " if K.sum(K.round(K.clip(y_true, 0, 1))) == 0:\n",
+ " return 0\n",
+ "\n",
+ " p = precision(y_true, y_pred)\n",
+ " r = recall(y_true, y_pred)\n",
+ " f_score = 2 * (p * r) / (p + r + K.epsilon())\n",
+ " return f_score\n",
+ "\n",
+ "def get_lr_metric(optimizer):\n",
+ " def lr(y_true, y_pred):\n",
+ " return optimizer.lr\n",
+ " return lr\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# New model\n",
+ "model = Sequential()\n",
+ "model.add(Conv1D(256, 8, padding='same',input_shape=(X_train.shape[1],1)))\n",
+ "model.add(Activation('relu'))\n",
+ "model.add(Conv1D(256, 8, padding='same'))\n",
+ "model.add(BatchNormalization())\n",
+ "model.add(Activation('relu'))\n",
+ "model.add(Dropout(0.25))\n",
+ "model.add(MaxPooling1D(pool_size=(8)))\n",
+ "model.add(Conv1D(128, 8, padding='same'))\n",
+ "model.add(Activation('relu'))\n",
+ "model.add(Conv1D(128, 8, padding='same'))\n",
+ "model.add(Activation('relu'))\n",
+ "model.add(Conv1D(128, 8, padding='same'))\n",
+ "model.add(Activation('relu'))\n",
+ "model.add(Conv1D(128, 8, padding='same'))\n",
+ "model.add(BatchNormalization())\n",
+ "model.add(Activation('relu'))\n",
+ "model.add(Dropout(0.25))\n",
+ "model.add(MaxPooling1D(pool_size=(8)))\n",
+ "model.add(Conv1D(64, 8, padding='same'))\n",
+ "model.add(Activation('relu'))\n",
+ "model.add(Conv1D(64, 8, padding='same'))\n",
+ "model.add(Activation('relu'))\n",
+ "model.add(Flatten())\n",
+ "# Edit according to target class no.\n",
+ "model.add(Dense(2))\n",
+ "model.add(Activation('softmax'))\n",
+ "opt = keras.optimizers.SGD(lr=0.0001, momentum=0.0, decay=0.0, nesterov=False)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Original Model\n",
+ "\n",
+ "# model = Sequential()\n",
+ "# model.add(Conv1D(256, 5,padding='same', input_shape=(X_train.shape[1],1)))\n",
+ "# model.add(Activation('relu'))\n",
+ "# model.add(Conv1D(128, 5,padding='same'))\n",
+ "# model.add(Activation('relu'))\n",
+ "# model.add(Dropout(0.1))\n",
+ "# model.add(MaxPooling1D(pool_size=(8)))\n",
+ "# model.add(Conv1D(128, 5,padding='same',))\n",
+ "# model.add(Activation('relu'))\n",
+ "# model.add(Conv1D(128, 5,padding='same',))\n",
+ "# model.add(Activation('relu'))\n",
+ "# model.add(Conv1D(128, 5,padding='same',))\n",
+ "# model.add(Activation('relu'))\n",
+ "# model.add(Dropout(0.2))\n",
+ "# model.add(Conv1D(128, 5,padding='same',))\n",
+ "# model.add(Activation('relu'))\n",
+ "# model.add(Flatten())\n",
+ "# model.add(Dense(5))\n",
+ "# model.add(Activation('softmax'))\n",
+ "# opt = keras.optimizers.rmsprop(lr=0.00001, decay=1e-6)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "_________________________________________________________________\n",
+ "Layer (type) Output Shape Param # \n",
+ "=================================================================\n",
+ "conv1d_1 (Conv1D) (None, 259, 256) 2304 \n",
+ "_________________________________________________________________\n",
+ "activation_1 (Activation) (None, 259, 256) 0 \n",
+ "_________________________________________________________________\n",
+ "conv1d_2 (Conv1D) (None, 259, 256) 524544 \n",
+ "_________________________________________________________________\n",
+ "batch_normalization_1 (Batch (None, 259, 256) 1024 \n",
+ "_________________________________________________________________\n",
+ "activation_2 (Activation) (None, 259, 256) 0 \n",
+ "_________________________________________________________________\n",
+ "dropout_1 (Dropout) (None, 259, 256) 0 \n",
+ "_________________________________________________________________\n",
+ "max_pooling1d_1 (MaxPooling1 (None, 32, 256) 0 \n",
+ "_________________________________________________________________\n",
+ "conv1d_3 (Conv1D) (None, 32, 128) 262272 \n",
+ "_________________________________________________________________\n",
+ "activation_3 (Activation) (None, 32, 128) 0 \n",
+ "_________________________________________________________________\n",
+ "conv1d_4 (Conv1D) (None, 32, 128) 131200 \n",
+ "_________________________________________________________________\n",
+ "activation_4 (Activation) (None, 32, 128) 0 \n",
+ "_________________________________________________________________\n",
+ "conv1d_5 (Conv1D) (None, 32, 128) 131200 \n",
+ "_________________________________________________________________\n",
+ "activation_5 (Activation) (None, 32, 128) 0 \n",
+ "_________________________________________________________________\n",
+ "conv1d_6 (Conv1D) (None, 32, 128) 131200 \n",
+ "_________________________________________________________________\n",
+ "batch_normalization_2 (Batch (None, 32, 128) 512 \n",
+ "_________________________________________________________________\n",
+ "activation_6 (Activation) (None, 32, 128) 0 \n",
+ "_________________________________________________________________\n",
+ "dropout_2 (Dropout) (None, 32, 128) 0 \n",
+ "_________________________________________________________________\n",
+ "max_pooling1d_2 (MaxPooling1 (None, 4, 128) 0 \n",
+ "_________________________________________________________________\n",
+ "conv1d_7 (Conv1D) (None, 4, 64) 65600 \n",
+ "_________________________________________________________________\n",
+ "activation_7 (Activation) (None, 4, 64) 0 \n",
+ "_________________________________________________________________\n",
+ "conv1d_8 (Conv1D) (None, 4, 64) 32832 \n",
+ "_________________________________________________________________\n",
+ "activation_8 (Activation) (None, 4, 64) 0 \n",
+ "_________________________________________________________________\n",
+ "flatten_1 (Flatten) (None, 256) 0 \n",
+ "_________________________________________________________________\n",
+ "dense_1 (Dense) (None, 2) 514 \n",
+ "_________________________________________________________________\n",
+ "activation_9 (Activation) (None, 2) 0 \n",
+ "=================================================================\n",
+ "Total params: 1,283,202\n",
+ "Trainable params: 1,282,434\n",
+ "Non-trainable params: 768\n",
+ "_________________________________________________________________\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Plotting Model Summary\n",
+ "\n",
+ "model.summary()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Compile your model\n",
+ "\n",
+ "model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy', fscore])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# IX. Removed the whole training part for avoiding unnecessary long epochs list"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Train on 1920 samples, validate on 480 samples\n",
+ "Epoch 1/700\n",
+ "1920/1920 [==============================] - 4s 2ms/step - loss: 0.6579 - acc: 0.5854 - fscore: 0.5854 - val_loss: 0.6631 - val_acc: 0.5500 - val_fscore: 0.5500\n",
+ "Epoch 2/700\n",
+ "1920/1920 [==============================] - 2s 788us/step - loss: 0.6414 - acc: 0.6104 - fscore: 0.6104 - val_loss: 0.6575 - val_acc: 0.5667 - val_fscore: 0.5667\n",
+ "Epoch 3/700\n",
+ "1920/1920 [==============================] - 2s 969us/step - loss: 0.6243 - acc: 0.6219 - fscore: 0.6219 - val_loss: 0.6489 - val_acc: 0.6083 - val_fscore: 0.6083\n",
+ "Epoch 4/700\n",
+ "1920/1920 [==============================] - 2s 857us/step - loss: 0.6199 - acc: 0.6333 - fscore: 0.6333 - val_loss: 0.6462 - val_acc: 0.5917 - val_fscore: 0.5917\n",
+ "Epoch 5/700\n",
+ "1920/1920 [==============================] - 2s 929us/step - loss: 0.6147 - acc: 0.6401 - fscore: 0.6401 - val_loss: 0.6524 - val_acc: 0.6042 - val_fscore: 0.6042\n",
+ "Epoch 6/700\n",
+ "1920/1920 [==============================] - 2s 854us/step - loss: 0.6074 - acc: 0.6484 - fscore: 0.6484 - val_loss: 0.6428 - val_acc: 0.6229 - val_fscore: 0.6229\n",
+ "Epoch 7/700\n",
+ "1920/1920 [==============================] - 2s 873us/step - loss: 0.6073 - acc: 0.6495 - fscore: 0.6495 - val_loss: 0.6406 - val_acc: 0.6208 - val_fscore: 0.6208\n",
+ "Epoch 8/700\n",
+ "1920/1920 [==============================] - 2s 797us/step - loss: 0.6029 - acc: 0.6609 - fscore: 0.6609 - val_loss: 0.6397 - val_acc: 0.6375 - val_fscore: 0.6375\n",
+ "Epoch 9/700\n",
+ "1920/1920 [==============================] - 2s 908us/step - loss: 0.6032 - acc: 0.6547 - fscore: 0.6547 - val_loss: 0.6389 - val_acc: 0.6312 - val_fscore: 0.6312\n",
+ "Epoch 10/700\n",
+ "1920/1920 [==============================] - 2s 827us/step - loss: 0.5912 - acc: 0.6740 - fscore: 0.6740 - val_loss: 0.6346 - val_acc: 0.6604 - val_fscore: 0.6604\n",
+ "Epoch 11/700\n",
+ "1920/1920 [==============================] - 2s 910us/step - loss: 0.5948 - acc: 0.6583 - fscore: 0.6583 - val_loss: 0.6407 - val_acc: 0.6458 - val_fscore: 0.6458\n",
+ "Epoch 12/700\n",
+ "1920/1920 [==============================] - 2s 787us/step - loss: 0.5941 - acc: 0.6656 - fscore: 0.6656 - val_loss: 0.6304 - val_acc: 0.6562 - val_fscore: 0.6562\n",
+ "Epoch 13/700\n",
+ "1920/1920 [==============================] - 2s 967us/step - loss: 0.5900 - acc: 0.6708 - fscore: 0.6708 - val_loss: 0.6337 - val_acc: 0.6604 - val_fscore: 0.6604\n",
+ "Epoch 14/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.5838 - acc: 0.6781 - fscore: 0.6781 - val_loss: 0.6272 - val_acc: 0.6708 - val_fscore: 0.6708\n",
+ "Epoch 15/700\n",
+ "1920/1920 [==============================] - 2s 831us/step - loss: 0.5844 - acc: 0.6734 - fscore: 0.6734 - val_loss: 0.6314 - val_acc: 0.6708 - val_fscore: 0.6708\n",
+ "Epoch 16/700\n",
+ "1920/1920 [==============================] - 2s 842us/step - loss: 0.5819 - acc: 0.6823 - fscore: 0.6823 - val_loss: 0.6325 - val_acc: 0.6583 - val_fscore: 0.6583\n",
+ "Epoch 17/700\n",
+ "1920/1920 [==============================] - 2s 814us/step - loss: 0.5817 - acc: 0.6802 - fscore: 0.6802 - val_loss: 0.6354 - val_acc: 0.6583 - val_fscore: 0.6583\n",
+ "Epoch 18/700\n",
+ "1920/1920 [==============================] - 1s 760us/step - loss: 0.5717 - acc: 0.6781 - fscore: 0.6781 - val_loss: 0.6293 - val_acc: 0.6833 - val_fscore: 0.6833\n",
+ "Epoch 19/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.5682 - acc: 0.6990 - fscore: 0.6990 - val_loss: 0.6279 - val_acc: 0.6937 - val_fscore: 0.6937\n",
+ "Epoch 20/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.5695 - acc: 0.6969 - fscore: 0.6969 - val_loss: 0.6258 - val_acc: 0.6875 - val_fscore: 0.6875\n",
+ "Epoch 21/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.5646 - acc: 0.7042 - fscore: 0.7042 - val_loss: 0.6243 - val_acc: 0.6917 - val_fscore: 0.6917\n",
+ "Epoch 22/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.5710 - acc: 0.6755 - fscore: 0.6755 - val_loss: 0.6248 - val_acc: 0.6583 - val_fscore: 0.6583\n",
+ "Epoch 23/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.5693 - acc: 0.6833 - fscore: 0.6833 - val_loss: 0.6169 - val_acc: 0.7021 - val_fscore: 0.7021\n",
+ "Epoch 24/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.5667 - acc: 0.6969 - fscore: 0.6969 - val_loss: 0.6211 - val_acc: 0.6875 - val_fscore: 0.6875\n",
+ "Epoch 25/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.5595 - acc: 0.7078 - fscore: 0.7078 - val_loss: 0.6239 - val_acc: 0.6604 - val_fscore: 0.6604\n",
+ "Epoch 26/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.5562 - acc: 0.7073 - fscore: 0.7073 - val_loss: 0.6131 - val_acc: 0.6937 - val_fscore: 0.6937\n",
+ "Epoch 27/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.5502 - acc: 0.7125 - fscore: 0.7125 - val_loss: 0.6139 - val_acc: 0.7000 - val_fscore: 0.7000\n",
+ "Epoch 28/700\n",
+ "1920/1920 [==============================] - 1s 761us/step - loss: 0.5497 - acc: 0.7026 - fscore: 0.7026 - val_loss: 0.6087 - val_acc: 0.7021 - val_fscore: 0.7021\n",
+ "Epoch 29/700\n",
+ "1920/1920 [==============================] - 1s 759us/step - loss: 0.5512 - acc: 0.7089 - fscore: 0.7089 - val_loss: 0.6088 - val_acc: 0.6979 - val_fscore: 0.6979\n",
+ "Epoch 30/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.5514 - acc: 0.7068 - fscore: 0.7068 - val_loss: 0.6110 - val_acc: 0.6979 - val_fscore: 0.6979\n",
+ "Epoch 31/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.5493 - acc: 0.7047 - fscore: 0.7047 - val_loss: 0.6079 - val_acc: 0.6979 - val_fscore: 0.6979\n",
+ "Epoch 32/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.5413 - acc: 0.7208 - fscore: 0.7208 - val_loss: 0.6042 - val_acc: 0.6979 - val_fscore: 0.6979\n",
+ "Epoch 33/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.5446 - acc: 0.7219 - fscore: 0.7219 - val_loss: 0.6125 - val_acc: 0.7063 - val_fscore: 0.7062\n",
+ "Epoch 34/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.5387 - acc: 0.7198 - fscore: 0.7198 - val_loss: 0.6035 - val_acc: 0.7042 - val_fscore: 0.7042\n",
+ "Epoch 35/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.5300 - acc: 0.7286 - fscore: 0.7286 - val_loss: 0.6141 - val_acc: 0.6833 - val_fscore: 0.6833\n",
+ "Epoch 36/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.5268 - acc: 0.7422 - fscore: 0.7422 - val_loss: 0.6004 - val_acc: 0.7188 - val_fscore: 0.7187\n",
+ "Epoch 37/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.5353 - acc: 0.7281 - fscore: 0.7281 - val_loss: 0.6150 - val_acc: 0.6813 - val_fscore: 0.6812\n",
+ "Epoch 38/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.5305 - acc: 0.7458 - fscore: 0.7458 - val_loss: 0.5994 - val_acc: 0.7208 - val_fscore: 0.7208\n",
+ "Epoch 39/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.5300 - acc: 0.7281 - fscore: 0.7281 - val_loss: 0.6037 - val_acc: 0.7083 - val_fscore: 0.7083\n",
+ "Epoch 40/700\n",
+ "1920/1920 [==============================] - 1s 755us/step - loss: 0.5288 - acc: 0.7266 - fscore: 0.7266 - val_loss: 0.5945 - val_acc: 0.7104 - val_fscore: 0.7104\n",
+ "Epoch 41/700\n",
+ "1920/1920 [==============================] - 1s 734us/step - loss: 0.5213 - acc: 0.7318 - fscore: 0.7318 - val_loss: 0.5944 - val_acc: 0.7312 - val_fscore: 0.7312\n",
+ "Epoch 42/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.5238 - acc: 0.7328 - fscore: 0.7328 - val_loss: 0.5937 - val_acc: 0.7167 - val_fscore: 0.7167\n",
+ "Epoch 43/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.5200 - acc: 0.7380 - fscore: 0.7380 - val_loss: 0.5928 - val_acc: 0.7354 - val_fscore: 0.7354\n",
+ "Epoch 44/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.5184 - acc: 0.7365 - fscore: 0.7365 - val_loss: 0.5929 - val_acc: 0.6958 - val_fscore: 0.6958\n",
+ "Epoch 45/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.5160 - acc: 0.7536 - fscore: 0.7536 - val_loss: 0.5921 - val_acc: 0.7229 - val_fscore: 0.7229\n",
+ "Epoch 46/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.5165 - acc: 0.7469 - fscore: 0.7469 - val_loss: 0.5866 - val_acc: 0.7354 - val_fscore: 0.7354\n",
+ "Epoch 47/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.5095 - acc: 0.7542 - fscore: 0.7542 - val_loss: 0.6000 - val_acc: 0.6917 - val_fscore: 0.6917\n",
+ "Epoch 48/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.5093 - acc: 0.7396 - fscore: 0.7396 - val_loss: 0.5859 - val_acc: 0.7188 - val_fscore: 0.7187\n",
+ "Epoch 49/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.5021 - acc: 0.7578 - fscore: 0.7578 - val_loss: 0.5861 - val_acc: 0.7083 - val_fscore: 0.7083\n",
+ "Epoch 50/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.5046 - acc: 0.7505 - fscore: 0.7505 - val_loss: 0.5912 - val_acc: 0.7396 - val_fscore: 0.7396\n",
+ "Epoch 51/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.4942 - acc: 0.7578 - fscore: 0.7578 - val_loss: 0.5823 - val_acc: 0.7333 - val_fscore: 0.7333\n",
+ "Epoch 52/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.5018 - acc: 0.7589 - fscore: 0.7589 - val_loss: 0.5857 - val_acc: 0.7250 - val_fscore: 0.7250\n",
+ "Epoch 53/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.5061 - acc: 0.7510 - fscore: 0.7510 - val_loss: 0.5835 - val_acc: 0.7146 - val_fscore: 0.7146\n",
+ "Epoch 54/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.4892 - acc: 0.7646 - fscore: 0.7646 - val_loss: 0.5776 - val_acc: 0.7292 - val_fscore: 0.7292\n",
+ "Epoch 55/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.4922 - acc: 0.7682 - fscore: 0.7682 - val_loss: 0.5907 - val_acc: 0.7083 - val_fscore: 0.7083\n",
+ "Epoch 56/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.4878 - acc: 0.7698 - fscore: 0.7698 - val_loss: 0.5792 - val_acc: 0.7333 - val_fscore: 0.7333\n",
+ "Epoch 57/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.4822 - acc: 0.7729 - fscore: 0.7729 - val_loss: 0.5764 - val_acc: 0.7354 - val_fscore: 0.7354\n",
+ "Epoch 58/700\n",
+ "1920/1920 [==============================] - 1s 738us/step - loss: 0.4861 - acc: 0.7771 - fscore: 0.7771 - val_loss: 0.5690 - val_acc: 0.7208 - val_fscore: 0.7208\n",
+ "Epoch 59/700\n",
+ "1920/1920 [==============================] - 1s 738us/step - loss: 0.4806 - acc: 0.7672 - fscore: 0.7672 - val_loss: 0.5723 - val_acc: 0.7250 - val_fscore: 0.7250\n",
+ "Epoch 60/700\n",
+ "1920/1920 [==============================] - 1s 738us/step - loss: 0.4749 - acc: 0.7755 - fscore: 0.7755 - val_loss: 0.5855 - val_acc: 0.7000 - val_fscore: 0.7000\n",
+ "Epoch 61/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.4746 - acc: 0.7812 - fscore: 0.7812 - val_loss: 0.5735 - val_acc: 0.7167 - val_fscore: 0.7167\n",
+ "Epoch 62/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.4706 - acc: 0.7740 - fscore: 0.7740 - val_loss: 0.5624 - val_acc: 0.7354 - val_fscore: 0.7354\n",
+ "Epoch 63/700\n",
+ "1920/1920 [==============================] - 1s 736us/step - loss: 0.4787 - acc: 0.7760 - fscore: 0.7760 - val_loss: 0.5619 - val_acc: 0.7438 - val_fscore: 0.7437\n",
+ "Epoch 64/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.4678 - acc: 0.7802 - fscore: 0.7802 - val_loss: 0.5671 - val_acc: 0.7375 - val_fscore: 0.7375\n",
+ "Epoch 65/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.4627 - acc: 0.7896 - fscore: 0.7896 - val_loss: 0.5640 - val_acc: 0.7417 - val_fscore: 0.7417\n",
+ "Epoch 66/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.4588 - acc: 0.7896 - fscore: 0.7896 - val_loss: 0.5636 - val_acc: 0.7438 - val_fscore: 0.7437\n",
+ "Epoch 67/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.4661 - acc: 0.7792 - fscore: 0.7792 - val_loss: 0.5725 - val_acc: 0.7292 - val_fscore: 0.7292\n",
+ "Epoch 68/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.4578 - acc: 0.7891 - fscore: 0.7891 - val_loss: 0.5560 - val_acc: 0.7562 - val_fscore: 0.7562\n",
+ "Epoch 69/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.4510 - acc: 0.7979 - fscore: 0.7979 - val_loss: 0.5597 - val_acc: 0.7458 - val_fscore: 0.7458\n",
+ "Epoch 70/700\n",
+ "1920/1920 [==============================] - 1s 758us/step - loss: 0.4488 - acc: 0.7938 - fscore: 0.7937 - val_loss: 0.5742 - val_acc: 0.7125 - val_fscore: 0.7125\n",
+ "Epoch 71/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.4502 - acc: 0.7995 - fscore: 0.7995 - val_loss: 0.5522 - val_acc: 0.7479 - val_fscore: 0.7479\n",
+ "Epoch 72/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.4477 - acc: 0.8052 - fscore: 0.8052 - val_loss: 0.5585 - val_acc: 0.7208 - val_fscore: 0.7208\n",
+ "Epoch 73/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.4411 - acc: 0.8042 - fscore: 0.8042 - val_loss: 0.5470 - val_acc: 0.7521 - val_fscore: 0.7521\n",
+ "Epoch 74/700\n",
+ "1920/1920 [==============================] - 1s 738us/step - loss: 0.4420 - acc: 0.7964 - fscore: 0.7964 - val_loss: 0.5453 - val_acc: 0.7562 - val_fscore: 0.7562\n",
+ "Epoch 75/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.4393 - acc: 0.8031 - fscore: 0.8031 - val_loss: 0.5428 - val_acc: 0.7583 - val_fscore: 0.7583\n",
+ "Epoch 76/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.4455 - acc: 0.7859 - fscore: 0.7859 - val_loss: 0.5421 - val_acc: 0.7458 - val_fscore: 0.7458\n",
+ "Epoch 77/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.4404 - acc: 0.8021 - fscore: 0.8021 - val_loss: 0.5659 - val_acc: 0.7104 - val_fscore: 0.7104\n",
+ "Epoch 78/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.4425 - acc: 0.8104 - fscore: 0.8104 - val_loss: 0.5501 - val_acc: 0.7458 - val_fscore: 0.7458\n",
+ "Epoch 79/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.4373 - acc: 0.8016 - fscore: 0.8016 - val_loss: 0.5418 - val_acc: 0.7667 - val_fscore: 0.7667\n",
+ "Epoch 80/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.4332 - acc: 0.8120 - fscore: 0.8120 - val_loss: 0.5395 - val_acc: 0.7583 - val_fscore: 0.7583\n",
+ "Epoch 81/700\n",
+ "1920/1920 [==============================] - 1s 774us/step - loss: 0.4255 - acc: 0.8115 - fscore: 0.8115 - val_loss: 0.5503 - val_acc: 0.7583 - val_fscore: 0.7583\n",
+ "Epoch 82/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.4301 - acc: 0.8078 - fscore: 0.8078 - val_loss: 0.5349 - val_acc: 0.7833 - val_fscore: 0.7833\n",
+ "Epoch 83/700\n",
+ "1920/1920 [==============================] - 1s 736us/step - loss: 0.4232 - acc: 0.8141 - fscore: 0.8141 - val_loss: 0.5284 - val_acc: 0.7750 - val_fscore: 0.7750\n",
+ "Epoch 84/700\n",
+ "1920/1920 [==============================] - 1s 755us/step - loss: 0.4194 - acc: 0.8187 - fscore: 0.8187 - val_loss: 0.5414 - val_acc: 0.7375 - val_fscore: 0.7375\n",
+ "Epoch 85/700\n",
+ "1920/1920 [==============================] - 1s 732us/step - loss: 0.4158 - acc: 0.8203 - fscore: 0.8203 - val_loss: 0.5379 - val_acc: 0.7562 - val_fscore: 0.7562\n",
+ "Epoch 86/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.4149 - acc: 0.8198 - fscore: 0.8198 - val_loss: 0.5360 - val_acc: 0.7521 - val_fscore: 0.7521\n",
+ "Epoch 87/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.4121 - acc: 0.8234 - fscore: 0.8234 - val_loss: 0.5499 - val_acc: 0.7292 - val_fscore: 0.7292\n",
+ "Epoch 88/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.4108 - acc: 0.8276 - fscore: 0.8276 - val_loss: 0.5214 - val_acc: 0.7729 - val_fscore: 0.7729\n",
+ "Epoch 89/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.4101 - acc: 0.8208 - fscore: 0.8208 - val_loss: 0.5134 - val_acc: 0.7729 - val_fscore: 0.7729\n",
+ "Epoch 90/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.4006 - acc: 0.8344 - fscore: 0.8344 - val_loss: 0.5148 - val_acc: 0.7646 - val_fscore: 0.7646\n",
+ "Epoch 91/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.4012 - acc: 0.8297 - fscore: 0.8297 - val_loss: 0.5238 - val_acc: 0.7500 - val_fscore: 0.7500\n",
+ "Epoch 92/700\n",
+ "1920/1920 [==============================] - 1s 736us/step - loss: 0.4095 - acc: 0.8250 - fscore: 0.8250 - val_loss: 0.5201 - val_acc: 0.7729 - val_fscore: 0.7729\n",
+ "Epoch 93/700\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.4012 - acc: 0.8297 - fscore: 0.8297 - val_loss: 0.5261 - val_acc: 0.7604 - val_fscore: 0.7604\n",
+ "Epoch 94/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.4043 - acc: 0.8292 - fscore: 0.8292 - val_loss: 0.5111 - val_acc: 0.7792 - val_fscore: 0.7792\n",
+ "Epoch 95/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.4024 - acc: 0.8203 - fscore: 0.8203 - val_loss: 0.5196 - val_acc: 0.7708 - val_fscore: 0.7708\n",
+ "Epoch 96/700\n",
+ "1920/1920 [==============================] - 1s 735us/step - loss: 0.3896 - acc: 0.8391 - fscore: 0.8391 - val_loss: 0.5235 - val_acc: 0.7208 - val_fscore: 0.7208\n",
+ "Epoch 97/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.3871 - acc: 0.8406 - fscore: 0.8406 - val_loss: 0.5051 - val_acc: 0.7562 - val_fscore: 0.7562\n",
+ "Epoch 98/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.3913 - acc: 0.8385 - fscore: 0.8385 - val_loss: 0.5026 - val_acc: 0.7875 - val_fscore: 0.7875\n",
+ "Epoch 99/700\n",
+ "1920/1920 [==============================] - 1s 735us/step - loss: 0.3835 - acc: 0.8406 - fscore: 0.8406 - val_loss: 0.5003 - val_acc: 0.7583 - val_fscore: 0.7583\n",
+ "Epoch 100/700\n",
+ "1920/1920 [==============================] - 1s 733us/step - loss: 0.3819 - acc: 0.8458 - fscore: 0.8458 - val_loss: 0.4984 - val_acc: 0.7937 - val_fscore: 0.7937\n",
+ "Epoch 101/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.3893 - acc: 0.8281 - fscore: 0.8281 - val_loss: 0.5695 - val_acc: 0.6542 - val_fscore: 0.6542\n",
+ "Epoch 102/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.3797 - acc: 0.8479 - fscore: 0.8479 - val_loss: 0.4926 - val_acc: 0.8083 - val_fscore: 0.8083\n",
+ "Epoch 103/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.3706 - acc: 0.8458 - fscore: 0.8458 - val_loss: 0.4964 - val_acc: 0.7958 - val_fscore: 0.7958\n",
+ "Epoch 104/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.3654 - acc: 0.8505 - fscore: 0.8505 - val_loss: 0.4906 - val_acc: 0.7708 - val_fscore: 0.7708\n",
+ "Epoch 105/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.3653 - acc: 0.8510 - fscore: 0.8510 - val_loss: 0.4901 - val_acc: 0.8063 - val_fscore: 0.8062\n",
+ "Epoch 106/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.3635 - acc: 0.8521 - fscore: 0.8521 - val_loss: 0.4955 - val_acc: 0.7625 - val_fscore: 0.7625\n",
+ "Epoch 107/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.3630 - acc: 0.8484 - fscore: 0.8484 - val_loss: 0.4924 - val_acc: 0.8125 - val_fscore: 0.8125\n",
+ "Epoch 108/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.3713 - acc: 0.8469 - fscore: 0.8469 - val_loss: 0.5111 - val_acc: 0.7875 - val_fscore: 0.7875\n",
+ "Epoch 109/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.3544 - acc: 0.8573 - fscore: 0.8573 - val_loss: 0.4903 - val_acc: 0.7979 - val_fscore: 0.7979\n",
+ "Epoch 110/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.3581 - acc: 0.8531 - fscore: 0.8531 - val_loss: 0.4904 - val_acc: 0.7917 - val_fscore: 0.7917\n",
+ "Epoch 111/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.3508 - acc: 0.8484 - fscore: 0.8484 - val_loss: 0.4805 - val_acc: 0.8063 - val_fscore: 0.8062\n",
+ "Epoch 112/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.3531 - acc: 0.8578 - fscore: 0.8578 - val_loss: 0.4934 - val_acc: 0.7958 - val_fscore: 0.7958\n",
+ "Epoch 113/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.3435 - acc: 0.8672 - fscore: 0.8672 - val_loss: 0.4769 - val_acc: 0.7979 - val_fscore: 0.7979\n",
+ "Epoch 114/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.3418 - acc: 0.8594 - fscore: 0.8594 - val_loss: 0.4828 - val_acc: 0.7833 - val_fscore: 0.7833\n",
+ "Epoch 115/700\n",
+ "1920/1920 [==============================] - 1s 734us/step - loss: 0.3504 - acc: 0.8557 - fscore: 0.8557 - val_loss: 0.4802 - val_acc: 0.7833 - val_fscore: 0.7833\n",
+ "Epoch 116/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.3455 - acc: 0.8682 - fscore: 0.8682 - val_loss: 0.4811 - val_acc: 0.8042 - val_fscore: 0.8042\n",
+ "Epoch 117/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.3305 - acc: 0.8693 - fscore: 0.8693 - val_loss: 0.4872 - val_acc: 0.7688 - val_fscore: 0.7687\n",
+ "Epoch 118/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.3315 - acc: 0.8714 - fscore: 0.8714 - val_loss: 0.4723 - val_acc: 0.8208 - val_fscore: 0.8208\n",
+ "Epoch 119/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.3404 - acc: 0.8615 - fscore: 0.8615 - val_loss: 0.4744 - val_acc: 0.8292 - val_fscore: 0.8292\n",
+ "Epoch 120/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.3191 - acc: 0.8760 - fscore: 0.8760 - val_loss: 0.4728 - val_acc: 0.8000 - val_fscore: 0.8000\n",
+ "Epoch 121/700\n",
+ "1920/1920 [==============================] - 1s 736us/step - loss: 0.3243 - acc: 0.8755 - fscore: 0.8755 - val_loss: 0.4743 - val_acc: 0.7729 - val_fscore: 0.7729\n",
+ "Epoch 122/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.3207 - acc: 0.8802 - fscore: 0.8802 - val_loss: 0.5061 - val_acc: 0.7583 - val_fscore: 0.7583\n",
+ "Epoch 123/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.3293 - acc: 0.8734 - fscore: 0.8734 - val_loss: 0.4609 - val_acc: 0.8146 - val_fscore: 0.8146\n",
+ "Epoch 124/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.3302 - acc: 0.8734 - fscore: 0.8734 - val_loss: 0.4688 - val_acc: 0.8042 - val_fscore: 0.8042\n",
+ "Epoch 125/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.3262 - acc: 0.8677 - fscore: 0.8677 - val_loss: 0.4852 - val_acc: 0.7833 - val_fscore: 0.7833\n",
+ "Epoch 126/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.3218 - acc: 0.8714 - fscore: 0.8714 - val_loss: 0.4821 - val_acc: 0.7854 - val_fscore: 0.7854\n",
+ "Epoch 127/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.3105 - acc: 0.8812 - fscore: 0.8812 - val_loss: 0.5048 - val_acc: 0.7021 - val_fscore: 0.7021\n",
+ "Epoch 128/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.3204 - acc: 0.8781 - fscore: 0.8781 - val_loss: 0.4606 - val_acc: 0.7958 - val_fscore: 0.7958\n",
+ "Epoch 129/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.3070 - acc: 0.8802 - fscore: 0.8802 - val_loss: 0.4494 - val_acc: 0.8208 - val_fscore: 0.8208\n",
+ "Epoch 130/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.3032 - acc: 0.8875 - fscore: 0.8875 - val_loss: 0.4709 - val_acc: 0.7562 - val_fscore: 0.7562\n",
+ "Epoch 131/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.3053 - acc: 0.8807 - fscore: 0.8807 - val_loss: 0.4484 - val_acc: 0.8250 - val_fscore: 0.8250\n",
+ "Epoch 132/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.3054 - acc: 0.8885 - fscore: 0.8885 - val_loss: 0.4868 - val_acc: 0.7292 - val_fscore: 0.7292\n",
+ "Epoch 133/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.2939 - acc: 0.8927 - fscore: 0.8927 - val_loss: 0.4383 - val_acc: 0.8396 - val_fscore: 0.8396\n",
+ "Epoch 134/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.3017 - acc: 0.8849 - fscore: 0.8849 - val_loss: 0.4603 - val_acc: 0.7937 - val_fscore: 0.7937\n",
+ "Epoch 135/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.3037 - acc: 0.8844 - fscore: 0.8844 - val_loss: 0.4766 - val_acc: 0.7396 - val_fscore: 0.7396\n",
+ "Epoch 136/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.2879 - acc: 0.9026 - fscore: 0.9026 - val_loss: 0.4307 - val_acc: 0.8438 - val_fscore: 0.8437\n",
+ "Epoch 137/700\n",
+ "1920/1920 [==============================] - 1s 761us/step - loss: 0.2938 - acc: 0.8875 - fscore: 0.8875 - val_loss: 0.4413 - val_acc: 0.8396 - val_fscore: 0.8396\n",
+ "Epoch 138/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.2842 - acc: 0.8979 - fscore: 0.8979 - val_loss: 0.5078 - val_acc: 0.7063 - val_fscore: 0.7062\n",
+ "Epoch 139/700\n",
+ "1920/1920 [==============================] - 1s 728us/step - loss: 0.2867 - acc: 0.8937 - fscore: 0.8937 - val_loss: 0.4507 - val_acc: 0.8104 - val_fscore: 0.8104\n",
+ "Epoch 140/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.2875 - acc: 0.8922 - fscore: 0.8922 - val_loss: 0.4350 - val_acc: 0.8479 - val_fscore: 0.8479\n",
+ "Epoch 141/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.2852 - acc: 0.8964 - fscore: 0.8964 - val_loss: 0.4223 - val_acc: 0.8458 - val_fscore: 0.8458\n",
+ "Epoch 142/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.2747 - acc: 0.9026 - fscore: 0.9026 - val_loss: 0.4568 - val_acc: 0.7875 - val_fscore: 0.7875\n",
+ "Epoch 143/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.2845 - acc: 0.8844 - fscore: 0.8844 - val_loss: 0.4255 - val_acc: 0.8375 - val_fscore: 0.8375\n",
+ "Epoch 144/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.2724 - acc: 0.9010 - fscore: 0.9010 - val_loss: 0.4528 - val_acc: 0.7854 - val_fscore: 0.7854\n",
+ "Epoch 145/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.2661 - acc: 0.9021 - fscore: 0.9021 - val_loss: 0.4213 - val_acc: 0.8333 - val_fscore: 0.8333\n",
+ "Epoch 146/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.2742 - acc: 0.9052 - fscore: 0.9052 - val_loss: 0.4201 - val_acc: 0.8313 - val_fscore: 0.8312\n",
+ "Epoch 147/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.2631 - acc: 0.9104 - fscore: 0.9104 - val_loss: 0.4364 - val_acc: 0.8250 - val_fscore: 0.8250\n",
+ "Epoch 148/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.2705 - acc: 0.9021 - fscore: 0.9021 - val_loss: 0.4706 - val_acc: 0.7417 - val_fscore: 0.7417\n",
+ "Epoch 149/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.2705 - acc: 0.9005 - fscore: 0.9005 - val_loss: 0.4174 - val_acc: 0.8396 - val_fscore: 0.8396\n",
+ "Epoch 150/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.2669 - acc: 0.9068 - fscore: 0.9068 - val_loss: 0.4106 - val_acc: 0.8542 - val_fscore: 0.8542\n",
+ "Epoch 151/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.2647 - acc: 0.9057 - fscore: 0.9057 - val_loss: 0.4162 - val_acc: 0.8500 - val_fscore: 0.8500\n",
+ "Epoch 152/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.2511 - acc: 0.9167 - fscore: 0.9167 - val_loss: 0.4273 - val_acc: 0.8417 - val_fscore: 0.8417\n",
+ "Epoch 153/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.2482 - acc: 0.9109 - fscore: 0.9109 - val_loss: 0.3956 - val_acc: 0.8562 - val_fscore: 0.8562\n",
+ "Epoch 154/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.2557 - acc: 0.9146 - fscore: 0.9146 - val_loss: 0.4123 - val_acc: 0.8208 - val_fscore: 0.8208\n",
+ "Epoch 155/700\n",
+ "1920/1920 [==============================] - 1s 738us/step - loss: 0.2479 - acc: 0.9167 - fscore: 0.9167 - val_loss: 0.4174 - val_acc: 0.8417 - val_fscore: 0.8417\n",
+ "Epoch 156/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.2523 - acc: 0.9120 - fscore: 0.9120 - val_loss: 0.4048 - val_acc: 0.8313 - val_fscore: 0.8312\n",
+ "Epoch 157/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.2560 - acc: 0.9073 - fscore: 0.9073 - val_loss: 0.3993 - val_acc: 0.8562 - val_fscore: 0.8562\n",
+ "Epoch 158/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.2413 - acc: 0.9099 - fscore: 0.9099 - val_loss: 0.5574 - val_acc: 0.6750 - val_fscore: 0.6750\n",
+ "Epoch 159/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.2583 - acc: 0.9036 - fscore: 0.9036 - val_loss: 0.3911 - val_acc: 0.8542 - val_fscore: 0.8542\n",
+ "Epoch 160/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.2453 - acc: 0.9083 - fscore: 0.9083 - val_loss: 0.4028 - val_acc: 0.8479 - val_fscore: 0.8479\n",
+ "Epoch 161/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.2383 - acc: 0.9125 - fscore: 0.9125 - val_loss: 0.4047 - val_acc: 0.8167 - val_fscore: 0.8167\n",
+ "Epoch 162/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.2308 - acc: 0.9229 - fscore: 0.9229 - val_loss: 0.3961 - val_acc: 0.8333 - val_fscore: 0.8333\n",
+ "Epoch 163/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.2320 - acc: 0.9214 - fscore: 0.9214 - val_loss: 0.3968 - val_acc: 0.8604 - val_fscore: 0.8604\n",
+ "Epoch 164/700\n",
+ "1920/1920 [==============================] - 1s 736us/step - loss: 0.2246 - acc: 0.9266 - fscore: 0.9266 - val_loss: 0.3943 - val_acc: 0.8562 - val_fscore: 0.8562\n",
+ "Epoch 165/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.2344 - acc: 0.9203 - fscore: 0.9203 - val_loss: 0.3841 - val_acc: 0.8625 - val_fscore: 0.8625\n",
+ "Epoch 166/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.2209 - acc: 0.9365 - fscore: 0.9365 - val_loss: 0.3974 - val_acc: 0.8521 - val_fscore: 0.8521\n",
+ "Epoch 167/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.2305 - acc: 0.9188 - fscore: 0.9187 - val_loss: 0.3732 - val_acc: 0.8583 - val_fscore: 0.8583\n",
+ "Epoch 168/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.2262 - acc: 0.9203 - fscore: 0.9203 - val_loss: 0.4200 - val_acc: 0.8208 - val_fscore: 0.8208\n",
+ "Epoch 169/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.2155 - acc: 0.9292 - fscore: 0.9292 - val_loss: 0.3820 - val_acc: 0.8521 - val_fscore: 0.8521\n",
+ "Epoch 170/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.2272 - acc: 0.9219 - fscore: 0.9219 - val_loss: 0.4455 - val_acc: 0.7667 - val_fscore: 0.7667\n",
+ "Epoch 171/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.2170 - acc: 0.9302 - fscore: 0.9302 - val_loss: 0.3894 - val_acc: 0.8500 - val_fscore: 0.8500\n",
+ "Epoch 172/700\n",
+ "1920/1920 [==============================] - 1s 755us/step - loss: 0.2119 - acc: 0.9323 - fscore: 0.9323 - val_loss: 0.4219 - val_acc: 0.7937 - val_fscore: 0.7937\n",
+ "Epoch 173/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.2169 - acc: 0.9281 - fscore: 0.9281 - val_loss: 0.3983 - val_acc: 0.8500 - val_fscore: 0.8500\n",
+ "Epoch 174/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.2089 - acc: 0.9349 - fscore: 0.9349 - val_loss: 0.3631 - val_acc: 0.8750 - val_fscore: 0.8750\n",
+ "Epoch 175/700\n",
+ "1920/1920 [==============================] - 1s 738us/step - loss: 0.2003 - acc: 0.9328 - fscore: 0.9328 - val_loss: 0.3900 - val_acc: 0.8375 - val_fscore: 0.8375\n",
+ "Epoch 176/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.2018 - acc: 0.9375 - fscore: 0.9375 - val_loss: 0.3983 - val_acc: 0.8313 - val_fscore: 0.8312\n",
+ "Epoch 177/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.2031 - acc: 0.9375 - fscore: 0.9375 - val_loss: 0.3883 - val_acc: 0.8375 - val_fscore: 0.8375\n",
+ "Epoch 178/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.2018 - acc: 0.9443 - fscore: 0.9443 - val_loss: 0.3725 - val_acc: 0.8604 - val_fscore: 0.8604\n",
+ "Epoch 179/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.2049 - acc: 0.9323 - fscore: 0.9323 - val_loss: 0.3624 - val_acc: 0.8417 - val_fscore: 0.8417\n",
+ "Epoch 180/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.2009 - acc: 0.9323 - fscore: 0.9323 - val_loss: 0.3752 - val_acc: 0.8604 - val_fscore: 0.8604\n",
+ "Epoch 181/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.1976 - acc: 0.9370 - fscore: 0.9370 - val_loss: 0.3552 - val_acc: 0.8812 - val_fscore: 0.8812\n",
+ "Epoch 182/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.1902 - acc: 0.9370 - fscore: 0.9370 - val_loss: 0.3878 - val_acc: 0.8333 - val_fscore: 0.8333\n",
+ "Epoch 183/700\n",
+ "1920/1920 [==============================] - 1s 755us/step - loss: 0.1964 - acc: 0.9370 - fscore: 0.9370 - val_loss: 0.3464 - val_acc: 0.8771 - val_fscore: 0.8771\n",
+ "Epoch 184/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.1910 - acc: 0.9417 - fscore: 0.9417 - val_loss: 0.3673 - val_acc: 0.8750 - val_fscore: 0.8750\n",
+ "Epoch 185/700\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1920/1920 [==============================] - 1s 757us/step - loss: 0.1912 - acc: 0.9370 - fscore: 0.9370 - val_loss: 0.3850 - val_acc: 0.8271 - val_fscore: 0.8271\n",
+ "Epoch 186/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.2034 - acc: 0.9323 - fscore: 0.9323 - val_loss: 0.4120 - val_acc: 0.8167 - val_fscore: 0.8167\n",
+ "Epoch 187/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.1848 - acc: 0.9422 - fscore: 0.9422 - val_loss: 0.4090 - val_acc: 0.8125 - val_fscore: 0.8125\n",
+ "Epoch 188/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.1847 - acc: 0.9385 - fscore: 0.9385 - val_loss: 0.4064 - val_acc: 0.8125 - val_fscore: 0.8125\n",
+ "Epoch 189/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.1888 - acc: 0.9339 - fscore: 0.9339 - val_loss: 0.4149 - val_acc: 0.8000 - val_fscore: 0.8000\n",
+ "Epoch 190/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.1842 - acc: 0.9437 - fscore: 0.9437 - val_loss: 0.3442 - val_acc: 0.8812 - val_fscore: 0.8812\n",
+ "Epoch 191/700\n",
+ "1920/1920 [==============================] - 1s 738us/step - loss: 0.1857 - acc: 0.9422 - fscore: 0.9422 - val_loss: 0.3879 - val_acc: 0.8500 - val_fscore: 0.8500\n",
+ "Epoch 192/700\n",
+ "1920/1920 [==============================] - 1s 735us/step - loss: 0.1831 - acc: 0.9453 - fscore: 0.9453 - val_loss: 0.3721 - val_acc: 0.8542 - val_fscore: 0.8542\n",
+ "Epoch 193/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.1732 - acc: 0.9474 - fscore: 0.9474 - val_loss: 0.4583 - val_acc: 0.7458 - val_fscore: 0.7458\n",
+ "Epoch 194/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.1666 - acc: 0.9490 - fscore: 0.9490 - val_loss: 0.3251 - val_acc: 0.9062 - val_fscore: 0.9062\n",
+ "Epoch 195/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.1742 - acc: 0.9432 - fscore: 0.9432 - val_loss: 0.3771 - val_acc: 0.8500 - val_fscore: 0.8500\n",
+ "Epoch 196/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.1659 - acc: 0.9484 - fscore: 0.9484 - val_loss: 0.4340 - val_acc: 0.7729 - val_fscore: 0.7729\n",
+ "Epoch 197/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.1709 - acc: 0.9479 - fscore: 0.9479 - val_loss: 0.3427 - val_acc: 0.8604 - val_fscore: 0.8604\n",
+ "Epoch 198/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.1702 - acc: 0.9474 - fscore: 0.9474 - val_loss: 0.3663 - val_acc: 0.8542 - val_fscore: 0.8542\n",
+ "Epoch 199/700\n",
+ "1920/1920 [==============================] - 1s 736us/step - loss: 0.1661 - acc: 0.9464 - fscore: 0.9464 - val_loss: 0.3924 - val_acc: 0.8208 - val_fscore: 0.8208\n",
+ "Epoch 200/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.1666 - acc: 0.9510 - fscore: 0.9510 - val_loss: 0.3374 - val_acc: 0.8688 - val_fscore: 0.8687\n",
+ "Epoch 201/700\n",
+ "1920/1920 [==============================] - 1s 738us/step - loss: 0.1657 - acc: 0.9464 - fscore: 0.9464 - val_loss: 0.3558 - val_acc: 0.8479 - val_fscore: 0.8479\n",
+ "Epoch 202/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.1574 - acc: 0.9479 - fscore: 0.9479 - val_loss: 0.4495 - val_acc: 0.7646 - val_fscore: 0.7646\n",
+ "Epoch 203/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.1621 - acc: 0.9453 - fscore: 0.9453 - val_loss: 0.3599 - val_acc: 0.8354 - val_fscore: 0.8354\n",
+ "Epoch 204/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.1529 - acc: 0.9589 - fscore: 0.9589 - val_loss: 0.3429 - val_acc: 0.8667 - val_fscore: 0.8667\n",
+ "Epoch 205/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.1563 - acc: 0.9583 - fscore: 0.9583 - val_loss: 0.3524 - val_acc: 0.8583 - val_fscore: 0.8583\n",
+ "Epoch 206/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.1583 - acc: 0.9516 - fscore: 0.9516 - val_loss: 0.3537 - val_acc: 0.8625 - val_fscore: 0.8625\n",
+ "Epoch 207/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.1569 - acc: 0.9474 - fscore: 0.9474 - val_loss: 0.3336 - val_acc: 0.8708 - val_fscore: 0.8708\n",
+ "Epoch 208/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.1514 - acc: 0.9594 - fscore: 0.9594 - val_loss: 0.3297 - val_acc: 0.8646 - val_fscore: 0.8646\n",
+ "Epoch 209/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.1499 - acc: 0.9594 - fscore: 0.9594 - val_loss: 0.3287 - val_acc: 0.8771 - val_fscore: 0.8771\n",
+ "Epoch 210/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.1460 - acc: 0.9620 - fscore: 0.9620 - val_loss: 0.3280 - val_acc: 0.8646 - val_fscore: 0.8646\n",
+ "Epoch 211/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.1583 - acc: 0.9521 - fscore: 0.9521 - val_loss: 0.3180 - val_acc: 0.8854 - val_fscore: 0.8854\n",
+ "Epoch 212/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.1450 - acc: 0.9562 - fscore: 0.9562 - val_loss: 0.3724 - val_acc: 0.8271 - val_fscore: 0.8271\n",
+ "Epoch 213/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.1499 - acc: 0.9536 - fscore: 0.9536 - val_loss: 0.3265 - val_acc: 0.8917 - val_fscore: 0.8917\n",
+ "Epoch 214/700\n",
+ "1920/1920 [==============================] - 1s 736us/step - loss: 0.1454 - acc: 0.9562 - fscore: 0.9562 - val_loss: 0.3286 - val_acc: 0.8792 - val_fscore: 0.8792\n",
+ "Epoch 215/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.1454 - acc: 0.9620 - fscore: 0.9620 - val_loss: 0.3082 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 216/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.1518 - acc: 0.9479 - fscore: 0.9479 - val_loss: 0.3368 - val_acc: 0.8521 - val_fscore: 0.8521\n",
+ "Epoch 217/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.1326 - acc: 0.9677 - fscore: 0.9677 - val_loss: 0.3365 - val_acc: 0.8729 - val_fscore: 0.8729\n",
+ "Epoch 218/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.1393 - acc: 0.9589 - fscore: 0.9589 - val_loss: 0.3134 - val_acc: 0.8938 - val_fscore: 0.8937\n",
+ "Epoch 219/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.1408 - acc: 0.9562 - fscore: 0.9562 - val_loss: 0.3206 - val_acc: 0.8750 - val_fscore: 0.8750\n",
+ "Epoch 220/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.1252 - acc: 0.9740 - fscore: 0.9740 - val_loss: 0.3114 - val_acc: 0.8854 - val_fscore: 0.8854\n",
+ "Epoch 221/700\n",
+ "1920/1920 [==============================] - 1s 763us/step - loss: 0.1308 - acc: 0.9609 - fscore: 0.9609 - val_loss: 0.3767 - val_acc: 0.8167 - val_fscore: 0.8167\n",
+ "Epoch 222/700\n",
+ "1920/1920 [==============================] - 1s 735us/step - loss: 0.1413 - acc: 0.9568 - fscore: 0.9568 - val_loss: 0.3361 - val_acc: 0.8833 - val_fscore: 0.8833\n",
+ "Epoch 223/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.1359 - acc: 0.9573 - fscore: 0.9573 - val_loss: 0.3147 - val_acc: 0.8604 - val_fscore: 0.8604\n",
+ "Epoch 224/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.1235 - acc: 0.9698 - fscore: 0.9698 - val_loss: 0.3467 - val_acc: 0.8479 - val_fscore: 0.8479\n",
+ "Epoch 225/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.1254 - acc: 0.9682 - fscore: 0.9682 - val_loss: 0.2936 - val_acc: 0.8958 - val_fscore: 0.8958\n",
+ "Epoch 226/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.1317 - acc: 0.9609 - fscore: 0.9609 - val_loss: 0.3228 - val_acc: 0.8646 - val_fscore: 0.8646\n",
+ "Epoch 227/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.1219 - acc: 0.9719 - fscore: 0.9719 - val_loss: 0.3116 - val_acc: 0.8708 - val_fscore: 0.8708\n",
+ "Epoch 228/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.1284 - acc: 0.9656 - fscore: 0.9656 - val_loss: 0.3274 - val_acc: 0.8792 - val_fscore: 0.8792\n",
+ "Epoch 229/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.1259 - acc: 0.9594 - fscore: 0.9594 - val_loss: 0.3320 - val_acc: 0.8542 - val_fscore: 0.8542\n",
+ "Epoch 230/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.1305 - acc: 0.9635 - fscore: 0.9635 - val_loss: 0.2967 - val_acc: 0.8938 - val_fscore: 0.8937\n",
+ "Epoch 231/700\n",
+ "1920/1920 [==============================] - 2s 798us/step - loss: 0.1197 - acc: 0.9677 - fscore: 0.9677 - val_loss: 0.3232 - val_acc: 0.8771 - val_fscore: 0.8771\n",
+ "Epoch 232/700\n",
+ "1920/1920 [==============================] - 1s 765us/step - loss: 0.1251 - acc: 0.9672 - fscore: 0.9672 - val_loss: 0.3017 - val_acc: 0.8854 - val_fscore: 0.8854\n",
+ "Epoch 233/700\n",
+ "1920/1920 [==============================] - 1s 776us/step - loss: 0.1282 - acc: 0.9635 - fscore: 0.9635 - val_loss: 0.3016 - val_acc: 0.8833 - val_fscore: 0.8833\n",
+ "Epoch 234/700\n",
+ "1920/1920 [==============================] - 1s 732us/step - loss: 0.1255 - acc: 0.9646 - fscore: 0.9646 - val_loss: 0.4540 - val_acc: 0.7750 - val_fscore: 0.7750\n",
+ "Epoch 235/700\n",
+ "1920/1920 [==============================] - 1s 761us/step - loss: 0.1217 - acc: 0.9667 - fscore: 0.9667 - val_loss: 0.3006 - val_acc: 0.8812 - val_fscore: 0.8812\n",
+ "Epoch 236/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.1285 - acc: 0.9651 - fscore: 0.9651 - val_loss: 0.3898 - val_acc: 0.8229 - val_fscore: 0.8229\n",
+ "Epoch 237/700\n",
+ "1920/1920 [==============================] - 1s 759us/step - loss: 0.1176 - acc: 0.9677 - fscore: 0.9677 - val_loss: 0.2798 - val_acc: 0.8917 - val_fscore: 0.8917\n",
+ "Epoch 238/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.1154 - acc: 0.9672 - fscore: 0.9672 - val_loss: 0.5011 - val_acc: 0.7188 - val_fscore: 0.7187\n",
+ "Epoch 239/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.1216 - acc: 0.9651 - fscore: 0.9651 - val_loss: 0.2875 - val_acc: 0.8917 - val_fscore: 0.8917\n",
+ "Epoch 240/700\n",
+ "1920/1920 [==============================] - 1s 761us/step - loss: 0.1150 - acc: 0.9734 - fscore: 0.9734 - val_loss: 0.3089 - val_acc: 0.8750 - val_fscore: 0.8750\n",
+ "Epoch 241/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.1106 - acc: 0.9661 - fscore: 0.9661 - val_loss: 0.3509 - val_acc: 0.8542 - val_fscore: 0.8542\n",
+ "Epoch 242/700\n",
+ "1920/1920 [==============================] - 1s 738us/step - loss: 0.1084 - acc: 0.9755 - fscore: 0.9755 - val_loss: 0.3409 - val_acc: 0.8375 - val_fscore: 0.8375\n",
+ "Epoch 243/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.1065 - acc: 0.9714 - fscore: 0.9714 - val_loss: 0.2783 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 244/700\n",
+ "1920/1920 [==============================] - 1s 738us/step - loss: 0.1056 - acc: 0.9734 - fscore: 0.9734 - val_loss: 0.2799 - val_acc: 0.8979 - val_fscore: 0.8979\n",
+ "Epoch 245/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.1094 - acc: 0.9651 - fscore: 0.9651 - val_loss: 0.3279 - val_acc: 0.8646 - val_fscore: 0.8646\n",
+ "Epoch 246/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.1048 - acc: 0.9786 - fscore: 0.9786 - val_loss: 0.2959 - val_acc: 0.8896 - val_fscore: 0.8896\n",
+ "Epoch 247/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0976 - acc: 0.9760 - fscore: 0.9760 - val_loss: 0.3213 - val_acc: 0.8583 - val_fscore: 0.8583\n",
+ "Epoch 248/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.1006 - acc: 0.9766 - fscore: 0.9766 - val_loss: 0.3716 - val_acc: 0.8271 - val_fscore: 0.8271\n",
+ "Epoch 249/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.1022 - acc: 0.9708 - fscore: 0.9708 - val_loss: 0.2810 - val_acc: 0.8854 - val_fscore: 0.8854\n",
+ "Epoch 250/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.1108 - acc: 0.9661 - fscore: 0.9661 - val_loss: 0.2793 - val_acc: 0.8875 - val_fscore: 0.8875\n",
+ "Epoch 251/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.1015 - acc: 0.9719 - fscore: 0.9719 - val_loss: 0.2759 - val_acc: 0.8958 - val_fscore: 0.8958\n",
+ "Epoch 252/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.1030 - acc: 0.9698 - fscore: 0.9698 - val_loss: 0.3052 - val_acc: 0.8812 - val_fscore: 0.8812\n",
+ "Epoch 253/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.0930 - acc: 0.9760 - fscore: 0.9760 - val_loss: 0.3047 - val_acc: 0.8667 - val_fscore: 0.8667\n",
+ "Epoch 254/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.1039 - acc: 0.9755 - fscore: 0.9755 - val_loss: 0.3010 - val_acc: 0.8688 - val_fscore: 0.8687\n",
+ "Epoch 255/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0923 - acc: 0.9776 - fscore: 0.9776 - val_loss: 0.2905 - val_acc: 0.8833 - val_fscore: 0.8833\n",
+ "Epoch 256/700\n",
+ "1920/1920 [==============================] - 1s 765us/step - loss: 0.1031 - acc: 0.9703 - fscore: 0.9703 - val_loss: 0.2693 - val_acc: 0.9062 - val_fscore: 0.9062\n",
+ "Epoch 257/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.0949 - acc: 0.9745 - fscore: 0.9745 - val_loss: 0.2884 - val_acc: 0.8896 - val_fscore: 0.8896\n",
+ "Epoch 258/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.1006 - acc: 0.9719 - fscore: 0.9719 - val_loss: 0.2626 - val_acc: 0.9083 - val_fscore: 0.9083\n",
+ "Epoch 259/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0962 - acc: 0.9755 - fscore: 0.9755 - val_loss: 0.2673 - val_acc: 0.9083 - val_fscore: 0.9083\n",
+ "Epoch 260/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.0938 - acc: 0.9776 - fscore: 0.9776 - val_loss: 0.2766 - val_acc: 0.8979 - val_fscore: 0.8979\n",
+ "Epoch 261/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.0952 - acc: 0.9776 - fscore: 0.9776 - val_loss: 0.3224 - val_acc: 0.8625 - val_fscore: 0.8625\n",
+ "Epoch 262/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.0855 - acc: 0.9766 - fscore: 0.9766 - val_loss: 0.4306 - val_acc: 0.7917 - val_fscore: 0.7917\n",
+ "Epoch 263/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.1003 - acc: 0.9729 - fscore: 0.9729 - val_loss: 0.2713 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 264/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.0864 - acc: 0.9802 - fscore: 0.9802 - val_loss: 0.3459 - val_acc: 0.8417 - val_fscore: 0.8417\n",
+ "Epoch 265/700\n",
+ "1920/1920 [==============================] - 1s 761us/step - loss: 0.0944 - acc: 0.9776 - fscore: 0.9776 - val_loss: 0.2625 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 266/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0825 - acc: 0.9766 - fscore: 0.9766 - val_loss: 0.2525 - val_acc: 0.9125 - val_fscore: 0.9125\n",
+ "Epoch 267/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.0913 - acc: 0.9760 - fscore: 0.9760 - val_loss: 0.2630 - val_acc: 0.8958 - val_fscore: 0.8958\n",
+ "Epoch 268/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0881 - acc: 0.9813 - fscore: 0.9812 - val_loss: 0.2527 - val_acc: 0.9062 - val_fscore: 0.9062\n",
+ "Epoch 269/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0781 - acc: 0.9844 - fscore: 0.9844 - val_loss: 0.2552 - val_acc: 0.8979 - val_fscore: 0.8979\n",
+ "Epoch 270/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0813 - acc: 0.9818 - fscore: 0.9818 - val_loss: 0.2452 - val_acc: 0.9104 - val_fscore: 0.9104\n",
+ "Epoch 271/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0813 - acc: 0.9807 - fscore: 0.9807 - val_loss: 0.3540 - val_acc: 0.8250 - val_fscore: 0.8250\n",
+ "Epoch 272/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.0873 - acc: 0.9771 - fscore: 0.9771 - val_loss: 0.2673 - val_acc: 0.9125 - val_fscore: 0.9125\n",
+ "Epoch 273/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.0800 - acc: 0.9813 - fscore: 0.9812 - val_loss: 0.2902 - val_acc: 0.8854 - val_fscore: 0.8854\n",
+ "Epoch 274/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.0828 - acc: 0.9776 - fscore: 0.9776 - val_loss: 0.3144 - val_acc: 0.8542 - val_fscore: 0.8542\n",
+ "Epoch 275/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.0847 - acc: 0.9792 - fscore: 0.9792 - val_loss: 0.2687 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 276/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0811 - acc: 0.9807 - fscore: 0.9807 - val_loss: 0.2468 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 277/700\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.0833 - acc: 0.9755 - fscore: 0.9755 - val_loss: 0.2919 - val_acc: 0.8729 - val_fscore: 0.8729\n",
+ "Epoch 278/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0842 - acc: 0.9807 - fscore: 0.9807 - val_loss: 0.2311 - val_acc: 0.9104 - val_fscore: 0.9104\n",
+ "Epoch 279/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.0851 - acc: 0.9786 - fscore: 0.9786 - val_loss: 0.2428 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 280/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.0746 - acc: 0.9854 - fscore: 0.9854 - val_loss: 0.3275 - val_acc: 0.8479 - val_fscore: 0.8479\n",
+ "Epoch 281/700\n",
+ "1920/1920 [==============================] - 1s 736us/step - loss: 0.0860 - acc: 0.9807 - fscore: 0.9807 - val_loss: 0.2651 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 282/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0717 - acc: 0.9802 - fscore: 0.9802 - val_loss: 0.2453 - val_acc: 0.9083 - val_fscore: 0.9083\n",
+ "Epoch 283/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0697 - acc: 0.9849 - fscore: 0.9849 - val_loss: 0.2927 - val_acc: 0.8917 - val_fscore: 0.8917\n",
+ "Epoch 284/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.0814 - acc: 0.9760 - fscore: 0.9760 - val_loss: 0.2758 - val_acc: 0.8812 - val_fscore: 0.8812\n",
+ "Epoch 285/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.0722 - acc: 0.9828 - fscore: 0.9828 - val_loss: 0.2680 - val_acc: 0.8917 - val_fscore: 0.8917\n",
+ "Epoch 286/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0684 - acc: 0.9859 - fscore: 0.9859 - val_loss: 0.2884 - val_acc: 0.8792 - val_fscore: 0.8792\n",
+ "Epoch 287/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.0721 - acc: 0.9833 - fscore: 0.9833 - val_loss: 0.3021 - val_acc: 0.8625 - val_fscore: 0.8625\n",
+ "Epoch 288/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0751 - acc: 0.9813 - fscore: 0.9812 - val_loss: 0.2462 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 289/700\n",
+ "1920/1920 [==============================] - 1s 736us/step - loss: 0.0736 - acc: 0.9813 - fscore: 0.9812 - val_loss: 0.2697 - val_acc: 0.8896 - val_fscore: 0.8896\n",
+ "Epoch 290/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0745 - acc: 0.9802 - fscore: 0.9802 - val_loss: 0.2459 - val_acc: 0.9062 - val_fscore: 0.9062\n",
+ "Epoch 291/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0632 - acc: 0.9870 - fscore: 0.9870 - val_loss: 0.2516 - val_acc: 0.8958 - val_fscore: 0.8958\n",
+ "Epoch 292/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0733 - acc: 0.9818 - fscore: 0.9818 - val_loss: 0.2481 - val_acc: 0.9042 - val_fscore: 0.9042\n",
+ "Epoch 293/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0720 - acc: 0.9833 - fscore: 0.9833 - val_loss: 0.2617 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 294/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.0701 - acc: 0.9802 - fscore: 0.9802 - val_loss: 0.2452 - val_acc: 0.9042 - val_fscore: 0.9042\n",
+ "Epoch 295/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0700 - acc: 0.9833 - fscore: 0.9833 - val_loss: 0.2683 - val_acc: 0.8875 - val_fscore: 0.8875\n",
+ "Epoch 296/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.0626 - acc: 0.9870 - fscore: 0.9870 - val_loss: 0.2498 - val_acc: 0.8938 - val_fscore: 0.8937\n",
+ "Epoch 297/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.0676 - acc: 0.9880 - fscore: 0.9880 - val_loss: 0.3457 - val_acc: 0.8458 - val_fscore: 0.8458\n",
+ "Epoch 298/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.0734 - acc: 0.9833 - fscore: 0.9833 - val_loss: 0.2199 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 299/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.0694 - acc: 0.9849 - fscore: 0.9849 - val_loss: 0.2453 - val_acc: 0.9062 - val_fscore: 0.9062\n",
+ "Epoch 300/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.0658 - acc: 0.9818 - fscore: 0.9818 - val_loss: 0.2396 - val_acc: 0.9062 - val_fscore: 0.9062\n",
+ "Epoch 301/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.0746 - acc: 0.9792 - fscore: 0.9792 - val_loss: 0.2384 - val_acc: 0.9104 - val_fscore: 0.9104\n",
+ "Epoch 302/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.0696 - acc: 0.9844 - fscore: 0.9844 - val_loss: 0.2363 - val_acc: 0.9104 - val_fscore: 0.9104\n",
+ "Epoch 303/700\n",
+ "1920/1920 [==============================] - 1s 771us/step - loss: 0.0659 - acc: 0.9839 - fscore: 0.9839 - val_loss: 0.2257 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 304/700\n",
+ "1920/1920 [==============================] - 1s 780us/step - loss: 0.0618 - acc: 0.9875 - fscore: 0.9875 - val_loss: 0.3145 - val_acc: 0.8562 - val_fscore: 0.8562\n",
+ "Epoch 305/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.0669 - acc: 0.9844 - fscore: 0.9844 - val_loss: 0.3326 - val_acc: 0.8479 - val_fscore: 0.8479\n",
+ "Epoch 306/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.0650 - acc: 0.9875 - fscore: 0.9875 - val_loss: 0.2784 - val_acc: 0.8812 - val_fscore: 0.8812\n",
+ "Epoch 307/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0638 - acc: 0.9854 - fscore: 0.9854 - val_loss: 0.2480 - val_acc: 0.9042 - val_fscore: 0.9042\n",
+ "Epoch 308/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.0652 - acc: 0.9854 - fscore: 0.9854 - val_loss: 0.2309 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 309/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.0604 - acc: 0.9854 - fscore: 0.9854 - val_loss: 0.2228 - val_acc: 0.9104 - val_fscore: 0.9104\n",
+ "Epoch 310/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0525 - acc: 0.9927 - fscore: 0.9927 - val_loss: 0.3536 - val_acc: 0.8333 - val_fscore: 0.8333\n",
+ "Epoch 311/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.0606 - acc: 0.9870 - fscore: 0.9870 - val_loss: 0.2490 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 312/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.0589 - acc: 0.9896 - fscore: 0.9896 - val_loss: 0.2199 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 313/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0626 - acc: 0.9839 - fscore: 0.9839 - val_loss: 0.4081 - val_acc: 0.8167 - val_fscore: 0.8167\n",
+ "Epoch 314/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0630 - acc: 0.9870 - fscore: 0.9870 - val_loss: 0.2391 - val_acc: 0.8979 - val_fscore: 0.8979\n",
+ "Epoch 315/700\n",
+ "1920/1920 [==============================] - 1s 734us/step - loss: 0.0631 - acc: 0.9859 - fscore: 0.9859 - val_loss: 0.2256 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 316/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0625 - acc: 0.9844 - fscore: 0.9844 - val_loss: 0.3006 - val_acc: 0.8708 - val_fscore: 0.8708\n",
+ "Epoch 317/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0582 - acc: 0.9844 - fscore: 0.9844 - val_loss: 0.2668 - val_acc: 0.8958 - val_fscore: 0.8958\n",
+ "Epoch 318/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.0626 - acc: 0.9833 - fscore: 0.9833 - val_loss: 0.2410 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 319/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.0565 - acc: 0.9875 - fscore: 0.9875 - val_loss: 0.2315 - val_acc: 0.9104 - val_fscore: 0.9104\n",
+ "Epoch 320/700\n",
+ "1920/1920 [==============================] - 1s 735us/step - loss: 0.0599 - acc: 0.9849 - fscore: 0.9849 - val_loss: 0.3590 - val_acc: 0.8333 - val_fscore: 0.8333\n",
+ "Epoch 321/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0564 - acc: 0.9854 - fscore: 0.9854 - val_loss: 0.2147 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 322/700\n",
+ "1920/1920 [==============================] - 1s 731us/step - loss: 0.0568 - acc: 0.9854 - fscore: 0.9854 - val_loss: 0.2190 - val_acc: 0.9125 - val_fscore: 0.9125\n",
+ "Epoch 323/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0522 - acc: 0.9885 - fscore: 0.9885 - val_loss: 0.2646 - val_acc: 0.8792 - val_fscore: 0.8792\n",
+ "Epoch 324/700\n",
+ "1920/1920 [==============================] - 1s 738us/step - loss: 0.0549 - acc: 0.9885 - fscore: 0.9885 - val_loss: 0.2148 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 325/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.0586 - acc: 0.9844 - fscore: 0.9844 - val_loss: 0.2809 - val_acc: 0.8646 - val_fscore: 0.8646\n",
+ "Epoch 326/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.0557 - acc: 0.9870 - fscore: 0.9870 - val_loss: 0.2224 - val_acc: 0.9062 - val_fscore: 0.9062\n",
+ "Epoch 327/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.0522 - acc: 0.9885 - fscore: 0.9885 - val_loss: 0.2159 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 328/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.0581 - acc: 0.9849 - fscore: 0.9849 - val_loss: 0.2522 - val_acc: 0.9000 - val_fscore: 0.9000\n",
+ "Epoch 329/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0457 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2447 - val_acc: 0.9083 - val_fscore: 0.9083\n",
+ "Epoch 330/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.0494 - acc: 0.9911 - fscore: 0.9911 - val_loss: 0.2140 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 331/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0500 - acc: 0.9875 - fscore: 0.9875 - val_loss: 0.2204 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 332/700\n",
+ "1920/1920 [==============================] - 1s 731us/step - loss: 0.0492 - acc: 0.9880 - fscore: 0.9880 - val_loss: 0.2049 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 333/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.0540 - acc: 0.9885 - fscore: 0.9885 - val_loss: 0.2243 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 334/700\n",
+ "1920/1920 [==============================] - 1s 733us/step - loss: 0.0460 - acc: 0.9901 - fscore: 0.9901 - val_loss: 0.2040 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 335/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0484 - acc: 0.9885 - fscore: 0.9885 - val_loss: 0.2727 - val_acc: 0.8812 - val_fscore: 0.8812\n",
+ "Epoch 336/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.0486 - acc: 0.9896 - fscore: 0.9896 - val_loss: 0.2289 - val_acc: 0.9104 - val_fscore: 0.9104\n",
+ "Epoch 337/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.0468 - acc: 0.9901 - fscore: 0.9901 - val_loss: 0.2370 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 338/700\n",
+ "1920/1920 [==============================] - 1s 755us/step - loss: 0.0462 - acc: 0.9922 - fscore: 0.9922 - val_loss: 0.2008 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 339/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.0494 - acc: 0.9917 - fscore: 0.9917 - val_loss: 0.2132 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 340/700\n",
+ "1920/1920 [==============================] - 1s 778us/step - loss: 0.0481 - acc: 0.9901 - fscore: 0.9901 - val_loss: 0.2747 - val_acc: 0.8792 - val_fscore: 0.8792\n",
+ "Epoch 341/700\n",
+ "1920/1920 [==============================] - 2s 910us/step - loss: 0.0498 - acc: 0.9917 - fscore: 0.9917 - val_loss: 0.2704 - val_acc: 0.8938 - val_fscore: 0.8937\n",
+ "Epoch 342/700\n",
+ "1920/1920 [==============================] - 2s 898us/step - loss: 0.0451 - acc: 0.9917 - fscore: 0.9917 - val_loss: 0.2243 - val_acc: 0.9062 - val_fscore: 0.9062\n",
+ "Epoch 343/700\n",
+ "1920/1920 [==============================] - 2s 841us/step - loss: 0.0438 - acc: 0.9911 - fscore: 0.9911 - val_loss: 0.2642 - val_acc: 0.8833 - val_fscore: 0.8833\n",
+ "Epoch 344/700\n",
+ "1920/1920 [==============================] - 2s 905us/step - loss: 0.0460 - acc: 0.9922 - fscore: 0.9922 - val_loss: 0.2191 - val_acc: 0.9125 - val_fscore: 0.9125\n",
+ "Epoch 345/700\n",
+ "1920/1920 [==============================] - 2s 872us/step - loss: 0.0439 - acc: 0.9901 - fscore: 0.9901 - val_loss: 0.2291 - val_acc: 0.9083 - val_fscore: 0.9083\n",
+ "Epoch 346/700\n",
+ "1920/1920 [==============================] - 2s 924us/step - loss: 0.0536 - acc: 0.9859 - fscore: 0.9859 - val_loss: 0.2202 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 347/700\n",
+ "1920/1920 [==============================] - 2s 872us/step - loss: 0.0421 - acc: 0.9938 - fscore: 0.9937 - val_loss: 0.2182 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 348/700\n",
+ "1920/1920 [==============================] - 2s 935us/step - loss: 0.0440 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2249 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 349/700\n",
+ "1920/1920 [==============================] - 2s 895us/step - loss: 0.0472 - acc: 0.9896 - fscore: 0.9896 - val_loss: 0.2159 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 350/700\n",
+ "1920/1920 [==============================] - 2s 880us/step - loss: 0.0436 - acc: 0.9922 - fscore: 0.9922 - val_loss: 0.2008 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 351/700\n",
+ "1920/1920 [==============================] - 2s 821us/step - loss: 0.0449 - acc: 0.9911 - fscore: 0.9911 - val_loss: 0.2048 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 352/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0438 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2041 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 353/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0501 - acc: 0.9885 - fscore: 0.9885 - val_loss: 0.2156 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 354/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0399 - acc: 0.9922 - fscore: 0.9922 - val_loss: 0.2045 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 355/700\n",
+ "1920/1920 [==============================] - 2s 874us/step - loss: 0.0452 - acc: 0.9906 - fscore: 0.9906 - val_loss: 0.2050 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 356/700\n",
+ "1920/1920 [==============================] - 2s 887us/step - loss: 0.0388 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.1947 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 357/700\n",
+ "1920/1920 [==============================] - 2s 906us/step - loss: 0.0447 - acc: 0.9911 - fscore: 0.9911 - val_loss: 0.2120 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 358/700\n",
+ "1920/1920 [==============================] - 2s 904us/step - loss: 0.0471 - acc: 0.9901 - fscore: 0.9901 - val_loss: 0.2502 - val_acc: 0.9062 - val_fscore: 0.9062\n",
+ "Epoch 359/700\n",
+ "1920/1920 [==============================] - 2s 853us/step - loss: 0.0421 - acc: 0.9922 - fscore: 0.9922 - val_loss: 0.2028 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 360/700\n",
+ "1920/1920 [==============================] - 2s 810us/step - loss: 0.0406 - acc: 0.9922 - fscore: 0.9922 - val_loss: 0.3207 - val_acc: 0.8625 - val_fscore: 0.8625\n",
+ "Epoch 361/700\n",
+ "1920/1920 [==============================] - 2s 912us/step - loss: 0.0405 - acc: 0.9911 - fscore: 0.9911 - val_loss: 0.2302 - val_acc: 0.9083 - val_fscore: 0.9083\n",
+ "Epoch 362/700\n",
+ "1920/1920 [==============================] - 2s 930us/step - loss: 0.0394 - acc: 0.9927 - fscore: 0.9927 - val_loss: 0.2208 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 363/700\n",
+ "1920/1920 [==============================] - 2s 882us/step - loss: 0.0413 - acc: 0.9927 - fscore: 0.9927 - val_loss: 0.2245 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 364/700\n",
+ "1920/1920 [==============================] - 2s 922us/step - loss: 0.0412 - acc: 0.9896 - fscore: 0.9896 - val_loss: 0.2662 - val_acc: 0.8854 - val_fscore: 0.8854\n",
+ "Epoch 365/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0442 - acc: 0.9906 - fscore: 0.9906 - val_loss: 0.2051 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 366/700\n",
+ "1920/1920 [==============================] - 2s 920us/step - loss: 0.0410 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2231 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 367/700\n",
+ "1920/1920 [==============================] - 2s 906us/step - loss: 0.0439 - acc: 0.9896 - fscore: 0.9896 - val_loss: 0.2042 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 368/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0433 - acc: 0.9885 - fscore: 0.9885 - val_loss: 0.2628 - val_acc: 0.8896 - val_fscore: 0.8896\n",
+ "Epoch 369/700\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0405 - acc: 0.9906 - fscore: 0.9906 - val_loss: 0.2146 - val_acc: 0.9125 - val_fscore: 0.9125\n",
+ "Epoch 370/700\n",
+ "1920/1920 [==============================] - 2s 930us/step - loss: 0.0376 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.2122 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 371/700\n",
+ "1920/1920 [==============================] - 2s 894us/step - loss: 0.0385 - acc: 0.9927 - fscore: 0.9927 - val_loss: 0.3235 - val_acc: 0.8625 - val_fscore: 0.8625\n",
+ "Epoch 372/700\n",
+ "1920/1920 [==============================] - 2s 828us/step - loss: 0.0423 - acc: 0.9896 - fscore: 0.9896 - val_loss: 0.3636 - val_acc: 0.8250 - val_fscore: 0.8250\n",
+ "Epoch 373/700\n",
+ "1920/1920 [==============================] - 2s 925us/step - loss: 0.0393 - acc: 0.9938 - fscore: 0.9937 - val_loss: 0.2442 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 374/700\n",
+ "1920/1920 [==============================] - 1s 778us/step - loss: 0.0406 - acc: 0.9927 - fscore: 0.9927 - val_loss: 0.2083 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 375/700\n",
+ "1920/1920 [==============================] - 1s 767us/step - loss: 0.0387 - acc: 0.9917 - fscore: 0.9917 - val_loss: 0.1847 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 376/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.0403 - acc: 0.9917 - fscore: 0.9917 - val_loss: 0.2187 - val_acc: 0.9187 - val_fscore: 0.9187\n",
+ "Epoch 377/700\n",
+ "1920/1920 [==============================] - 1s 755us/step - loss: 0.0394 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2168 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 378/700\n",
+ "1920/1920 [==============================] - 2s 842us/step - loss: 0.0345 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.2387 - val_acc: 0.9042 - val_fscore: 0.9042\n",
+ "Epoch 379/700\n",
+ "1920/1920 [==============================] - 2s 824us/step - loss: 0.0423 - acc: 0.9911 - fscore: 0.9911 - val_loss: 0.2110 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 380/700\n",
+ "1920/1920 [==============================] - 2s 827us/step - loss: 0.0390 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2150 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 381/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.0444 - acc: 0.9891 - fscore: 0.9891 - val_loss: 0.2310 - val_acc: 0.9000 - val_fscore: 0.9000\n",
+ "Epoch 382/700\n",
+ "1920/1920 [==============================] - 2s 868us/step - loss: 0.0423 - acc: 0.9911 - fscore: 0.9911 - val_loss: 0.2036 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 383/700\n",
+ "1920/1920 [==============================] - 2s 794us/step - loss: 0.0360 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.2003 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 384/700\n",
+ "1920/1920 [==============================] - 2s 849us/step - loss: 0.0408 - acc: 0.9891 - fscore: 0.9891 - val_loss: 0.2555 - val_acc: 0.8896 - val_fscore: 0.8896\n",
+ "Epoch 385/700\n",
+ "1920/1920 [==============================] - 2s 891us/step - loss: 0.0393 - acc: 0.9906 - fscore: 0.9906 - val_loss: 0.1950 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 386/700\n",
+ "1920/1920 [==============================] - 1s 777us/step - loss: 0.0360 - acc: 0.9938 - fscore: 0.9937 - val_loss: 0.2409 - val_acc: 0.8938 - val_fscore: 0.8937\n",
+ "Epoch 387/700\n",
+ "1920/1920 [==============================] - 2s 880us/step - loss: 0.0356 - acc: 0.9943 - fscore: 0.9943 - val_loss: 0.2305 - val_acc: 0.9104 - val_fscore: 0.9104\n",
+ "Epoch 388/700\n",
+ "1920/1920 [==============================] - 2s 896us/step - loss: 0.0431 - acc: 0.9885 - fscore: 0.9885 - val_loss: 0.1908 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 389/700\n",
+ "1920/1920 [==============================] - 2s 856us/step - loss: 0.0394 - acc: 0.9896 - fscore: 0.9896 - val_loss: 0.2108 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 390/700\n",
+ "1920/1920 [==============================] - 2s 832us/step - loss: 0.0315 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1997 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 391/700\n",
+ "1920/1920 [==============================] - 2s 820us/step - loss: 0.0325 - acc: 0.9943 - fscore: 0.9943 - val_loss: 0.1895 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 392/700\n",
+ "1920/1920 [==============================] - 2s 879us/step - loss: 0.0356 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2654 - val_acc: 0.8917 - val_fscore: 0.8917\n",
+ "Epoch 393/700\n",
+ "1920/1920 [==============================] - 2s 974us/step - loss: 0.0363 - acc: 0.9927 - fscore: 0.9927 - val_loss: 0.1852 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 394/700\n",
+ "1920/1920 [==============================] - 2s 915us/step - loss: 0.0378 - acc: 0.9927 - fscore: 0.9927 - val_loss: 0.2197 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 395/700\n",
+ "1920/1920 [==============================] - 2s 915us/step - loss: 0.0349 - acc: 0.9938 - fscore: 0.9937 - val_loss: 0.1999 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 396/700\n",
+ "1920/1920 [==============================] - 2s 859us/step - loss: 0.0394 - acc: 0.9906 - fscore: 0.9906 - val_loss: 0.1875 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 397/700\n",
+ "1920/1920 [==============================] - 2s 826us/step - loss: 0.0377 - acc: 0.9922 - fscore: 0.9922 - val_loss: 0.2411 - val_acc: 0.8896 - val_fscore: 0.8896\n",
+ "Epoch 398/700\n",
+ "1920/1920 [==============================] - 2s 869us/step - loss: 0.0370 - acc: 0.9917 - fscore: 0.9917 - val_loss: 0.2240 - val_acc: 0.9125 - val_fscore: 0.9125\n",
+ "Epoch 399/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0367 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2393 - val_acc: 0.8979 - val_fscore: 0.8979\n",
+ "Epoch 400/700\n",
+ "1920/1920 [==============================] - 2s 899us/step - loss: 0.0310 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1908 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 401/700\n",
+ "1920/1920 [==============================] - 2s 882us/step - loss: 0.0341 - acc: 0.9917 - fscore: 0.9917 - val_loss: 0.2950 - val_acc: 0.8625 - val_fscore: 0.8625\n",
+ "Epoch 402/700\n",
+ "1920/1920 [==============================] - 2s 964us/step - loss: 0.0327 - acc: 0.9943 - fscore: 0.9943 - val_loss: 0.1961 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 403/700\n",
+ "1920/1920 [==============================] - 2s 943us/step - loss: 0.0338 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1896 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 404/700\n",
+ "1920/1920 [==============================] - 2s 843us/step - loss: 0.0302 - acc: 0.9927 - fscore: 0.9927 - val_loss: 0.2039 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 405/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0350 - acc: 0.9896 - fscore: 0.9896 - val_loss: 0.1895 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 406/700\n",
+ "1920/1920 [==============================] - 2s 923us/step - loss: 0.0342 - acc: 0.9911 - fscore: 0.9911 - val_loss: 0.1969 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 407/700\n",
+ "1920/1920 [==============================] - 2s 873us/step - loss: 0.0334 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2078 - val_acc: 0.9125 - val_fscore: 0.9125\n",
+ "Epoch 408/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0272 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1930 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 409/700\n",
+ "1920/1920 [==============================] - 2s 943us/step - loss: 0.0309 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1908 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 410/700\n",
+ "1920/1920 [==============================] - 2s 904us/step - loss: 0.0287 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.2176 - val_acc: 0.9083 - val_fscore: 0.9083\n",
+ "Epoch 411/700\n",
+ "1920/1920 [==============================] - 2s 864us/step - loss: 0.0327 - acc: 0.9927 - fscore: 0.9927 - val_loss: 0.1746 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 412/700\n",
+ "1920/1920 [==============================] - 2s 820us/step - loss: 0.0282 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1853 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 413/700\n",
+ "1920/1920 [==============================] - 2s 921us/step - loss: 0.0301 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1822 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 414/700\n",
+ "1920/1920 [==============================] - 2s 946us/step - loss: 0.0302 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1836 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 415/700\n",
+ "1920/1920 [==============================] - 2s 917us/step - loss: 0.0331 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2026 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 416/700\n",
+ "1920/1920 [==============================] - 2s 943us/step - loss: 0.0331 - acc: 0.9938 - fscore: 0.9937 - val_loss: 0.2442 - val_acc: 0.9021 - val_fscore: 0.9021\n",
+ "Epoch 417/700\n",
+ "1920/1920 [==============================] - 2s 893us/step - loss: 0.0320 - acc: 0.9943 - fscore: 0.9943 - val_loss: 0.1864 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 418/700\n",
+ "1920/1920 [==============================] - 2s 900us/step - loss: 0.0328 - acc: 0.9938 - fscore: 0.9937 - val_loss: 0.1787 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 419/700\n",
+ "1920/1920 [==============================] - 2s 886us/step - loss: 0.0292 - acc: 0.9938 - fscore: 0.9937 - val_loss: 0.2125 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 420/700\n",
+ "1920/1920 [==============================] - 2s 922us/step - loss: 0.0273 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.2179 - val_acc: 0.9083 - val_fscore: 0.9083\n",
+ "Epoch 421/700\n",
+ "1920/1920 [==============================] - 2s 928us/step - loss: 0.0279 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.2249 - val_acc: 0.8979 - val_fscore: 0.8979\n",
+ "Epoch 422/700\n",
+ "1920/1920 [==============================] - 2s 910us/step - loss: 0.0307 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.2110 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 423/700\n",
+ "1920/1920 [==============================] - 2s 878us/step - loss: 0.0315 - acc: 0.9938 - fscore: 0.9937 - val_loss: 0.2113 - val_acc: 0.9125 - val_fscore: 0.9125\n",
+ "Epoch 424/700\n",
+ "1920/1920 [==============================] - 2s 983us/step - loss: 0.0318 - acc: 0.9911 - fscore: 0.9911 - val_loss: 0.1834 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 425/700\n",
+ "1920/1920 [==============================] - 2s 869us/step - loss: 0.0256 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1825 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 426/700\n",
+ "1920/1920 [==============================] - 2s 899us/step - loss: 0.0223 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1784 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 427/700\n",
+ "1920/1920 [==============================] - 2s 963us/step - loss: 0.0282 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1747 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 428/700\n",
+ "1920/1920 [==============================] - 2s 866us/step - loss: 0.0285 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1886 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 429/700\n",
+ "1920/1920 [==============================] - 2s 897us/step - loss: 0.0274 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1954 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 430/700\n",
+ "1920/1920 [==============================] - 2s 805us/step - loss: 0.0300 - acc: 0.9943 - fscore: 0.9943 - val_loss: 0.1731 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 431/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.0277 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.2051 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 432/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.0278 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1874 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 433/700\n",
+ "1920/1920 [==============================] - 1s 760us/step - loss: 0.0244 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.2439 - val_acc: 0.8938 - val_fscore: 0.8937\n",
+ "Epoch 434/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.0313 - acc: 0.9938 - fscore: 0.9937 - val_loss: 0.1787 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 435/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.0259 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1895 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 436/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.0225 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1766 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 437/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0258 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1644 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 438/700\n",
+ "1920/1920 [==============================] - 1s 758us/step - loss: 0.0268 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1900 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 439/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0226 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1797 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 440/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.0288 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1804 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 441/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0225 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1826 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 442/700\n",
+ "1920/1920 [==============================] - 1s 757us/step - loss: 0.0300 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2074 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 443/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.0316 - acc: 0.9927 - fscore: 0.9927 - val_loss: 0.1854 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 444/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.0300 - acc: 0.9927 - fscore: 0.9927 - val_loss: 0.2286 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 445/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0259 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.2136 - val_acc: 0.9104 - val_fscore: 0.9104\n",
+ "Epoch 446/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.0266 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.2086 - val_acc: 0.9104 - val_fscore: 0.9104\n",
+ "Epoch 447/700\n",
+ "1920/1920 [==============================] - 1s 759us/step - loss: 0.0310 - acc: 0.9922 - fscore: 0.9922 - val_loss: 0.1771 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 448/700\n",
+ "1920/1920 [==============================] - 1s 763us/step - loss: 0.0240 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.2011 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 449/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.0251 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1975 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 450/700\n",
+ "1920/1920 [==============================] - 2s 932us/step - loss: 0.0289 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.2411 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 451/700\n",
+ "1920/1920 [==============================] - 2s 845us/step - loss: 0.0250 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.2021 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 452/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0268 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1962 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 453/700\n",
+ "1920/1920 [==============================] - 2s 846us/step - loss: 0.0259 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1851 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 454/700\n",
+ "1920/1920 [==============================] - 2s 866us/step - loss: 0.0250 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.2023 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 455/700\n",
+ "1920/1920 [==============================] - 2s 794us/step - loss: 0.0238 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1921 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 456/700\n",
+ "1920/1920 [==============================] - 2s 942us/step - loss: 0.0268 - acc: 0.9932 - fscore: 0.9932 - val_loss: 0.1818 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 457/700\n",
+ "1920/1920 [==============================] - 2s 884us/step - loss: 0.0208 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1933 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 458/700\n",
+ "1920/1920 [==============================] - 2s 889us/step - loss: 0.0255 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.2695 - val_acc: 0.8792 - val_fscore: 0.8792\n",
+ "Epoch 459/700\n",
+ "1920/1920 [==============================] - 2s 816us/step - loss: 0.0265 - acc: 0.9938 - fscore: 0.9937 - val_loss: 0.2221 - val_acc: 0.9125 - val_fscore: 0.9125\n",
+ "Epoch 460/700\n",
+ "1920/1920 [==============================] - 2s 920us/step - loss: 0.0268 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1845 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 461/700\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1920/1920 [==============================] - 2s 828us/step - loss: 0.0236 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1788 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 462/700\n",
+ "1920/1920 [==============================] - 2s 828us/step - loss: 0.0260 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.2460 - val_acc: 0.8979 - val_fscore: 0.8979\n",
+ "Epoch 463/700\n",
+ "1920/1920 [==============================] - 1s 757us/step - loss: 0.0224 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1673 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 464/700\n",
+ "1920/1920 [==============================] - 2s 902us/step - loss: 0.0222 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1954 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 465/700\n",
+ "1920/1920 [==============================] - 2s 816us/step - loss: 0.0231 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1839 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 466/700\n",
+ "1920/1920 [==============================] - 2s 858us/step - loss: 0.0253 - acc: 0.9943 - fscore: 0.9943 - val_loss: 0.1803 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 467/700\n",
+ "1920/1920 [==============================] - 2s 908us/step - loss: 0.0212 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1765 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 468/700\n",
+ "1920/1920 [==============================] - 2s 860us/step - loss: 0.0253 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1811 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 469/700\n",
+ "1920/1920 [==============================] - 1s 775us/step - loss: 0.0243 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1951 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 470/700\n",
+ "1920/1920 [==============================] - 2s 854us/step - loss: 0.0265 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1795 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 471/700\n",
+ "1920/1920 [==============================] - 2s 888us/step - loss: 0.0274 - acc: 0.9943 - fscore: 0.9943 - val_loss: 0.1752 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 472/700\n",
+ "1920/1920 [==============================] - 2s 975us/step - loss: 0.0226 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1719 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 473/700\n",
+ "1920/1920 [==============================] - 2s 837us/step - loss: 0.0264 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.2229 - val_acc: 0.9083 - val_fscore: 0.9083\n",
+ "Epoch 474/700\n",
+ "1920/1920 [==============================] - 2s 918us/step - loss: 0.0236 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1772 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 475/700\n",
+ "1920/1920 [==============================] - 2s 902us/step - loss: 0.0257 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1735 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 476/700\n",
+ "1920/1920 [==============================] - 2s 845us/step - loss: 0.0251 - acc: 0.9943 - fscore: 0.9943 - val_loss: 0.1927 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 477/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0204 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1793 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 478/700\n",
+ "1920/1920 [==============================] - 2s 824us/step - loss: 0.0234 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1815 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 479/700\n",
+ "1920/1920 [==============================] - 2s 862us/step - loss: 0.0250 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1957 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 480/700\n",
+ "1920/1920 [==============================] - 2s 936us/step - loss: 0.0228 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1934 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 481/700\n",
+ "1920/1920 [==============================] - 2s 849us/step - loss: 0.0240 - acc: 0.9938 - fscore: 0.9937 - val_loss: 0.1764 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 482/700\n",
+ "1920/1920 [==============================] - 2s 873us/step - loss: 0.0265 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1823 - val_acc: 0.9187 - val_fscore: 0.9187\n",
+ "Epoch 483/700\n",
+ "1920/1920 [==============================] - 2s 982us/step - loss: 0.0210 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.2128 - val_acc: 0.9062 - val_fscore: 0.9062\n",
+ "Epoch 484/700\n",
+ "1920/1920 [==============================] - 2s 941us/step - loss: 0.0195 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1734 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 485/700\n",
+ "1920/1920 [==============================] - 2s 841us/step - loss: 0.0215 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1901 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 486/700\n",
+ "1920/1920 [==============================] - 2s 844us/step - loss: 0.0243 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.2073 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 487/700\n",
+ "1920/1920 [==============================] - 2s 868us/step - loss: 0.0228 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1779 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 488/700\n",
+ "1920/1920 [==============================] - 2s 877us/step - loss: 0.0205 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1900 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 489/700\n",
+ "1920/1920 [==============================] - 2s 857us/step - loss: 0.0245 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1722 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 490/700\n",
+ "1920/1920 [==============================] - 2s 820us/step - loss: 0.0197 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.2019 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 491/700\n",
+ "1920/1920 [==============================] - 2s 889us/step - loss: 0.0216 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1731 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 492/700\n",
+ "1920/1920 [==============================] - 2s 884us/step - loss: 0.0201 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1692 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 493/700\n",
+ "1920/1920 [==============================] - 2s 821us/step - loss: 0.0200 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.2021 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 494/700\n",
+ "1920/1920 [==============================] - 2s 878us/step - loss: 0.0245 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1854 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 495/700\n",
+ "1920/1920 [==============================] - 2s 916us/step - loss: 0.0217 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1913 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 496/700\n",
+ "1920/1920 [==============================] - 2s 959us/step - loss: 0.0196 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.2076 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 497/700\n",
+ "1920/1920 [==============================] - 2s 836us/step - loss: 0.0184 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1650 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 498/700\n",
+ "1920/1920 [==============================] - 2s 799us/step - loss: 0.0233 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1814 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 499/700\n",
+ "1920/1920 [==============================] - 2s 789us/step - loss: 0.0223 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1721 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 500/700\n",
+ "1920/1920 [==============================] - 2s 894us/step - loss: 0.0227 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.2286 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 501/700\n",
+ "1920/1920 [==============================] - 2s 938us/step - loss: 0.0194 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1785 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 502/700\n",
+ "1920/1920 [==============================] - 2s 866us/step - loss: 0.0208 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.2671 - val_acc: 0.8917 - val_fscore: 0.8917\n",
+ "Epoch 503/700\n",
+ "1920/1920 [==============================] - 2s 832us/step - loss: 0.0220 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.2051 - val_acc: 0.9187 - val_fscore: 0.9187\n",
+ "Epoch 504/700\n",
+ "1920/1920 [==============================] - 2s 859us/step - loss: 0.0228 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1734 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 505/700\n",
+ "1920/1920 [==============================] - 2s 927us/step - loss: 0.0168 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1872 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 506/700\n",
+ "1920/1920 [==============================] - 2s 994us/step - loss: 0.0210 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1821 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 507/700\n",
+ "1920/1920 [==============================] - 2s 912us/step - loss: 0.0250 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1871 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 508/700\n",
+ "1920/1920 [==============================] - 2s 914us/step - loss: 0.0225 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.2437 - val_acc: 0.9000 - val_fscore: 0.9000\n",
+ "Epoch 509/700\n",
+ "1920/1920 [==============================] - 2s 886us/step - loss: 0.0234 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1651 - val_acc: 0.9417 - val_fscore: 0.9417\n",
+ "Epoch 510/700\n",
+ "1920/1920 [==============================] - 2s 796us/step - loss: 0.0206 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1663 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 511/700\n",
+ "1920/1920 [==============================] - 2s 868us/step - loss: 0.0194 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1706 - val_acc: 0.9437 - val_fscore: 0.9437\n",
+ "Epoch 512/700\n",
+ "1920/1920 [==============================] - 2s 965us/step - loss: 0.0186 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.2321 - val_acc: 0.9125 - val_fscore: 0.9125\n",
+ "Epoch 513/700\n",
+ "1920/1920 [==============================] - 2s 897us/step - loss: 0.0207 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1915 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 514/700\n",
+ "1920/1920 [==============================] - 2s 910us/step - loss: 0.0245 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1772 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 515/700\n",
+ "1920/1920 [==============================] - 2s 831us/step - loss: 0.0203 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1746 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 516/700\n",
+ "1920/1920 [==============================] - 2s 808us/step - loss: 0.0198 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1888 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 517/700\n",
+ "1920/1920 [==============================] - 2s 936us/step - loss: 0.0187 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1811 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 518/700\n",
+ "1920/1920 [==============================] - 2s 958us/step - loss: 0.0210 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1739 - val_acc: 0.9417 - val_fscore: 0.9417\n",
+ "Epoch 519/700\n",
+ "1920/1920 [==============================] - 2s 906us/step - loss: 0.0255 - acc: 0.9922 - fscore: 0.9922 - val_loss: 0.1740 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 520/700\n",
+ "1920/1920 [==============================] - 2s 909us/step - loss: 0.0161 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.2149 - val_acc: 0.9104 - val_fscore: 0.9104\n",
+ "Epoch 521/700\n",
+ "1920/1920 [==============================] - 2s 870us/step - loss: 0.0192 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1808 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 522/700\n",
+ "1920/1920 [==============================] - 2s 954us/step - loss: 0.0193 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1877 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 523/700\n",
+ "1920/1920 [==============================] - 2s 889us/step - loss: 0.0198 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1720 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 524/700\n",
+ "1920/1920 [==============================] - 2s 942us/step - loss: 0.0194 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1627 - val_acc: 0.9417 - val_fscore: 0.9417\n",
+ "Epoch 525/700\n",
+ "1920/1920 [==============================] - 2s 909us/step - loss: 0.0212 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1662 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 526/700\n",
+ "1920/1920 [==============================] - 1s 764us/step - loss: 0.0195 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.2001 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 527/700\n",
+ "1920/1920 [==============================] - 1s 768us/step - loss: 0.0169 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1844 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 528/700\n",
+ "1920/1920 [==============================] - 2s 934us/step - loss: 0.0205 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1668 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 529/700\n",
+ "1920/1920 [==============================] - 2s 953us/step - loss: 0.0208 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1734 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 530/700\n",
+ "1920/1920 [==============================] - 2s 866us/step - loss: 0.0153 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.2207 - val_acc: 0.9083 - val_fscore: 0.9083\n",
+ "Epoch 531/700\n",
+ "1920/1920 [==============================] - 2s 864us/step - loss: 0.0176 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1990 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 532/700\n",
+ "1920/1920 [==============================] - 2s 904us/step - loss: 0.0215 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1713 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 533/700\n",
+ "1920/1920 [==============================] - 2s 862us/step - loss: 0.0190 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1706 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 534/700\n",
+ "1920/1920 [==============================] - 2s 866us/step - loss: 0.0204 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1770 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 535/700\n",
+ "1920/1920 [==============================] - 2s 935us/step - loss: 0.0181 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1720 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 536/700\n",
+ "1920/1920 [==============================] - 2s 910us/step - loss: 0.0173 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1913 - val_acc: 0.9208 - val_fscore: 0.9208\n",
+ "Epoch 537/700\n",
+ "1920/1920 [==============================] - 2s 828us/step - loss: 0.0205 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1697 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 538/700\n",
+ "1920/1920 [==============================] - 1s 761us/step - loss: 0.0210 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1743 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 539/700\n",
+ "1920/1920 [==============================] - 2s 782us/step - loss: 0.0170 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1954 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 540/700\n",
+ "1920/1920 [==============================] - 2s 812us/step - loss: 0.0198 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1862 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 541/700\n",
+ "1920/1920 [==============================] - 2s 861us/step - loss: 0.0167 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1715 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 542/700\n",
+ "1920/1920 [==============================] - 2s 782us/step - loss: 0.0150 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1728 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 543/700\n",
+ "1920/1920 [==============================] - 2s 995us/step - loss: 0.0189 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1698 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 544/700\n",
+ "1920/1920 [==============================] - 2s 817us/step - loss: 0.0202 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1756 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 545/700\n",
+ "1920/1920 [==============================] - 2s 853us/step - loss: 0.0178 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.2046 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 546/700\n",
+ "1920/1920 [==============================] - 2s 840us/step - loss: 0.0195 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1619 - val_acc: 0.9437 - val_fscore: 0.9437\n",
+ "Epoch 547/700\n",
+ "1920/1920 [==============================] - 2s 832us/step - loss: 0.0170 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1669 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 548/700\n",
+ "1920/1920 [==============================] - 2s 945us/step - loss: 0.0169 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1582 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 549/700\n",
+ "1920/1920 [==============================] - 2s 900us/step - loss: 0.0190 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1896 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 550/700\n",
+ "1920/1920 [==============================] - 2s 840us/step - loss: 0.0186 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1666 - val_acc: 0.9417 - val_fscore: 0.9417\n",
+ "Epoch 551/700\n",
+ "1920/1920 [==============================] - 2s 926us/step - loss: 0.0179 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1713 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 552/700\n",
+ "1920/1920 [==============================] - 2s 981us/step - loss: 0.0195 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1973 - val_acc: 0.9187 - val_fscore: 0.9187\n",
+ "Epoch 553/700\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1920/1920 [==============================] - 2s 904us/step - loss: 0.0155 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1666 - val_acc: 0.9417 - val_fscore: 0.9417\n",
+ "Epoch 554/700\n",
+ "1920/1920 [==============================] - 2s 787us/step - loss: 0.0140 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1720 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 555/700\n",
+ "1920/1920 [==============================] - 2s 846us/step - loss: 0.0159 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1860 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 556/700\n",
+ "1920/1920 [==============================] - 2s 936us/step - loss: 0.0157 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1595 - val_acc: 0.9417 - val_fscore: 0.9417\n",
+ "Epoch 557/700\n",
+ "1920/1920 [==============================] - 2s 858us/step - loss: 0.0168 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1647 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 558/700\n",
+ "1920/1920 [==============================] - 2s 938us/step - loss: 0.0156 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1881 - val_acc: 0.9187 - val_fscore: 0.9187\n",
+ "Epoch 559/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0174 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1673 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 560/700\n",
+ "1920/1920 [==============================] - 2s 922us/step - loss: 0.0189 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1787 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 561/700\n",
+ "1920/1920 [==============================] - 2s 859us/step - loss: 0.0221 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1884 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 562/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0165 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1785 - val_acc: 0.9458 - val_fscore: 0.9458\n",
+ "Epoch 563/700\n",
+ "1920/1920 [==============================] - 2s 820us/step - loss: 0.0189 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1605 - val_acc: 0.9458 - val_fscore: 0.9458\n",
+ "Epoch 564/700\n",
+ "1920/1920 [==============================] - 2s 830us/step - loss: 0.0204 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1687 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 565/700\n",
+ "1920/1920 [==============================] - 2s 881us/step - loss: 0.0181 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1641 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 566/700\n",
+ "1920/1920 [==============================] - 2s 866us/step - loss: 0.0185 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1669 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 567/700\n",
+ "1920/1920 [==============================] - 2s 863us/step - loss: 0.0195 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1651 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 568/700\n",
+ "1920/1920 [==============================] - 2s 803us/step - loss: 0.0185 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1617 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 569/700\n",
+ "1920/1920 [==============================] - 2s 834us/step - loss: 0.0167 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1657 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 570/700\n",
+ "1920/1920 [==============================] - 2s 877us/step - loss: 0.0174 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1670 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 571/700\n",
+ "1920/1920 [==============================] - 2s 981us/step - loss: 0.0184 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1816 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 572/700\n",
+ "1920/1920 [==============================] - 2s 1ms/step - loss: 0.0137 - acc: 0.9995 - fscore: 0.9995 - val_loss: 0.1691 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 573/700\n",
+ "1920/1920 [==============================] - 2s 872us/step - loss: 0.0174 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1924 - val_acc: 0.9187 - val_fscore: 0.9187\n",
+ "Epoch 574/700\n",
+ "1920/1920 [==============================] - 2s 951us/step - loss: 0.0160 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1698 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 575/700\n",
+ "1920/1920 [==============================] - 2s 889us/step - loss: 0.0196 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1562 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 576/700\n",
+ "1920/1920 [==============================] - 2s 879us/step - loss: 0.0174 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1697 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 577/700\n",
+ "1920/1920 [==============================] - 2s 955us/step - loss: 0.0183 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1712 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 578/700\n",
+ "1920/1920 [==============================] - 2s 965us/step - loss: 0.0176 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1983 - val_acc: 0.9146 - val_fscore: 0.9146\n",
+ "Epoch 579/700\n",
+ "1920/1920 [==============================] - 2s 941us/step - loss: 0.0217 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1624 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 580/700\n",
+ "1920/1920 [==============================] - 2s 977us/step - loss: 0.0144 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1581 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 581/700\n",
+ "1920/1920 [==============================] - 2s 788us/step - loss: 0.0213 - acc: 0.9943 - fscore: 0.9943 - val_loss: 0.1633 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 582/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0172 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1650 - val_acc: 0.9417 - val_fscore: 0.9417\n",
+ "Epoch 583/700\n",
+ "1920/1920 [==============================] - 2s 856us/step - loss: 0.0140 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1675 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 584/700\n",
+ "1920/1920 [==============================] - 2s 816us/step - loss: 0.0171 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1712 - val_acc: 0.9417 - val_fscore: 0.9417\n",
+ "Epoch 585/700\n",
+ "1920/1920 [==============================] - 2s 884us/step - loss: 0.0183 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1688 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 586/700\n",
+ "1920/1920 [==============================] - 2s 791us/step - loss: 0.0162 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1619 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 587/700\n",
+ "1920/1920 [==============================] - 2s 796us/step - loss: 0.0162 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1558 - val_acc: 0.9437 - val_fscore: 0.9437\n",
+ "Epoch 588/700\n",
+ "1920/1920 [==============================] - 2s 809us/step - loss: 0.0168 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1593 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 589/700\n",
+ "1920/1920 [==============================] - 2s 802us/step - loss: 0.0166 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1655 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 590/700\n",
+ "1920/1920 [==============================] - 2s 796us/step - loss: 0.0176 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1647 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 591/700\n",
+ "1920/1920 [==============================] - 2s 813us/step - loss: 0.0200 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1645 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 592/700\n",
+ "1920/1920 [==============================] - 2s 871us/step - loss: 0.0163 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1836 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 593/700\n",
+ "1920/1920 [==============================] - 2s 818us/step - loss: 0.0170 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1832 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 594/700\n",
+ "1920/1920 [==============================] - 1s 765us/step - loss: 0.0158 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1759 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 595/700\n",
+ "1920/1920 [==============================] - 1s 760us/step - loss: 0.0192 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1596 - val_acc: 0.9417 - val_fscore: 0.9417\n",
+ "Epoch 596/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.0140 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1650 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 597/700\n",
+ "1920/1920 [==============================] - 1s 758us/step - loss: 0.0151 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1591 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 598/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.0154 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1972 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 599/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.0161 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1556 - val_acc: 0.9458 - val_fscore: 0.9458\n",
+ "Epoch 600/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0162 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1554 - val_acc: 0.9437 - val_fscore: 0.9437\n",
+ "Epoch 601/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.0134 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1535 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 602/700\n",
+ "1920/1920 [==============================] - 1s 733us/step - loss: 0.0146 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1634 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 603/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.0141 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1659 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 604/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.0132 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1584 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 605/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0148 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1737 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 606/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.0168 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1598 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 607/700\n",
+ "1920/1920 [==============================] - 1s 761us/step - loss: 0.0177 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1665 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 608/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0153 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1493 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 609/700\n",
+ "1920/1920 [==============================] - 1s 760us/step - loss: 0.0123 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1527 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 610/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.0166 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1553 - val_acc: 0.9437 - val_fscore: 0.9437\n",
+ "Epoch 611/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0173 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1559 - val_acc: 0.9458 - val_fscore: 0.9458\n",
+ "Epoch 612/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.0164 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1610 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 613/700\n",
+ "1920/1920 [==============================] - 1s 760us/step - loss: 0.0140 - acc: 0.9995 - fscore: 0.9995 - val_loss: 0.1547 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 614/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0186 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1876 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 615/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.0174 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1585 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 616/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.0191 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1593 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 617/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0178 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1563 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 618/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0147 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1674 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 619/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0119 - acc: 1.0000 - fscore: 1.0000 - val_loss: 0.1718 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 620/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0141 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1764 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 621/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0187 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1610 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 622/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0140 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1595 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 623/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.0140 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1692 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 624/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0176 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1613 - val_acc: 0.9417 - val_fscore: 0.9417\n",
+ "Epoch 625/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.0156 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1705 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 626/700\n",
+ "1920/1920 [==============================] - 1s 730us/step - loss: 0.0168 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1724 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 627/700\n",
+ "1920/1920 [==============================] - 1s 750us/step - loss: 0.0110 - acc: 1.0000 - fscore: 1.0000 - val_loss: 0.1787 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 628/700\n",
+ "1920/1920 [==============================] - 1s 768us/step - loss: 0.0156 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1633 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 629/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.0173 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1616 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 630/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.0130 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1710 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 631/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.0131 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1702 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 632/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.0159 - acc: 0.9995 - fscore: 0.9995 - val_loss: 0.1923 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 633/700\n",
+ "1920/1920 [==============================] - 1s 760us/step - loss: 0.0152 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1683 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 634/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0140 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1582 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 635/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0175 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1693 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 636/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.0152 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1676 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 637/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0144 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1564 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 638/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.0158 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1703 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 639/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0203 - acc: 0.9948 - fscore: 0.9948 - val_loss: 0.1837 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 640/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.0183 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1878 - val_acc: 0.9229 - val_fscore: 0.9229\n",
+ "Epoch 641/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0123 - acc: 0.9995 - fscore: 0.9995 - val_loss: 0.1595 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 642/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.0166 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1551 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 643/700\n",
+ "1920/1920 [==============================] - 1s 741us/step - loss: 0.0170 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1536 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 644/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.0158 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1704 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 645/700\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.0154 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1622 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 646/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0147 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1627 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 647/700\n",
+ "1920/1920 [==============================] - 1s 760us/step - loss: 0.0132 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1646 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 648/700\n",
+ "1920/1920 [==============================] - 1s 736us/step - loss: 0.0152 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1587 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 649/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0150 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1669 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 650/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0145 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1705 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 651/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.0146 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1611 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 652/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0178 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1627 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 653/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0139 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1810 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 654/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.0134 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1667 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 655/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0181 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1552 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 656/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.0139 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1580 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 657/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.0141 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1596 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 658/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0140 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1654 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 659/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0176 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.2037 - val_acc: 0.9167 - val_fscore: 0.9167\n",
+ "Epoch 660/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0173 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1602 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 661/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.0135 - acc: 0.9995 - fscore: 0.9995 - val_loss: 0.1644 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 662/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.0132 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1723 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 663/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.0146 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1652 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 664/700\n",
+ "1920/1920 [==============================] - 1s 757us/step - loss: 0.0159 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1615 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 665/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0108 - acc: 0.9995 - fscore: 0.9995 - val_loss: 0.1674 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 666/700\n",
+ "1920/1920 [==============================] - 1s 766us/step - loss: 0.0158 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1685 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 667/700\n",
+ "1920/1920 [==============================] - 1s 773us/step - loss: 0.0140 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1705 - val_acc: 0.9271 - val_fscore: 0.9271\n",
+ "Epoch 668/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.0149 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1636 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 669/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0163 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1807 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 670/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.0132 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1576 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 671/700\n",
+ "1920/1920 [==============================] - 1s 737us/step - loss: 0.0158 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1685 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 672/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.0140 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1572 - val_acc: 0.9375 - val_fscore: 0.9375\n",
+ "Epoch 673/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0143 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.2204 - val_acc: 0.9083 - val_fscore: 0.9083\n",
+ "Epoch 674/700\n",
+ "1920/1920 [==============================] - 1s 740us/step - loss: 0.0140 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1616 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 675/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0144 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1511 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 676/700\n",
+ "1920/1920 [==============================] - 1s 753us/step - loss: 0.0118 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1534 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 677/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.0157 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1629 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 678/700\n",
+ "1920/1920 [==============================] - 1s 735us/step - loss: 0.0159 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1596 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 679/700\n",
+ "1920/1920 [==============================] - 1s 736us/step - loss: 0.0149 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1703 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 680/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0153 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1574 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 681/700\n",
+ "1920/1920 [==============================] - 1s 747us/step - loss: 0.0123 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1588 - val_acc: 0.9292 - val_fscore: 0.9292\n",
+ "Epoch 682/700\n",
+ "1920/1920 [==============================] - 1s 739us/step - loss: 0.0137 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1612 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 683/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0114 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1688 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 684/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0131 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1562 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 685/700\n",
+ "1920/1920 [==============================] - 1s 745us/step - loss: 0.0114 - acc: 1.0000 - fscore: 1.0000 - val_loss: 0.1614 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 686/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.0139 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1661 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 687/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.0142 - acc: 0.9979 - fscore: 0.9979 - val_loss: 0.1656 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 688/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0157 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1566 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 689/700\n",
+ "1920/1920 [==============================] - 1s 746us/step - loss: 0.0142 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1561 - val_acc: 0.9333 - val_fscore: 0.9333\n",
+ "Epoch 690/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.0162 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1738 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 691/700\n",
+ "1920/1920 [==============================] - 1s 756us/step - loss: 0.0121 - acc: 0.9995 - fscore: 0.9995 - val_loss: 0.1724 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 692/700\n",
+ "1920/1920 [==============================] - 1s 751us/step - loss: 0.0161 - acc: 0.9958 - fscore: 0.9958 - val_loss: 0.1905 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 693/700\n",
+ "1920/1920 [==============================] - 1s 748us/step - loss: 0.0130 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1507 - val_acc: 0.9437 - val_fscore: 0.9437\n",
+ "Epoch 694/700\n",
+ "1920/1920 [==============================] - 1s 749us/step - loss: 0.0142 - acc: 0.9984 - fscore: 0.9984 - val_loss: 0.1756 - val_acc: 0.9250 - val_fscore: 0.9250\n",
+ "Epoch 695/700\n",
+ "1920/1920 [==============================] - 1s 754us/step - loss: 0.0153 - acc: 0.9964 - fscore: 0.9964 - val_loss: 0.1514 - val_acc: 0.9437 - val_fscore: 0.9437\n",
+ "Epoch 696/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0186 - acc: 0.9953 - fscore: 0.9953 - val_loss: 0.1622 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 697/700\n",
+ "1920/1920 [==============================] - 1s 744us/step - loss: 0.0149 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1683 - val_acc: 0.9313 - val_fscore: 0.9312\n",
+ "Epoch 698/700\n",
+ "1920/1920 [==============================] - 1s 743us/step - loss: 0.0123 - acc: 0.9990 - fscore: 0.9990 - val_loss: 0.1550 - val_acc: 0.9354 - val_fscore: 0.9354\n",
+ "Epoch 699/700\n",
+ "1920/1920 [==============================] - 1s 742us/step - loss: 0.0147 - acc: 0.9969 - fscore: 0.9969 - val_loss: 0.1605 - val_acc: 0.9396 - val_fscore: 0.9396\n",
+ "Epoch 700/700\n",
+ "1920/1920 [==============================] - 1s 752us/step - loss: 0.0144 - acc: 0.9974 - fscore: 0.9974 - val_loss: 0.1565 - val_acc: 0.9354 - val_fscore: 0.9354\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Model Training\n",
+ "\n",
+ "lr_reduce = ReduceLROnPlateau(monitor='val_loss', factor=0.9, patience=20, min_lr=0.000001)\n",
+ "# Please change the model name accordingly.\n",
+ "mcp_save = ModelCheckpoint('model/aug_noiseNshift_2class2_np.h5', save_best_only=True, monitor='val_loss', mode='min')\n",
+ "cnnhistory=model.fit(x_traincnn, y_train, batch_size=16, epochs=700,\n",
+ " validation_data=(x_testcnn, y_test), callbacks=[mcp_save, lr_reduce])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXl4FeX1xz8n+0ISSNgJS2QVAdlFcUNEEfeiFq222lqslarV+ita99bWqrUWxQUrdWkVrSsVFERBXFBA9n1fwpYQyEb25P39Mffmzl1zs9zkJjmf58lzZ955Z+bcEOY773vec44YY1AURVEUgIimNkBRFEUJH1QUFEVRlGpUFBRFUZRqVBQURVGUalQUFEVRlGpUFBRFUZRqVBQUJUhE5FUR+VOQffeIyPn1vY6iNDYqCoqiKEo1KgqKoihKNSoKSovCMW1zj4isE5ETIvKKiHQSkU9EpEBEFolIO1v/y0Rko4jkisgSETnZdmyYiKxynPc2EOdxr0tEZI3j3G9FZEgdbf6liOwQkWMiMldEujraRUT+LiJZIpIvIutFZJDj2CQR2eSw7YCI/K5OvzBF8UBFQWmJTAYmAP2AS4FPgPuADlh/87cDiEg/4C3gTsex+cD/RCRGRGKAD4E3gFTgv47r4jh3GDAbuAVIA14C5opIbG0MFZHzgL8A1wBdgL3AHMfhC4CzHd8jxdEnx3HsFeAWY0wSMAj4ojb3VRR/qCgoLZFnjTFHjDEHgK+A740xq40xJcAHwDBHvx8D84wxnxljyoGngHjgDGAMEA08Y4wpN8a8C6yw3WMq8JIx5ntjTKUx5jWg1HFebfgJMNsYs8oYUwrcC5wuIr2AciAJGACIMWazMeaQ47xyYKCIJBtjjhtjVtXyvoriExUFpSVyxLZd7GO/jWO7K9abOQDGmCpgP9DNceyAcc8Yude23RO42zF1lCsiuUB3x3m1wdOGQqzRQDdjzBfAc8BMIEtEZolIsqPrZGASsFdEvhSR02t5X0XxiYqC0po5iPVwB6w5fKwH+wHgENDN0eakh217P/CYMaat7SfBGPNWPW1IxJqOOgBgjJlhjBkBDMSaRrrH0b7CGHM50BFrmuudWt5XUXyioqC0Zt4BLhaR8SISDdyNNQX0LbAMqABuF5FoEfkRMNp27svAr0TkNIdDOFFELhaRpFra8BZwk4gMdfgj/ow13bVHREY5rh8NnABKgCqHz+MnIpLimPbKB6rq8XtQlGpUFJRWizFmK3A98CxwFMspfakxpswYUwb8CLgROIblf3jfdu5K4JdY0zvHgR2OvrW1YRHwAPAe1uikNzDFcTgZS3yOY00x5QBPOo7dAOwRkXzgV1i+CUWpN6JFdhRFURQnOlJQFEVRqlFRUBRFUapRUVAURVGqUVFQFEVRqolqagNqS/v27U2vXr2a2gxFUZRmxQ8//HDUGNOhpn7NThR69erFypUrm9oMRVGUZoWI7K25l04fKYqiKDZUFBRFUZRqVBQURVGUapqdT8EX5eXlZGZmUlJS0tSmhJS4uDjS09OJjo5ualMURWmhtAhRyMzMJCkpiV69euGe1LLlYIwhJyeHzMxMMjIymtocRVFaKC1i+qikpIS0tLQWKwgAIkJaWlqLHw0pitK0tAhRAFq0IDhpDd9RUZSmpcWIQo2UFkL+QdCssIqiKH5pPaJQUQyFR6CyrMEvnZuby/PPP1/r8yZNmkRubm6D26MoilJXWo0oHKuIBcCUFjT4tf2JQkVFRcDz5s+fT9u2bRvcHkVRlLrSIlYfBYOJjKXSRCAl+UhcCkQ23LLO6dOns3PnToYOHUp0dDRxcXG0a9eOLVu2sG3bNq644gr2799PSUkJd9xxB1OnTgVcKTsKCwu56KKLOPPMM/n222/p1q0bH330EfHx8Q1mo6IoSjC0OFF45H8b2XQw36u9ssogFcVEkAXshJg2QV9zYNdkHrr0FL/HH3/8cTZs2MCaNWtYsmQJF198MRs2bKheOjp79mxSU1MpLi5m1KhRTJ48mbS0NLdrbN++nbfeeouXX36Za665hvfee4/rr78+aBsVRVEaghYnCv4QgSqkUebLRo8e7RZLMGPGDD744AMA9u/fz/bt271EISMjg6FDhwIwYsQI9uzZ0wiWKoqiuNPiRMHfG31peSX7jhylb8RBq6HToAadQrKTmJhYvb1kyRIWLVrEsmXLSEhI4Nxzz/UZaxAbG1u9HRkZSXFxcUhsUxRFCUSrcTRHRQrFxJKX0MNqKDgMx/dCef2DwZKSkigo8O3AzsvLo127diQkJLBlyxa+++67et9PURQlVLS4kYI/IkQQEYokgZSENCg6ah2oqoDUk8BUQURkna6dlpbG2LFjGTRoEPHx8XTq1Kn62MSJE3nxxRc5+eST6d+/P2PGjGmIr6MoihISxDSzYK6RI0cazyI7mzdv5uSTT67x3M2H8mkTG0X31AQ4uNp1ID4Vio9B51MhIrwHT8F+V0VRFDsi8oMxZmRN/cL7CdjAREUIlVUOEewwwHWg+Jj1WV7U+EYpiqKEEa1LFCIjqKiqsnai4yG5m3uHgkOaBkNRlFZNq/EpgDVSKC23PfTbdLR8ChGRIJGQtx8Or4eEVEhIs4RDURSlFdGqRgqx0RGUVVZRXlHlakzuCm06WSIQ1xZMJZzIhvwDTWeooihKE9GqRCE5zopLyC8p9z4oAm172hsaxyhFUZQwolWJQmxUBDGRERSU+ElUFxEBscnWdmk+VJZbPobiXGu1Uu7+xjNWURSlCWhVoiAitImNoqisEr9LcdN6W9NJAEc2wKG1cHy3te+MbfCgrqmzAZ555hmKinTVk6Io4UFIRUFEJorIVhHZISLT/fS5RkQ2ichGEXkzlPYAxMVEUlFVRW6xjykkJ0ldICrOsVPzaiQVBUVRWgohW30kIpHATGACkAmsEJG5xphNtj59gXuBscaY4yLSMVT2OEmKs77y/mNFJMVGERXpQxed/oXCI1DiUQSnvASi49ya7KmzJ0yYQMeOHXnnnXcoLS3lyiuv5JFHHuHEiRNcc801ZGZmUllZyQMPPMCRI0c4ePAg48aNo3379ixevDhUX1tRFCUoQrkkdTSwwxizC0BE5gCXA5tsfX4JzDTGHAcwxmTV+66fTLeWlfohFji5sorSiioqo4SoyECpLQxUlEC7XnDGb6ymo1uhy6lQVQnlxRDbxi119sKFC3n33XdZvnw5xhguu+wyli5dSnZ2Nl27dmXevHmAlRMpJSWFp59+msWLF9O+fft6f3VFUZT6Esrpo26A3TOb6Wiz0w/oJyLfiMh3IjLR14VEZKqIrBSRldnZ2fU2LCrSWllUc5yaQFS8FbfgxDiWs+buh5ztXuU9Fy5cyMKFCxk2bBjDhw9ny5YtbN++ncGDB/PZZ5/x+9//nq+++oqUlJR6fw9FUZSGpqmD16KAvsC5QDqwVEQGG2Pc5myMMbOAWWDlPgp4xYser/GmAhzOKqSorIL0dvGkJsbWeA7GQM4OKCuEE0dd00qVFR7dDPfeey+33HKL1yVWrVrF/Pnzuf/++xk/fjwPPvhgzfdVFEVpREI5UjgAdLftpzva7GQCc40x5caY3cA2LJEIORWV1ht/5vFiVz6kQIhYgW6RsVbks9MBfWwXSfExFOTnQXkxF154IbNnz6awsBCAAwcOkJWVxcGDB0lISOD666/nnnvuYdWqVUDgtNuKoiiNTShHCiuAviKSgSUGU4DrPPp8CFwL/EtE2mNNJ+0KoU3VpLeL52BeCSXllRSWVpASH0TBnZhE6HgyFB+H3L1WW1U5aXEljB0xiEGDB3PRpVdy3XXXcfrppwPQpk0b/v3vf7Njxw7uueceIiIiiI6O5oUXXgBg6tSpTJw4ka5du6qjWVGUJiekqbNFZBLwDBAJzDbGPCYijwIrjTFzRUSAvwETgUrgMWPMnEDXrE/qbE+qjGHDgTwABnVNISKiFlHM9tTbdmLagERY8Q4hQFNnK4pSF4JNnR1Sn4IxZj4w36PtQdu2Ae5y/DQ6ESIkx0WTX1LOzuxC+nRsg6VTQdB5iJVqO2eHe3tZYcMbqiiK0ki0qohmX/Rqn0hSXDTF5ZVUVNZi1BQRCbFJ7nUZ7GgKbkVRmiEtRhTqMw3Wvk0MAKWVVTX09EF0PKT1xSuBXlWl9VlZbmVdbQCRaG5V8hRFaX60CFGIi4sjJyenzg/N2Cjr11BYUsHhvGIqq2opDrFtoOtQ97bKUji63cqflJdp7dcGU+UmJMYYcnJyiIuLC3CSoihK/WjqOIUGIT09nczMTOoa2GYMZOUVc8TxDI6PjiCtTRCxC57kHXUFtx0qcvcvHIuEyCBWODnJ3WeNQhI7VDfFxcWRnp5ee7sURVGCpEWIQnR0NBkZGfW6xt71h7j1P6uq93+4//zaC0OWwNFt8M4N3sdunA9FOdaxu7ZAcpfA13p4jOMzr3Y2KIqi1IMWMX3UEFw0uAu/nziAc/tbb+brD9ThYdxxAAy8zPexklxY9bq1fWhtHa1UFEUJLSoKNm49tzfPXjsMEfhu17G6X+iq2XDO72H8Q662934JUY6RR0Vx/QxtKDZ+CCU6ElEUxYWKggdJcdGc178j763KrPtqn0GTYdx9kGzL/1d+wrVd04O4MVYZHd0B//0ZfPjr0N9LUZRmg4qCDy48pTPZBaVc/eIy5q8/VPcLDfqRNWpwUnDY+szaAjk7re0TR61lq3acy1lDidMJ7kzXoSiKgoqCT07vnUZkhLBy73F++/Ya8ooCVGkLRGS0NWoYdr21f3Sb9fn9C/DscKgogyd7w7y73c+rquP9FEVR6omKgg+6pyYw//azeOCSgZRWVHHvB+vqd8HzHwGJhNJ89/YCxyhk00fu7R41GkJCsOk8FEVpVago+KF/5yQuO7UrAPPXH+ZoYS2Dz+wktodx93q3vzXF+oxNcm/3qNEQEjQ6WlEUH6goBKBDUixpiVYKjOW767EaCWDsnTD+QRhtK76T5ahM6ikKjTp9pCMGRVFcqCjUwLf3nkdkhHD3O2t547t6OGUjo+Gsu2HSEzD2DvdjXiMF9SkoitI0qCjUQGxUJL3SEigur+SBDzdQXNYAK4NGT3Xfj4xx31dHs6IoTYSKQhB0bRtfvX3NS8uoCqZ8ZyDs8Qt9zveuwdAYPgVFURQfqCgEwRVDrYf4KV2TWX8gjy+31S3xXjUicMFjMPFxq1JbaSEsehgeToFju2qfUVVRFKWBaBEJ8ULN5BHpnNwlmSpjuOTZr7np1RVs+eNE4qIj637RM6ZZn0c2QM52+Prv1v6MYa64hpCiq48URfFGRwpBMrBrMv06uRzCMxfvaJiiN4kdvdsONkLCPKftGq+gKIoNFYVaEBMVwe6/TOLSU7vy7Bc7+NO8zfW/aMeB3m0RjfHP4hAFjVdQFMWGikItERH+dPkgAJbW17cA0GWI9dl5iKut4Ih7n8yVcHxP/e9lp7bV5RRFaRWoKNSBlIRobh/fl+1Zhcxde7B+F+vQ3yrA84vPIMLh4ik87N7nn+PhH6fW7rqH1lmZUP3hrBCn00eKotgIqSiIyEQR2SoiO0Rkuo/jN4pItoiscfzcHEp7GpLrRvcA4Pa3VjNl1jJmfL697hfrNRai4+DBHOh7QfDnvXczzL0dsrfB1k/dj710Fjw3wv+5RkcKiqJ4EzJREJFIYCZwETAQuFZEfEyg87YxZqjj55+hsqeh6ZwSR6ojBcZ3u47x9GfbGubCXTxGBGVF/vuu/y+seg1mjoK3fly7+5hGSM8dLMbA9kXq31CUMCCUI4XRwA5jzC5jTBkwB7g8hPdrdJ66ekjNnWrLmb913y/Kafh7QHiNFH74F/xnMqx7p6ktUZRWTyhFoRuw37af6WjzZLKIrBORd0Wku68LichUEVkpIiuzsxvAudtAnDegU/V2UlwDhXzEJML177v2Z53j2m7IN+lwEoXcfdZnfmbT2qEoSpM7mv8H9DLGDAE+A17z1ckYM8sYM9IYM7JDhw6NamBNDOhsxS4UlFSwZGtWw1y0z3iXb8E+UnikbeC36dqkx2iM6m6KojQ7QikKBwD7m3+6o60aY0yOMcaZ0+GfQADPaHjy4W1jufGMXgDc+K8VDXfhCX/03b7631CYDeUl3scqfLT5o3rUoauPFEVxEUpRWAH0FZEMEYkBpgBz7R1EpItt9zKgAaLBGpe46EhuPiujev+OOasb5sIdB8C9mTD5Ffi9LWW3RMBTfeDdm7zPWfaclT+pJK/m64fT9JETdTQrSpMTMlEwxlQA04AFWA/7d4wxG0XkURG5zNHtdhHZKCJrgduBG0NlTyhJb5fAnKljAPhozUHySxoo9XVsEgy+CuLbutp2LbY+t8737v/NDOvTM/jNF+G0+khRlLAhpAnxjDHzgfkebQ/atu8FfNSpbH4M79GOtMQYck6U8c6K/RgDN5+VgTRUcFinwXBkvWs/Ks57uqjcsXw1mHuG40hBA+kUpclpakdziyEmKoJv7z2P2KgI/jRvM4/N30x2QQOmwL7xY9d2am8//gPH9MtzI2u+XjiKgk4fKUqTo6LQgMRGRXJG77Tq/f3HAwSe1Zb4tnD7Grh1GbTvV/vzq6qgJN+2r9NHiqJ4o6LQwLxwvWsB1b5jDSgKAKkZ0GkgnHYLxCRBG0echARR12HRg/B4d6ugD2juI0VRfKKi0MDERUey8LdnA3Dv++t58cudDX+T3uPgvkw4+x5rPyXdf19nNtQ1b1qf5cXWp1MUdMpGURQbKgohoF+nJM7u14GS8ioe/2RL6G7kjATuNMh/n8oy67Oqwv0zrHwKOlpRlHBBRSFEnNnH5VvIKqhFUFltSOttffaf6L9PtSg4fAjO+s/1nT468AMc2123cxVFCVtUFELEVSNcwdybDuYH6FkPhv0UfrMKTrnSf5/Hu8PaOa4RQoVDJOo7Unj5PJgxtH7XACsyO6xGLYrSulFRCBGpiTGsfcjKX7QxVKIQEWGNFmKTAvf74BbXElbnSCEcVh8ZA491gm+eaWpLFEVxoKIQQlLio0lvF8+TC7Yy++swmWppqJGCJ/P/D7YtqN05XsKkTm9FaWpUFELMg5dYdYUe/XgTn206wvLdx0Jzo8mvBNfP06fgydZP4fB638cCsfwlePOa2p2j00aKEnaoKISYC07pzIxrhwHwy9dXcs1Ly/h+VwgK5wy+Cu47VHO/Cqco+Jk+euvH8OKZDWdXILxs0FVIitLUqCg0AiN7tnPbv/u/a0Nzo6jYmvs4VyOFQ+psr5GCTh8pSlOjotAIdG0bz9tTxzC0u5Xt9PiJMioqQzB1EhFEZHNFDdNHjUk42KAoihsqCo3EaSel8eFtY5lx7TBOlFWGbkXSAzVMTXnGLdSXh1NcUdO1JRxWQCmK4oaKQiMzJiMVgMtnfsP2IwUNf4PIGrKhN8RIwTM1RlUtyoC6XacONvy1F7xyQd3upyhKjagoNDIdk+Oqt2d/syc0N7ljLfzqG9/HPvo1PH+G7wdysHmQPM9tTFEoPg77v6/b/RRFqREVhSbg9vP6AJBT2ID1Fuy06wWdA+RDytroe/WRfTqnKMDSWU8RqKpjpTn1KShK2KGi0ATcdUF/bhjTky+3ZZNX3EClO31xyTOQ3A0S0ryPOQXAnvtoyZ9d228ESJ3hKQqVKgqK0lJQUWgirhnZndKKKl7/dk/objLyJrhrE/ziMxh7h/uxL/5ofdqnjL76m2v70Brf1yzJgxyPdOA+q8AFgTqaFSXsUFFoIgZ1S2ZsnzSeXrSNDQfyQnuztN4w4dH6X2fvMni8B7x0lnt7RR2nwXSkoChhh4pCEyEizLxuOG3jo7nu5e94bN4mFm/NCu1NfU0j1YZ/+UnRXdeRgr+o6qagrAhOhCDSXFGaGSEVBRGZKCJbRWSHiEwP0G+yiBgRCaLifMuhbUIMb/ziNPJLKnj5q93c9K8Vob3hzYvgpHHubSV5rhKdgQi0MqnOohBGI4VXJsCTJzW1FYrS5IRMFEQkEpgJXAQMBK4VkYE++iUBdwCtcp3hoG4pbvsPz90YupulngR9Pdb4H9sJ795U87llAYSjrtNHdQ16CwVHNjS1BYoSFoRypDAa2GGM2WWMKQPmAJf76PdH4K9AiMqThT+9OyRWb7/67R7KQ5ECw0l5kXfb9oW++2Ztdm0X51qfiR29+zWUT0FTHylKkxNKUegG7LftZzraqhGR4UB3Y8y8QBcSkakislJEVmZnZze8pU3M3388lCevGsI1I9MByCoIUfwCuEQhqYt7+x87ePd9fgxs/cTaLnGKgo9+6mhWlBZDkzmaRSQCeBq4u6a+xphZxpiRxpiRHTr4eCg1c4akt+Xqkd2ZNNh6UG87HIL0F076OZzF173t3u7MieRJ1ibrs3qk0N67z+o36maLp6NZM2crSpMTSlE4AHS37ac72pwkAYOAJSKyBxgDzG1tzmY7XdvGA3DTqyt46KMN7MgKgTh0Hw0P50GXU11tlz/vv79TDJwjhTY+po+2fFw3W3T6SFHCjhqyp9WLFUBfEcnAEoMpwHXOg8aYPKD6tVNElgC/M8asDKFNYU2P1ITq7deW7eWt5fvZ9thFobvhHeugNB9KA4jP8d3wxo9g5+fWvq/po7qiwWuKEnaEbKRgjKkApgELgM3AO8aYjSLyqIhcFqr7NmfioiN59aZR1ftloXQ4A7TrCZ0HW7mS7KS7bKAwyyUIUP9YBzueIwWdPlKUJiekPgVjzHxjTD9jTG9jzGOOtgeNMXN99D23NY8SnJzbvyNTRrlm3UywmUvrQ3JX6DLUtd/9NNd24RFbR4GE1Ia7r+d3q+mrhtMSVkVpoWhEcxjylx8N5lfn9AZCvBLJzvCfWp+DJruLQq5tAVlcCkQGUfLTF1s/hRWvuLd5RTTXoAp1TdGtKErQqCiEISLCmX0sd8vO7EKqqhphtOCs7xwZA9Eu34bbgzu+LURGB3e9giNw0JZU760fw7y73Pt4OZpt+6WF3tlXwykthqK0UFQUwpSTHAFtO7MK6fOH+dz25qrQ3nDAxdB1OJz1O4iO990npg1EBLk24YXTYdY5gft4Oprt00l/6eadvltHCooSclQUwpQuKXF0TIrltWV7qTIwb92h0N4wvh1MXQzt+9gaPTy/kTHBjxSKgkguF2ikALDnK/d9Xa2kKCFHRSFMERHGn9yRHVlBJKtraJzTNO37ubdHxVnC0GD3qUEUPGkMUQi1Y/+rv8GuL0N7D0WpByoKYcxDl57CzWdmABAVIY2zEgmsaaT2/eEKj6C2qNjgp4+cVHpM+di/g6ePwCkK/r5nY/gUTJVVBzprS2iu//mj8LquyFbCFxWFMCYuOpL7LxnIT07rQUWV4aWluxrnxrFtYNpySB8Jv1jkavfna7BT5pFwzzOttj1PktfIwCEG/sp7NspIoQr+OQGeP63mvorSAglKFETkDhFJFotXRGSViFxQ85lKQ+DMmvr4J1s4WthIS1SdpNhyGEbF1jzF88aVkGfLZuKZLK+i2LXtGXfgvHaln+/oy9H8/lRY+a/ANtXEdy/Y7lEJOdvrdz1/qE9EaQYEO1L4uTEmH7gAaAfcADweMqsUN353Yf/q7fF/+5IPVx8I0LuBSe4KY++0tiNja36w7f8O9i1z7XuOFMpt+54C880/YNXrUOEnOZ+v6aN1b8PHdwa2qSY+tdV/CmXm1roWI1KURiRYUXAuQ5kEvGGM2YgmJWg0OibFMXfaWADyisu58+01jedfACsdBjhGCkG87RYfd217Pgg/f9Q1QvD1AJ77mwAjBdu9C+uQQr34OBytYRQQSlEoV1FQwp9gReEHEVmIJQoLHNXSNOdAIzIkvS3p7Vxz+ofyGvEB0+d863Pkz4NzNDszq4L39NHaN2HPUmvbn8D4e6O2i8LL43z3CcSscfBcDUl4QzpSKK65j6I0McGKwi+A6cAoY0wREA0EUcNRaUjO7ufKUDrtzVXszG6k5apte1jptrsOtQTinOnQ0auyqotAIwVwrS7y9wAOZvoob7/vPoE4vrvmPjpSUFo5wYrC6cBWY0yuiFwP3A/khc4sxRd/vHwQ900aAMCqfbnc+976xjciIhLG3QsxjhKiP7eV8nw4D1K6u4vC6n/D0qfcr+EMgPPnn/A7UmiEiGa7KDT0FF11KVSdeVXCl2BF4QWgSEROxaqUthN4PWRWKT6JjBAuH+paDRQXE9l0xjgf0BFRcMULMOUtaz++LRQfc/Vb+Qp88Uf3cyUCio75fyv3VUcaGn71zsHV3m/vdpsa+n5OsWvIAEBFaWCCFYUKY3k2LweeM8bMxKqcpjQyaYmuB0pKfDQvLNnJqn3HA5wRIqpFIRKGXgcDJln77ftB5orA5+76Ep7IgK3zfR8v9TMt1pAP6eN7YNa5sOA+93a3kUIDTyWVO3wKKgpKGBOsKBSIyL1YS1HnOeorB5kER2lIoiIjqtNq/2/tQf766Ramv7eu8Q1xriDydDyPuNEaBQTie0dcQM5O38ffvNp3ezArn96/BbYtrLmfM5biyAaPe9hFIVQjBf2vo4QvwYrCj4FSrHiFw1j1lp8MmVVKQKZfNIDuqa6VSNuOFHIgt5FXtnS0fBvEpbi3Z5wNk2r40yhxuKMOrQnczxPPkYKvojvr5vgXFSfGQJljNBLTxuOYjhSU1k1QouAQgv8AKSJyCVBijFGfQhOy/5i7CEx4+ktyGjPa+bJn4cZ50La79zF7FbeGpKqG+grBOoZNlasudUyC97Hq+9VjpFBZDh9Ncy9SVOlYVRXRhL4gRamBYNNcXAMsB64GrgG+F5GrQmmYEpiRPdsB8MRVQwAoKqvk8U9ClMTNFzGJ0OtM38dST2qYe0R55FryXKrquRop2NVJVZWuKa7oRO9jTuozfbT7S1j9hhWM53VtXX2khC/BTh/9AStG4WfGmJ8Co4EHQmeWUhOv/2I0qx+YwDUjXW/qZZVhEk+YmAaXPw+9z6vfdTwT8HkuVbU/wD+6LXhRMFWueg9Rsd7HqrfrsyTV+eC3XcNpn6goKOFLsKIQYYzJsu3n1OJcJQQkxETRLtF9bjoqIoz+SYb9BNpluLdJLe2rURRsIrDzS0uoAAAgAElEQVT63/6zq3piKl3RxV4lPxto+sj54A+UKlxRwpBg/5d+KiILRORGEbkRmAf4WU/oQkQmishWEdkhItN9HP+ViKwXkTUi8rWIBAiTVfwx49phABzJL+FEaRiVrEzqbH1ePhMueQZ+U8uSosa4P1Q9U2Z4OoJrM33kfOB7pp5we4jXZ+Tla6SgoqCEP0FVTDHG3CMik4GxjqZZxpgPAp0jIpHATGACkAmsEJG5xphNtm5vGmNedPS/DHgamFjL79DquezUrizadIS5aw9yykMLuOWck7jpjAw6p8Q1rWFj77BWJw2ZApFR3g/1mig4BI/3gJMvgytmBp4+Am9RqKywnLqe0zWm0jVCKPcUhQZakuprpKA+BaUZEPR43hjznjHmLsdPQEFwMBrYYYzZZYwpA+ZgBb/Zr5lv203E7bVKqQ0/Pb1n9fZLX+7ivVWZTWiNg6hYOO0WSxCgDksxDZTmw5p/Q2GWt6h4ioDnA/6PafDhrd6Xrapynet5zueP2G7fECMFGzp9pDQDAoqCiBSISL6PnwIRyQ90LtANsGcty3S0ed7jNhHZCTwB3O7HjqkislJEVmZn1yFlcitgZK9UPv6NazVQcVkYPoB8OVh7nRXcuYfWeo8UPB+yZbZIaKeArH3L+1qm0r8obPnYtd3QPgWdPlKaAQFFwRiTZIxJ9vGTZIxJbggDjDEzjTG9gd9jJdrz1WeWMWakMWZkhw4dfHVRgO7tXGvun1u8g5LyMH4IZZwDPc+EGz+uuS/Asd01jxTs6TEOBYjyDuRTsNPQI4W6JPQ7tA4eTrHScihKIxDK5SoHAHtkU7qjzR9zgCtCaE+LJzk+iosGda7en7N8XxNa44eOA+G8B+Bnc+Gmef77jfDIzH58d80+hdm2CrGvOGpAxLfzvnagkYJbv4ZY4lvP1Uer37A+ty1oAFsUpWZCKQorgL4ikiEiMcAUYK69g4j0te1eDISoOG7rQER44foR1fsP/28TX20Ps+m2Xy+Ds39Xc7+ENNd2bDJ897z1YyeYh7b9Ok6qGkEUnOe6TR/V53rqblMah5CJgjGmApgGLAA2A+8YYzaKyKOOlUYA00Rko4isAe4CfhYqe1oT/7pxVPX2Da8s5+mFW5vQmlow5jbXtj3RnvNtv7KGiGZfxPqY5Qx2pFAfH0D1qMBH8JqihDEhjXYyxsw3xvQzxvQ2xjzmaHvQGDPXsX2HMeYUY8xQY8w4R+1npZ6MG9CRey7sT+8OVgqHGV/saGKLgmSMbaWQXRQ8g9icBPPQjkn0brOvPvJX0Acg/wAserhub/hVPkYKTqEIZXU3RaknYRQCqzQkt43rw8OXnVK9n1ccZLRvU5DaGxD3lBM9xtR8XjBv3r6mXUyVS1D8FfQB+OAW+PrvkLm85vt43cPXSKHS41gwaEyD0rioKLRg0m2rke6cs5qyijB9Q522Ah44CokdYPyDMO0HyDiL6geivzfrYB6ulT4C5kyld8ZVX5Q5BMM+Iik6ZgXFffEY/PCa/3OrBcDH9FGtpqWMx6eihBYVhRZMz9QEzurbHoDFW7O57Lmv2ZcT4M24qYiItALcROCsu6F9H6v9/3bBbcv9i0Iw0zrZW31kV60Mcn7f44FcUWZVjJt/Nyx9Av53u38HsK+RQrXzOcyWCleWQ8HhprZCCRNUFFowERHCyz8dWb2/5XABf13QiOm160tCKnTo7x7gNvyn1mdkbHAP9tJ8mHcX7Pna1WYqg3tb91xB5Bx1rH3b1afwiO9znbaZKihw9HHes1YjBfH4DAEf/xb+1j+w0z1YKkph1Ru6WqoZo6LQwomLdi/o8sn6Q2w5XFMwephx0ROu7b4Xwpm/tR7Q+QHCXuwZWXd8bpXpdBLsSKHaCe14wFU/6G0P9RX/9H2u88F/4Af4Wz84tgtKch3nBxjhHNttBatlrvQ4EMKH7BZHvEhZA4wilzwOc6fB5v/V/1pKk6Ci0ApY8QcrkKtb23iqDKzYXUMN5XAjKgZOGmdtn3SuK4fSe7+wPn/ynvc5o26GzlYBIgoOQr4tF5Spqt3y0OqRgsMPYX/TX+qn9Kjng3/GMFfKjUAjhR2LrM81/wnevvriXOnlueS3LpxwZNh3CqDS7AgqS6rSvOmQFMu6hy8gOiKCQQ8v4HB+CZVVhle+3sXhvFIevLQZZCy/ajbkH4TYNpDc1f1YbBvv/uXF/pebBu1TcPZ3iIFTFHyVAfXM6xTowR9u8QrO8qCBlucGi3OEpstumy0qCq2E5LhoADolxTJz8U5mLt5ZfaxZiEJCqvUDjiWsNiJ8/BmXF0G5n4ecqaUoOMXA35t0RSlEe6QpD+RM9jz27s+taaOpi737NkaVNufvT0VBQaePWh2pbbzTV5dWhNlqmJrwrAHtq6JbWZH/ZHfOhHiRsb6Pe/LWFFjzln8h8fUwPfCD/+t5jiI2vAcHPQsQedaACKFPQUVBsaGi0Mpol+AtCkfyaln8pqlJ6QY/taXR8vU2XX4i8Eihshzi2wZ/z7nT/Jf79HyYVlbAytkBLmbCa3WOc/qorKj+6b2rRSGMvp9SK1QUWhlPXnUqAzonubUdyG2ApYiNzUnnWBXZAEryIamL+/GoeOg11vs8gPenWm/9vpLl+aOqIsD0kYcoBIqSrr5eDQ/fYKaN9nwDe5f5PlZWBOvfrfka4BopvDoJ/toruHP8YR8pHNsNWc1oCbQCqE+h1dE5JY5P7zybtftzuXzmNwBsO1LA6b1r8YAMFy6bAR1Phl5nwh3r4E+OWhtn/AZO/43lgN67zEqod3QbFOXAwj9YsQVtOkFqBmRtCnwPO36njzxGWsGs968sc1Wkc3LgB/c37GUzrQcr+J6OeXWS9flwnvexhX+wRivJXaHnGd7HV70B3UZAp4HuPpnS+i5XtkWhzxjq3z4lbNGRQitlYNdkLhlivV1vONBM/9PGt4Nx91nTH1G2abHzH4GkTlYyvL7nQ/oIGHot9Djd1ccpDLUh2OmjQIV7nBxaA38fbJUZdfLyea7tsiJYcB9sd9RRqG0UdK6j6KG98JCdudPgBcfvw5dPpq7o9FGzR0WhlRIdGcFz1w3n7H4d2HAwnzeW7eFgc5xG8kVEpJ92jz/30oLaXTfQ6iM7wYwUlvwF8vbB1k+Cu1et5/odD2Vf01CeD2xfq7fqijqamz0qCq2cU7oms/lQPg98tJEzHv+C8soW/J9ZPMSitiUu/fkKPEUgGJ+C8w1+4wfu7U4x8EzkV1tRCPSm7iliDSoKPpIYzjoXVrzScPdQQoqKQivn/JPdp1Cu/+f3HMprpiOGQVfB2ff4P+45gsjb77ufPdeSneLjvttfv8x939+qJztlDlHY5RGbUOhITOc5VVXbgLfqh7JtpLBlPnw0zXt6q6FEofg4LHvO4/7AwdVW/imlWaCi0MoZ0dO9hvH3u49xzhNLmsaY+nLVK3De/f6PO9+22/ezPmPa+PYrXPw33+cHWs0z725XNtZgpo/8TV2VnbA+a1NlbtcSWPqU72P22aM511o1nz1zHPmbbgMrE22w/gF7Helwi9pWgkZFQeH1n4922y9rqVNIzmmduLZw9atw48fQb6J7n5997D3N5GTn5/6vveKfsP879/sEwp8oONs9RyWBHM2vXw5f/NHj4e3Y9vVAzz/ovh/I0fxoO2sJb1DYFMifU94X2xY2TIbW5saxXVAYZjXUUVFQgLP7dWDauD5ubfuPhWHdhfrijEs46Vw45UorMnrSUzDZMd996rVWcZ9gU0tc/LT7fu4+6zOYyOAyP6uCnKJwcLV7u/PNu7QQ1v3Xt4+hyJbo0DOJH7gSCebu9X1tf6x/J/BxJ/bfW7DJ9bK2wJtXw8etcHppxjB4ekBTW+GFioICwO8u7M+NZ/Sq3j/ricVUVbWwZYXt+8JtK+Dce11tUTEw+Cq4fTVc+o/aXa/DALh8Jgy93trftwxePBMOrnH1uTdAem9f+BtBOEVg/u/g/Zth77fefQrsIwCnKNgeznEp1ufx3e7n+Xurr/Wy0iBEIWuLlV7beW2nf+PI+lreq4UQhtNsKgpKNb+d0I8JA11z7M0y0rkmOvTzXpoK1qjBWSM6uRv0PBO6j4EzbrdKhPoiKhaGXQ9XzIR2vWD1v+HwevhupqtPpHdakYDs/cZ3u1MUnMFsvlJT21Nr+BopOEdKRzwC9vyVJvX1wJr3O3i0ve/+EsT00euXW8txSxyxMc6putY4fRSmhFQURGSiiGwVkR0iMt3H8btEZJOIrBORz0WkZyjtUQKTEh/NrBtGMNLhfN52pJbr+FsK0XFw0zz4xQK44I9WidA+53v3S+rs2m7T2fs4QGS0+/5k29LM2qbZOLDK5bfw9dDd9aWP8xz9Sgsg25FyYut872v7wnPpKsCKl61r7l7qPpLY/ZX7ai6/MR3F7sedn8Gs2FIahZCJgohEAjOBi4CBwLUi4pmjeTUw0hgzBHgXeAKlSRER/nXTKAA2HMjn2c+388Nea646v6S8+WVUbSii4rzb7EKQGMTbc/ooV74mgJ/9D/pPCu7+h9fDy+Nc+54+icHXuJzRZSdgz1fWtvOha6885yuBny8C+QVeu9RVsQ3gtUtg0cOufX+jD6dT27nKymmLLz9M1paWUcHt+B7/keVhSChHCqOBHcaYXcaYMmAOcLm9gzFmsTHG6dH8DkgPoT1KkCQ5ai/8fdE2/vbZNqbMst5Ohzy8kF+86lkmspUw4VHvNnvuomO7vY87OfU663P4z9zTcUQnWMtigyFzufu+fXWSRFh5npwPnjVvuo45RxRHNvi+7isXQs5297Yqx+qzmhzmm+fC/Hvg1Uu8jzkf+l44RLK8yLK3JN//vZ4/Dd6+PrANzYF/nGqJaDMhlKLQDbBHB2U62vzxC8BPzL/S2Jx/csfq7fJKU50f6esdR5vKpKYlrTc8lAsP5ED6aMvvYGf4DdbnrTYH8E8/sj6vfMFKCufs4yQ6AUb8rG72FBxxbUdEW+LiHD3Yg9GcouBv2en+77ynj5xv+b6mj+ysexuWz3KNSuz4C/Rz2lFeDH/pZsVOQM3LeItzvX0h/igvgYX3uwTHF2Un4Oh2/8cbCucUm1e9jPAlLLKkisj1wEjgHD/HpwJTAXr06NGIlrVe/nb1UEorKxGEUY8t4pJnv25qk5oeEWt0cPNn3itzxtwKoz3W8590buDrxSRYGV6HTIF1c2pnS75tVVNkNMQmWW/bZSesFUpOnFNAtUl6t+4dSOwAe23/5ke3w8e/Df4aNYmC50jCGQFdWghzfwMX/tl2zFhv2ofXBZdxdfUb8O2z1r18jfDAKpy0e6kl9KGsbudvCq6+dStCSChF4QDQ3baf7mhzQ0TOB/4AnGOM8flqYoyZBcwCGDlyZAtbJxmepCREA9E19mu1+HqQOCODM86pWRDAGikAnP8QZG20/AbBYg9Ai4h0TUNtmef+5l9Vbj2APUVh1M1WwJ0v5k7zbntuZPC2QRAjBR8jg7xM+PRea1rKM+bh8DrHdoV3ynEn+5db6TQGOKZqAj14dy+1Pn2VUq2Jb2ZYadgnPFJzX3+rqoKJ4ygtsH6PbRv3RTiU00crgL4ikiEiMcAUYK69g4gMA14CLjPGZPm4hhIG9EhNcNv/yyebm8iSZsLP5sJZQQRjOUUkuSv8ys9ILDbZd7ubKERZIwXwDnr74k/w567efoPo+Jrtqw/OQD47c35ipSwH10PZzr8mWYIA7tNjf7MFeJWfgE0fwQ+vWjUh7Hzye0tYnQISzOjIV5rzwmxLYPzx2QPwzTPWdmWF5cOp8POQr48ovHIBPDO45n4NTMhGCsaYChGZBiwAIoHZxpiNIvIosNIYMxd4EmgD/FesN4N9xpjL/F5UaRLmThtLYWkFry/by6ylu3jpy13kFJbx1NWnNrVpLYsHj1vFgJ4/zdX2u23Wg2X1G5DW11rB9FQfyM+0nSiWoxng0Lrg7uUvlUco2fKxa/u7572P2yOtT9jSPxTbIrUf93hrHna996jN+cD1ldMp74D7UmBffpNXJlgBfsFMVX39d1j8J0uATp3ifdyfrySYNCC1KQDVgITUp2CMmQ/M92h70LbtY/G3Em60TYihbUIMo3qlMmvpLgDe/SGTX5/bm5M6BLl6RnFx5m9h+2fe7RER0HEATPij9fY/+peWvyA6HsbeYfXx9RArOmr5AMDdD+CLfhNh26fW9S95Bj6+s37fJVQEkz8KrCJFSZ0s4XQ6c52BcZ7ZXwuz4e8DXQkRwfebvDPiu7LcO87EE6fQeYpsYbZVL8PXUuaiY5BVi9G2MaH1e3igEc1K0EwY2Ik9j1/Mh7dZtY83H2qlwW315fyH4VY/kcsAY2+H03/t+4Fkj5C+wVaLoedYyDg78H0nvwJdHKO7iCgYeRP8ZhX0mQBn/1+w1vvmpHE196kNwYrCsZ3W5/cvutqKchwbHg9Sp3P+6DZXW6Blt54pR759DnYscu1Xlrt8J+UejvPZF1iV9HyJzkvnWHEdwVLTKrAGRkVBqTV9O1qjg/kbDpFfUotsmEr9sb8x9j7PyuM05S2r/fTfuPe1r4a65Bkrx1PnIdZ+V0f95LTecP27cGYQIwZ7OVNPfOVsOrMeSe6qH+w1kOd40NuDw5z+Fs8Hvn0aykl5seWQ9uUYLy2Av2ZYU0TlxVbd639Pdj/u/N6ewWnHdjls8ZH7Ks+Hv8UTe0DhN7XMyVVPVBSUWpMYG0XbhGjmrTvEaY99Tl6RCkOjEpMEp91qbZ87HQY4oqJ7nwdJXV39Jj3p2h58lfV58iXW6KD/RR7XTLTSeQCMuBGuf9/9+Ng74Mf/dvUZfYv7cXuE9SDHvVJssRydbA7TrsMCfr1a4Us8nKOM8mIrqNDp1C7yIQoVJfDZg/DXXt7LZPd8bQnJoodhj4+RXUkulOa7tp1psE/YbLLHQnz5hO8VUcZYcRh2Vr3m2l7yZxqTsIhTUJofURHWG2txeSWTZnzFN9PPq+EMpcG4L9N3e2QU3L3ZehB5vvnaI6fTevs+35l/KLU39BkPU7+ExX+2RhFdTrWEY/yD1lRRjzHW/teO9OHON+ZTfmRlmx091T1p3w3vQ0J7KxtqbDLMGFr77+2LT39vCV6Rj6DK8iKrKl7uPksIfYlCebErArzgsPvvZu1bru3/TMaLGTZxW/qk9TN9Hzx5kqs9Z6dre/Fjvn1JuxbDG1fC+Y9YwjTuPu/Auu9nWT6mRvAtqCgodWJ4j3Ys3GQtGzyQW8z4vy1h3u1nERfdBKtaFHfa9/VuC+Zh4nyDd04tdR0KP/FRSyHDUa70/IesKaUTWVZ8AVj1KWLbQI/TYIetKFEbR4R8l1O9A/86nmKJRlQcbF8IvcdbsRbfznCV9wzEk35Ebs/XrqWx3zwDq1737rN/uWta6dnh7iuOfEVq18S/Lnbfz9nhvu+ZrgRgu8NPsegh63Pj+97nfXIP9B7n+9+2gdHpI6VOPHXNqdw2rjd3T+jH2f06sDP7BL98vZXmRQpn+l1Ucx8ng6+CO9fX7LB2u/4F1rLQS5+BdhkQbyvvmtbHmjb6iUcZU7tA/XSulZE2qTPEt4Uh10BimrWiyDnlBVbNih//27U/dYm3Ldd5CFjuXkjqAvGpLkFI9RCQLx933w8mW2u3AIF8nnUhfImAJ/ZU6+AtCE4aaYmqioJSJ5LjornnwgH8Znxf/nzlIAC+2n6UfyzazrETZXywOpODLbEeQ3NjyptW/EMwiNQ9enbQZLhjjXutinY94davoe8E7/4/eReueQNOOsddSOzYl45mnAUn25LK2f0SEx61/Cl9L3C1OQsKnXmXNRUG0P00uO37wN/jA49UJfYcV1e+ZInKmFvd+wSbAj19FIy4yVpyXBfe+WmjZFvV6SOl3nRr64qO/fuibXy1PZuVe4/Tv1MSC35bi7dOpeHxVVAoHPAlFJ7EJMLNn8M/x1sPdLBWWjmjse92LC1N6uSK44hNgdI8+NHL8N7NlmPd6V/pfpq1zPe6d+CzhyDbR6zApo/c98fdB/mHrFFLaoYrQG3FP61Ke2At6V03x5XepKoSzpgGjzlSq186AzoNgvQR1v7RHVZUdE1EJ3gvzd3yse8guQZETK1L7jUtI0eONCtX6jRFuLFizzGufnGZW1tcdATPXTucDkmxnNq9bRNZprQqsrda1etG/tzVVnAEvngULnjMmqIC68H9/BgrZuGq2dbIwr7c9Jzplvicdov/lCDH91ilVxM7wKuTrNHSVbbqd189bQWpTX7Z+9wTOXBgJbx5jbV/1xbrPqvfsGpsrP+vFSW9+DHXOZExlkh2GVKnX42I/GCMqTGJlYqC0iAYY/jnV7tpmxDNPe96p1rY8/jFPs5SlCakqtKK7u4zwao38fI4aNPJSi1SW/Z9b029JXepxf2r4E8dod+FMOU/3sezt8LM0db2LV/VWQycqCgoTUav6fO82lQUlLCmoswKTjt9muULaSxKC61pMn+rw47tgra9GmQaMFhRCNMJR6U5s/C3ZxMT5frTio+OJCu/hG93HqW5vYQorYSoGCvYrzEFAazlu4GWC6ee1Oh+IR0pKCHl3vfX89ZyV1j/A5cM5BdnZjShRYrSOtGRghIWlFVUue0v2aplMxQlnFFRUELK8SL3YiK7j55g4cbDVFYZnUpSlDBE4xSUkHLfpJPZmV3I3hxrvXXm8WKmvvEDAAM6J/GHi08mp7CMCQM7kRirf46K0tToSEEJKX06tuHF60f4PLblcAE3vLKcO99ewxOfbmlkyxRF8YWKghJyeqQmkBATyeheqX77fL3jKPuPBVlYRVGUkKGrj5RGI6+4nPdXZfLMou0kxUWRebyYCIEq25+gxjMoSmgIdvWRTuIqjUZKfDQ3jc3gprEZHD9RxszFO7j7gv786IVv2XzIKlZSVWWIiGi8erSKorij00dKk9AuMYb7LxlIfEwkj1x2SnX7+gOufPZFZRVUVTWvkayiNHdUFJQmZ3RGKmsenEBUhPDS0p3c98F69h8rYuCDC3hmUR3y0CiKUmdCKgoiMlFEtorIDhGZ7uP42SKySkQqROQqX9dQWgdtE2L4+ZkZzF9/mDe/38f0962keq9+u6dpDVOUVkbIREFEIoGZwEXAQOBaERno0W0fcCPwZqjsUJoPd1/Qj4sHW1kmv9lhFT/PL6mg1/R5XPrs15RXVgU6XVGUBiCUI4XRwA5jzC5jTBkwB7jc3sEYs8cYsw7Q/+0KsVGRzPzJcK4d3d3r2PoDefT9wycs3ZbNwAc/Ja+ovAksVJSWTyhFoRuw37af6WirNSIyVURWisjK7OzsBjFOCV/6dkwC4KmrT/U69tPZyykqq2TFnmONbZaitAqahaPZGDPLGDPSGDOyQ4cOTW2OEmJuOL0nb/7yNCYP9/8OcfPrK8kqCKLIuqIotSKUonAAsM8DpDvaFCUg0ZERnNG7PSJSPVq4ekQ6s25wT5cx+rHPKa2obAoTFaXFEsrgtRVAXxHJwBKDKcB1Ibyf0gK5akQ6V41IB/CZVfWut9fy9Y6j/G/ambRLjOazTUcoKa/iutN6NLapitIiCJkoGGMqRGQasACIBGYbYzaKyKPASmPMXBEZBXwAtAMuFZFHjDGnBLis0ooREfp1asO2I4XVbfPWHwLg7CcXu/U9u1970tslNKp9itIS0NxHSrOjpLyS855awsG8wD6FF68fwcRBnRvJKkUJb7TymtJiiYuO5Nt7x9O+TSwAU0Z157nrhjH7Rve/98VbsthyON/L73CitIKScvVFKIovNCGe0mxZcOdZiAipiTEAVHgEt729cj9vr7RWRf/2/H784qwM/u/dtcxff5i+Hdvw2V3nNLrNihLu6EhBabaktYmtFgSAqMgI5kwd47Pv3xdtY9BDC5i//jAA27MKKSytaBQ7FaU5oaKgtCjGnJTGHyadTHx0JADXjva/CmnQQwt4Z8V+sgtKG8s8RQl71NGstEiMMWQeL2bl3mP89u21DElPYV2mlZY7KTaKAtso4ZSuyfxjylBmLd2FIAzqlsz1Y3oionUdlJaDFtlRWjUiQvfUBFITY7hkSBbTLxrAza+t5OazTuKqEenc/tZq5q49CMDGg/mc//TS6nPfXmmVB5153XC2HC6ge7sEkuKitPiP0irQkYLSKimrqCKvuJwdWYVc+/J3APzpikHc/+EGn/3vvWgAt5zTuzFNVJQGRZekKkoAYqIi6JAUy8AuydVt14/pyVf/N47RGale/RdtPsLNr63gje/2urUfO1HGza9pHial5aDTR0qrJiUhmm5t47lsaFcAuqcm8M4tp/PD3uNMfuFbeqQmsO9YESv2HAdg0eYsxvZO4/Vle4mNiiA2KoJFm4/Q/9s23HpuHx78cAP/N3EAnVPimvJrKUqd0ekjRfFDYWkFiTGRZNw7P6j+3drGcyC3mLP6tqdNbBTXndaDs/oGzuprjFGHttIo6PSRotSTNrFRiAhTRnUnJjKCZ68dhgj07pBIRvtEr/4HcosB+Gr7UT7ZcJg/z99SnZKj1/R5vLBkJ+syc6unmjYcyGPggwv4x6LtALyxbA/rHSukFKWp0JGCotSAMYbKKkNUpPs71JKtWfzj8+2s3pcL4JWsrzac2ac9X+84CsCexy8mt6iMb3fmcNGgzjqSUBoEXZKqKA2EiBAV6f1gPrd/R87t35HC0goiRYiPiWTm4h08uWArw3u0pW/HJD7bfITxAzoyJD2FBz7a6PceTkEAeHrhVmZ8sQOA0zJSeerqU+mSEkdJRRVtYvW/rBJadKSgKA3MidIKoiMjiImKcPMZLN2WTVlFFWf368CDH21gzor9PHTpQB7536agr/3AJQPp3ymJLm3jeO+HTIrLK/nJaT3JaJ/IobzigOnCS8oriY2K0JFHKyXYkYKKgqI0AaUVlcxbd4grhnYjIkKoqKxi65ECLp7xNfYVgFYAAAzpSURBVABzp42lc3Ico//8eY3X6tY2nvLKKrIKSnnz5tPIOVFGcVklM77YzsVDujB94gD+t+4Qf3h/PX07tSGvuJz7Lx7IiF7tSI6LDvVXVcIEFQVFaYZ8tyuHPh3bVKcF/35XDsXllXyy/jDHi8pYuOlIdd8bz+hFSXklc1bsD3jNmKgIyiqqfB57YvIQVu/PJTk+ioO5JfzyrAw6JcdxvKiMZz7bzv7jRdwwpicTBnYiMTaKOcv3cW7/jvTy4Wj3JK+4nJR4d9E5kFtMclwUSSpGjY6KgqK0MPKKy/nL/M1MGtyFpLgohvVoR0VlFU8u2Mop3VK4/a3VAHRJieOQnwJE8dGRFNezlkSn5FjSEmPZdCifRy8/hTX7c4mNiqB3hzaICGf0TuOr7dn8ef4WkuOi+Pg3Z/HT2d/z+4kDuPU/qzj9pDTe8shmW1lliKxFGpETpRWcKK2gY7LveJCS8koiRIiJ0gWWTlQUFKWV8cyibTyzaDvL7xtPTFQEs5bu4vklO6uPTzylM89eN4x56w5RUFpB/05JfLbpMC9/tRuA6EihvNL1PBjRsx0/7D0eElt/NKwb3+8+RmxUBOVVVew/Vkz7NrH069SGTYfyeWLyEJbtyiE2KpJLhnQh50QZApzdz4r7GP+3JezMPsEVQ7syOL0t5w3oSPs2MeQWlfPD3uPc/+EGCksruPnMDH53YX/ioiNZuz+XNftzGdsnjbjoSL/+l4rKKvbknEBE6JGawLETZXTyIz4LNh5mV/YJbj03dClQ8kvKiYmMIM6R+beuqCgoSivDGMOxE2WkOaaewHqjjo2KoKLKEB0Z4fNt/K3l++jXqQ0jeqayN+cEBSUV7D9WxEWDu1BRWcWJskoe+HADv7ugP4fyivn1f1Zx1Yh0Xlq6C4COSbFkOdKP9+vUhszjxRSVWaORaeP68NziHQ32He88vy8frD7A3pyiWp03tk8a3+zIcWt7YvIQOqXEcXbf9jy5YCsr9xync0pcdaJEgMHdUlh/II9OybF0b5dAx+RYxg/oRG5xOZ9uOFQd6X5Sh0R+dXZvLj21K0cLS7ntzVWsy8zj1O5taRsfTXJ8NHeM78vO7EISYiI5lFvC6b3T6J6awPe7ciitqGJEz3YkxkZRXlnFV9uzyS4opUdqIje9upwh6W15e+qYei0SUFFQFCUk+IrCPn6ijMzjxQzqlowx8Ov/rOKaUemcN6AT248U0LVtPCdKK3hv1QH++ukWvpl+HgeOF3P/h+vZdqSQcf07MGlwF1bty2XR5iNkF5QSHSnVuak6JMWyaHNW9f0y2idSXlnFj4an0yEplv98t5cthwv82hwh0C4hhpwTZV7HUhNjOOajvSk4/aQ0tmcVcLTQtz1/nTyYH4/yXyMkECoKiqKEJVVVxi0N+frMPAZ0SSLaFhy4LjOXLinxdEhyjXo+XH3Aymp7Wg86tIn18hfM+Hw7HZNi+fGo7uSXVDBn+T6yC0q5cng3+nVyXX/L4Xz+890+RmWkMmvpTo4WlHHR4M58uPoA0ZERTB6Rzvknd2TJ1mye/WIHaYkxXD60G7O/sabZoiKEYT3acnKXZHqmJfLUgq3ERUfwpysGM+Pz7QxOT6Gisorvdx+jyhhG9UrlYG4xqxxBjk46J8dxON/y/ZyansJaWzR7h6TY6uJPU0Z1Z86K/cRHR/LmL09jWI92dfq9h4UoiMhE4B9AJPBPY8zjHsdjgdeBEUAO8GNjzJ5A11RRUBQlFOSXlFNVZWibYJV4raoybMsqYEBna7TywepMeqQmMrxHW7eRUl5RORER1LiiKqughFlf7qr2cYA1wtp/vKh6mmrRpiOM7JXK2f06sC+niE4pscRGRZJXVF7vmh5NLgoiEglsAyYAmcAK4FpjzCZbn18DQ4wxvxKRKcCVxpgfB7quioKiKErtCYeEeKOBHcaYXcaYMmAOcLlHn8uB1xzb7wLjRcMtFUVRmoxQikI3wB5Vk+lo89nHGFMB5AFpnhcSkakislJEVmZnZ4fIXEVRFKVZRHYYY2YZY0YaY0Z26BA4P72iKIpSd0IpCgeA7rb9dEebzz4iEgWkYDmcFUVRlCYglKKwAugrIhkiEgNMAeZ69JkL/MyxfRXwhWlua2QVRVFaECFLzm6MqRCRacACrCWps40xG0XkUWClMWYu8ArwhojsAI5hCYeiKIrSRIS0YocxZj4w36PtQdt2CXB1KG1QFEVRgqdZOJoVRVGUxqHZpbkQkWxgbx1Pbw8crbFX+NCc7G1OtkLzsrc52Qpqbyipj609jTE1Lt9sdqJQH0RkZTARfeFCc7K3OdkKzcve5mQrqL2hpDFs1ekjRVEUpRoVBUVRFKWa1iYKs5ragFrSnOxtTrZC87K3OdkKam8oCbmtrcqnoCiKogSmtY0UFEVRlACoKCiKoijVtBpREJGJIrJVRHaIyPSmtgdARGaLSJaIbLC1pYrIZyKy3fHZztEuIjLDYf86ERneyLZ2F5HFIrJJRDaKyB3haq+IxInIchFZ67D1EUd7hoh877DpbUdOLkQk1rG/w3G8V2PZ6mF3pIisFpGPw9leEdkjIutFZI2IrHS0hd3fgc3etiLyrohsEZHNInJ6ONorIv0dv1PnT76I3NnothpjWvwPVu6lncBJQAywFhgYBnadDQwHNtjangCmO7anA391bE8CPgEEGAN838i2dgGGO7aTsKrqDQxHex33bOPYjga+d9jwDjDF0f4icKtj+9fAi47tKcDbTfT3cBfwJvCxYz8s7QX2AO092sLu78Bm22vAzY7tGKBtONvrsCMSOAz0bGxbG/3LNtEv+HRggW3/XuDeprbLYUsvD1HYCnRxbHcBtjq2X8IqZ+rVr4ns/gir1GpY2wskAKuA07AiQaM8/yawkjae7tiOcvSTRrYzHfgcOA/42PEfPSzt9SMKYfl3gJWOf7fn7ydc7bXd9wLgm6awtbVMHwVTBS5c6GSMOeTYPgx0cmyHzXdwTFcMw3oDD0t7HVMxa4As4DOskWKusSr8edoTVAXAEPMM/9/e/b1YVYVhHP8+UZjNhFNhEAXVFFQENllIpIXgVRHShdEPM4mgG2+8KqRf0B9QdCElBGE0WFhO1+EUA16UqU1lCiURNFFOF2UZFDG+Xaz3bE9j4mFg9llxng8czt5r79m8B9aZd++1z34XPAWcyvXLqDfeAD6QdFDSk9lWZT8ArgV+Bt7IobnXJQ1Rb7wdDwG7crnVWAclKfwvRUn/Vf1mWNIw8B6wNSJ+695WU7wRMRcRY5Qz8FXAjX0O6awk3QfMRsTBfsfSozURsRK4B9gi6e7ujTX1A8qV1Erg1Yi4FfiDMgTTqCxe8t7RemD3/G1txDooSaGXWeBqcVzSFQD5Ppvtff8Mki6gJITxiNiTzdXGCxARvwIfUYZfRlRm+JsfT79nAFwNrJf0HfA2ZQjplVrjjYgf8n0WmKAk3Vr7wQwwExGf5Pq7lCRRa7xQku2hiDie663GOihJoZdZ4GrRPRvdZsrYfaf9sfzFwR3Aia5LykUnSZRJkY5GxEs1xytpuaSRXF5KufdxlJIcNpwl1r7NABgR2yLiqoi4htI3P4yIjTXGK2lI0sWdZcrY92Eq7AcAEfET8L2kG7JpHXCk1njTw5weOurE1F6sbd9A6deLcqf+a8rY8jP9jidj2gX8CPxNOaN5gjI2PAl8A+wFLs19BWzP+L8Ebm851jWUy9YvgOl83VtjvMAK4LOM9TDwfLaPAvuBY5RL8yXZfmGuH8vto33sE2s5/euj6uLNmD7P11ed71KN/aAr5jHgQPaH94FLao0XGKJc9S3rams1Vpe5MDOzxqAMH5mZWQ+cFMzMrOGkYGZmDScFMzNrOCmYmVnDScGsRZLWKqugmtXIScHMzBpOCmb/QdKjKnMyTEvakQX2Tkp6WWWOhklJy3PfMUkfZ037ia5699dL2qsyr8MhSdfl4Ye76vuP59PiZlVwUjCbR9JNwIPA6ihF9eaAjZSnTQ9ExM3AFPBC/smbwNMRsYLyZGmnfRzYHhG3AHdSnl6HUmF2K2U+ilFK7SOzKpx/7l3MBs464Dbg0zyJX0opQnYKeCf3eQvYI2kZMBIRU9m+E9id9YGujIgJgIj4EyCPtz8iZnJ9mjKnxr7F/1hm5+akYHYmATsjYtu/GqXn5u230Boxf3Utz+HvoVXEw0dmZ5oENki6HJr5h6+mfF86VUsfAfZFxAngF0l3ZfsmYCoifgdmJN2fx1gi6aJWP4XZAvgMxWyeiDgi6VnK7GLnUarYbqFM0LIqt81S7jtAKWf8Wv7T/xZ4PNs3ATskvZjHeKDFj2G2IK6SatYjSScjYrjfcZgtJg8fmZlZw1cKZmbW8JWCmZk1nBTMzKzhpGBmZg0nBTMzazgpmJlZ4x+6sEHvUNTypQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plotting the Train Valid Loss Graph\n",
+ "\n",
+ "plt.plot(cnnhistory.history['loss'])\n",
+ "plt.plot(cnnhistory.history['val_loss'])\n",
+ "plt.title('model loss')\n",
+ "plt.ylabel('loss')\n",
+ "plt.xlabel('epoch')\n",
+ "plt.legend(['train', 'test'], loc='upper left')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Saving the model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Saving the model.json\n",
+ "\n",
+ "import json\n",
+ "model_json = model.to_json()\n",
+ "with open(\"model.json\", \"w\") as json_file:\n",
+ " json_file.write(model_json)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Loading the model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Loaded model from disk\n",
+ "acc: 93.96%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# loading json and creating model\n",
+ "from keras.models import model_from_json\n",
+ "json_file = open('model.json', 'r')\n",
+ "loaded_model_json = json_file.read()\n",
+ "json_file.close()\n",
+ "loaded_model = model_from_json(loaded_model_json)\n",
+ "\n",
+ "# load weights into new model\n",
+ "loaded_model.load_weights(\"model/aug_noiseNshift_2class2_np.h5\")\n",
+ "print(\"Loaded model from disk\")\n",
+ " \n",
+ "# evaluate loaded model on test data\n",
+ "loaded_model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])\n",
+ "score = loaded_model.evaluate(x_testcnn, y_test, verbose=0)\n",
+ "print(\"%s: %.2f%%\" % (loaded_model.metrics_names[1], score[1]*100))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# X. Predicting emotions on the test data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "160"
+ ]
+ },
+ "execution_count": 75,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(data3_df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 160/160 [00:05<00:00, 26.86it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "data_test = pd.DataFrame(columns=['feature'])\n",
+ "for i in tqdm(range(len(data3_df))):\n",
+ " X, sample_rate = librosa.load(data3_df.path[i], res_type='kaiser_fast',duration=input_duration,sr=22050*2,offset=0.5)\n",
+ "# X = X[10000:90000]\n",
+ " sample_rate = np.array(sample_rate)\n",
+ " mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13), axis=0)\n",
+ " feature = mfccs\n",
+ " data_test.loc[i] = [feature]\n",
+ " \n",
+ "test_valid = pd.DataFrame(data_test['feature'].values.tolist())\n",
+ "test_valid = np.array(test_valid)\n",
+ "test_valid_lb = np.array(data3_df.label)\n",
+ "lb = LabelEncoder()\n",
+ "test_valid_lb = np_utils.to_categorical(lb.fit_transform(test_valid_lb))\n",
+ "test_valid = np.expand_dims(test_valid, axis=2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "160/160 [==============================] - 0s 978us/step\n"
+ ]
+ }
+ ],
+ "source": [
+ "preds = loaded_model.predict(test_valid, \n",
+ " batch_size=16, \n",
+ " verbose=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[9.02437747e-01, 9.75623056e-02],\n",
+ " [7.74625828e-03, 9.92253721e-01],\n",
+ " [9.83769000e-01, 1.62310582e-02],\n",
+ " [1.44755363e-01, 8.55244637e-01],\n",
+ " [2.51911819e-01, 7.48088181e-01],\n",
+ " [9.93456066e-01, 6.54396275e-03],\n",
+ " [2.94017226e-01, 7.05982745e-01],\n",
+ " [9.54675138e-01, 4.53248359e-02],\n",
+ " [1.00791091e-02, 9.89920855e-01],\n",
+ " [2.56100714e-01, 7.43899286e-01],\n",
+ " [2.40712896e-01, 7.59287059e-01],\n",
+ " [2.41282061e-02, 9.75871861e-01],\n",
+ " [8.25557590e-01, 1.74442455e-01],\n",
+ " [9.92534518e-01, 7.46552832e-03],\n",
+ " [2.59766299e-02, 9.74023402e-01],\n",
+ " [4.62669402e-01, 5.37330568e-01],\n",
+ " [1.32880300e-01, 8.67119730e-01],\n",
+ " [1.68901440e-02, 9.83109832e-01],\n",
+ " [6.21189028e-02, 9.37881052e-01],\n",
+ " [7.54640818e-01, 2.45359138e-01],\n",
+ " [6.66550770e-02, 9.33344901e-01],\n",
+ " [9.95067477e-01, 4.93251253e-03],\n",
+ " [9.22456663e-03, 9.90775406e-01],\n",
+ " [9.98589694e-01, 1.41029467e-03],\n",
+ " [9.72774267e-01, 2.72257533e-02],\n",
+ " [9.96585250e-01, 3.41471424e-03],\n",
+ " [9.98866677e-01, 1.13334495e-03],\n",
+ " [3.91824208e-02, 9.60817575e-01],\n",
+ " [2.71135896e-01, 7.28864133e-01],\n",
+ " [2.17471155e-03, 9.97825265e-01],\n",
+ " [2.01057852e-03, 9.97989416e-01],\n",
+ " [2.63491631e-01, 7.36508369e-01],\n",
+ " [9.63920414e-01, 3.60795967e-02],\n",
+ " [9.99323606e-01, 6.76442811e-04],\n",
+ " [1.17144198e-03, 9.98828590e-01],\n",
+ " [6.55439556e-01, 3.44560415e-01],\n",
+ " [4.92029279e-01, 5.07970691e-01],\n",
+ " [6.76786602e-01, 3.23213398e-01],\n",
+ " [9.99866247e-01, 1.33676338e-04],\n",
+ " [1.38100892e-01, 8.61899078e-01],\n",
+ " [5.42253971e-01, 4.57745999e-01],\n",
+ " [1.30410060e-01, 8.69589925e-01],\n",
+ " [9.60772753e-01, 3.92271802e-02],\n",
+ " [1.37905322e-03, 9.98620987e-01],\n",
+ " [4.07006502e-01, 5.92993498e-01],\n",
+ " [7.39706039e-01, 2.60293961e-01],\n",
+ " [9.54863012e-01, 4.51369770e-02],\n",
+ " [8.32664371e-01, 1.67335674e-01],\n",
+ " [9.96675014e-01, 3.32494872e-03],\n",
+ " [9.96560395e-01, 3.43957590e-03],\n",
+ " [9.35723841e-01, 6.42761886e-02],\n",
+ " [8.96258175e-01, 1.03741840e-01],\n",
+ " [4.08396184e-01, 5.91603816e-01],\n",
+ " [4.95112896e-01, 5.04887164e-01],\n",
+ " [8.40549886e-01, 1.59450084e-01],\n",
+ " [9.54625487e-01, 4.53744866e-02],\n",
+ " [8.18508506e-01, 1.81491494e-01],\n",
+ " [2.63310736e-03, 9.97366965e-01],\n",
+ " [7.24176526e-01, 2.75823474e-01],\n",
+ " [5.07210661e-03, 9.94927883e-01],\n",
+ " [9.59553003e-01, 4.04469892e-02],\n",
+ " [9.96902406e-01, 3.09751555e-03],\n",
+ " [6.86468789e-03, 9.93135333e-01],\n",
+ " [9.98571754e-01, 1.42818841e-03],\n",
+ " [9.90100682e-01, 9.89936758e-03],\n",
+ " [4.60998744e-01, 5.39001226e-01],\n",
+ " [9.19513822e-01, 8.04862007e-02],\n",
+ " [6.90514818e-02, 9.30948555e-01],\n",
+ " [2.89750755e-01, 7.10249305e-01],\n",
+ " [7.89580524e-01, 2.10419446e-01],\n",
+ " [5.38489580e-01, 4.61510420e-01],\n",
+ " [3.65078673e-02, 9.63492155e-01],\n",
+ " [6.23798251e-01, 3.76201749e-01],\n",
+ " [6.03777647e-01, 3.96222353e-01],\n",
+ " [9.52673972e-01, 4.73259613e-02],\n",
+ " [9.78594363e-01, 2.14056652e-02],\n",
+ " [7.38765121e-01, 2.61234879e-01],\n",
+ " [3.54052752e-01, 6.45947218e-01],\n",
+ " [9.99942422e-01, 5.75190315e-05],\n",
+ " [2.15125054e-01, 7.84874916e-01],\n",
+ " [6.80405676e-01, 3.19594324e-01],\n",
+ " [9.95777011e-01, 4.22295276e-03],\n",
+ " [1.82327572e-02, 9.81767237e-01],\n",
+ " [9.74136293e-01, 2.58637499e-02],\n",
+ " [3.83876175e-01, 6.16123796e-01],\n",
+ " [9.76525307e-01, 2.34747324e-02],\n",
+ " [8.98704052e-01, 1.01295911e-01],\n",
+ " [4.10448879e-01, 5.89551151e-01],\n",
+ " [9.91157413e-01, 8.84265266e-03],\n",
+ " [9.24599767e-01, 7.54002035e-02],\n",
+ " [8.51717412e-01, 1.48282617e-01],\n",
+ " [2.23906506e-02, 9.77609396e-01],\n",
+ " [9.69508708e-01, 3.04913148e-02],\n",
+ " [8.83970037e-02, 9.11602974e-01],\n",
+ " [7.33813420e-02, 9.26618636e-01],\n",
+ " [9.80508506e-01, 1.94915663e-02],\n",
+ " [2.05766410e-01, 7.94233620e-01],\n",
+ " [2.05802973e-02, 9.79419649e-01],\n",
+ " [9.59737539e-01, 4.02624235e-02],\n",
+ " [9.51587021e-01, 4.84129153e-02],\n",
+ " [5.28562486e-01, 4.71437544e-01],\n",
+ " [9.82225418e-01, 1.77745447e-02],\n",
+ " [9.95358407e-01, 4.64161718e-03],\n",
+ " [9.89413083e-01, 1.05869733e-02],\n",
+ " [6.85702622e-01, 3.14297408e-01],\n",
+ " [8.60162556e-01, 1.39837429e-01],\n",
+ " [3.32062006e-01, 6.67937994e-01],\n",
+ " [9.98952985e-01, 1.04695698e-03],\n",
+ " [9.90052521e-01, 9.94743872e-03],\n",
+ " [8.75887930e-01, 1.24112099e-01],\n",
+ " [9.98890698e-01, 1.10929064e-03],\n",
+ " [3.77380043e-01, 6.22619927e-01],\n",
+ " [6.48253024e-01, 3.51746947e-01],\n",
+ " [5.44818938e-01, 4.55181092e-01],\n",
+ " [5.73064148e-01, 4.26935881e-01],\n",
+ " [7.36568689e-01, 2.63431311e-01],\n",
+ " [3.47799331e-01, 6.52200699e-01],\n",
+ " [9.89478886e-01, 1.05211008e-02],\n",
+ " [9.97661710e-01, 2.33832630e-03],\n",
+ " [7.46137619e-01, 2.53862381e-01],\n",
+ " [2.36266796e-02, 9.76373315e-01],\n",
+ " [1.15855306e-01, 8.84144723e-01],\n",
+ " [9.99604762e-01, 3.95292853e-04],\n",
+ " [9.39756632e-01, 6.02433421e-02],\n",
+ " [7.26442039e-01, 2.73557991e-01],\n",
+ " [1.28157854e-01, 8.71842146e-01],\n",
+ " [4.05701637e-01, 5.94298363e-01],\n",
+ " [9.77908909e-01, 2.20910683e-02],\n",
+ " [9.88749385e-01, 1.12506049e-02],\n",
+ " [7.43776143e-01, 2.56223828e-01],\n",
+ " [1.01428568e-01, 8.98571432e-01],\n",
+ " [9.03055489e-01, 9.69445482e-02],\n",
+ " [9.83866274e-01, 1.61337797e-02],\n",
+ " [9.58156884e-01, 4.18431237e-02],\n",
+ " [2.67699510e-01, 7.32300520e-01],\n",
+ " [9.94916558e-01, 5.08340029e-03],\n",
+ " [8.69181156e-02, 9.13081825e-01],\n",
+ " [5.18520474e-01, 4.81479526e-01],\n",
+ " [3.31227435e-03, 9.96687710e-01],\n",
+ " [5.69702148e-01, 4.30297822e-01],\n",
+ " [4.06953655e-02, 9.59304690e-01],\n",
+ " [9.95598912e-01, 4.40103794e-03],\n",
+ " [1.00790085e-02, 9.89920974e-01],\n",
+ " [9.12350789e-03, 9.90876496e-01],\n",
+ " [5.08049317e-02, 9.49195027e-01],\n",
+ " [9.45671916e-01, 5.43280914e-02],\n",
+ " [8.66154790e-01, 1.33845195e-01],\n",
+ " [7.69116342e-01, 2.30883643e-01],\n",
+ " [1.85288593e-01, 8.14711452e-01],\n",
+ " [9.93687332e-01, 6.31270185e-03],\n",
+ " [9.08513129e-01, 9.14868787e-02],\n",
+ " [8.36249471e-01, 1.63750529e-01],\n",
+ " [1.42808214e-01, 8.57191741e-01],\n",
+ " [5.33238649e-01, 4.66761321e-01],\n",
+ " [8.97382438e-01, 1.02617584e-01],\n",
+ " [9.78488445e-01, 2.15114877e-02],\n",
+ " [9.95081544e-01, 4.91840811e-03],\n",
+ " [4.72754538e-01, 5.27245462e-01],\n",
+ " [6.17820263e-01, 3.82179677e-01],\n",
+ " [5.73170483e-01, 4.26829487e-01]], dtype=float32)"
+ ]
+ },
+ "execution_count": 78,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "preds"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 79,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "preds1=preds.argmax(axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0,\n",
+ " 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1,\n",
+ " 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1,\n",
+ " 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1,\n",
+ " 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,\n",
+ " 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,\n",
+ " 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,\n",
+ " 0, 0, 0, 1, 0, 0])"
+ ]
+ },
+ "execution_count": 80,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "preds1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "abc = preds1.astype(int).flatten()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "predictions = (lb.inverse_transform((abc)))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " predictedvalues | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " predictedvalues\n",
+ "0 male_negative\n",
+ "1 male_positive\n",
+ "2 male_negative\n",
+ "3 male_positive\n",
+ "4 male_positive\n",
+ "5 male_negative\n",
+ "6 male_positive\n",
+ "7 male_negative\n",
+ "8 male_positive\n",
+ "9 male_positive"
+ ]
+ },
+ "execution_count": 83,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "preddf = pd.DataFrame({'predictedvalues': predictions})\n",
+ "preddf[:10]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "actual=test_valid_lb.argmax(axis=1)\n",
+ "abc123 = actual.astype(int).flatten()\n",
+ "actualvalues = (lb.inverse_transform((abc123)))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " actualvalues | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " actualvalues\n",
+ "0 male_negative\n",
+ "1 male_positive\n",
+ "2 male_negative\n",
+ "3 male_positive\n",
+ "4 male_positive\n",
+ "5 male_negative\n",
+ "6 male_positive\n",
+ "7 male_positive\n",
+ "8 male_positive\n",
+ "9 male_positive"
+ ]
+ },
+ "execution_count": 85,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "actualdf = pd.DataFrame({'actualvalues': actualvalues})\n",
+ "actualdf[:10]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 86,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "finaldf = actualdf.join(preddf)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Actual v/s Predicted emotions"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 87,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " actualvalues | \n",
+ " predictedvalues | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 20 | \n",
+ " male_negative | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " male_positive | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " male_positive | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " male_negative | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " male_negative | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " male_negative | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " male_negative | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " male_negative | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " male_negative | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " male_positive | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " male_negative | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 31 | \n",
+ " male_positive | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 32 | \n",
+ " male_negative | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 33 | \n",
+ " male_negative | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 34 | \n",
+ " male_positive | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 35 | \n",
+ " male_negative | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " male_negative | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ " 37 | \n",
+ " male_positive | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 38 | \n",
+ " male_negative | \n",
+ " male_negative | \n",
+ "
\n",
+ " \n",
+ " 39 | \n",
+ " male_negative | \n",
+ " male_positive | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " actualvalues predictedvalues\n",
+ "20 male_negative male_positive\n",
+ "21 male_positive male_negative\n",
+ "22 male_positive male_positive\n",
+ "23 male_negative male_negative\n",
+ "24 male_negative male_negative\n",
+ "25 male_negative male_negative\n",
+ "26 male_negative male_negative\n",
+ "27 male_negative male_positive\n",
+ "28 male_negative male_positive\n",
+ "29 male_positive male_positive\n",
+ "30 male_negative male_positive\n",
+ "31 male_positive male_positive\n",
+ "32 male_negative male_negative\n",
+ "33 male_negative male_negative\n",
+ "34 male_positive male_positive\n",
+ "35 male_negative male_negative\n",
+ "36 male_negative male_positive\n",
+ "37 male_positive male_negative\n",
+ "38 male_negative male_negative\n",
+ "39 male_negative male_positive"
+ ]
+ },
+ "execution_count": 87,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "finaldf[20:40]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 88,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " predictedvalues | \n",
+ "
\n",
+ " \n",
+ " actualvalues | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " male_negative | \n",
+ " 96 | \n",
+ "
\n",
+ " \n",
+ " male_positive | \n",
+ " 64 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " predictedvalues\n",
+ "actualvalues \n",
+ "male_negative 96\n",
+ "male_positive 64"
+ ]
+ },
+ "execution_count": 88,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "finaldf.groupby('actualvalues').count()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 89,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " actualvalues | \n",
+ "
\n",
+ " \n",
+ " predictedvalues | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " male_negative | \n",
+ " 97 | \n",
+ "
\n",
+ " \n",
+ " male_positive | \n",
+ " 63 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " actualvalues\n",
+ "predictedvalues \n",
+ "male_negative 97\n",
+ "male_positive 63"
+ ]
+ },
+ "execution_count": 89,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "finaldf.groupby('predictedvalues').count()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "finaldf.to_csv('Predictions.csv', index=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 91,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def print_confusion_matrix(confusion_matrix, class_names, figsize = (10,7), fontsize=14):\n",
+ " \"\"\"Prints a confusion matrix, as returned by sklearn.metrics.confusion_matrix, as a heatmap.\n",
+ " \n",
+ " Arguments\n",
+ " ---------\n",
+ " confusion_matrix: numpy.ndarray\n",
+ " The numpy.ndarray object returned from a call to sklearn.metrics.confusion_matrix. \n",
+ " Similarly constructed ndarrays can also be used.\n",
+ " class_names: list\n",
+ " An ordered list of class names, in the order they index the given confusion matrix.\n",
+ " figsize: tuple\n",
+ " A 2-long tuple, the first value determining the horizontal size of the ouputted figure,\n",
+ " the second determining the vertical size. Defaults to (10,7).\n",
+ " fontsize: int\n",
+ " Font size for axes labels. Defaults to 14.\n",
+ " \n",
+ " Returns\n",
+ " -------\n",
+ " matplotlib.figure.Figure\n",
+ " The resulting confusion matrix figure\n",
+ " \"\"\"\n",
+ " df_cm = pd.DataFrame(\n",
+ " confusion_matrix, index=class_names, columns=class_names, \n",
+ " )\n",
+ " fig = plt.figure(figsize=figsize)\n",
+ " try:\n",
+ " heatmap = sns.heatmap(df_cm, annot=True, fmt=\"d\")\n",
+ " except ValueError:\n",
+ " raise ValueError(\"Confusion matrix values must be integers.\")\n",
+ " \n",
+ " heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=fontsize)\n",
+ " heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right', fontsize=fontsize)\n",
+ " plt.ylabel('True label')\n",
+ " plt.xlabel('Predicted label')\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 92,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "66.875"
+ ]
+ },
+ "execution_count": 92,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "y_true = finaldf.actualvalues\n",
+ "y_pred = finaldf.predictedvalues\n",
+ "accuracy_score(y_true, y_pred)*100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 93,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "65.40328831953"
+ ]
+ },
+ "execution_count": 93,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import f1_score\n",
+ "f1_score(y_true, y_pred, average='macro') *100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 94,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[70, 26],\n",
+ " [27, 37]])"
+ ]
+ },
+ "execution_count": 94,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import confusion_matrix\n",
+ "c = confusion_matrix(y_true, y_pred)\n",
+ "c"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 95,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAH2CAYAAAAYvsaVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xm87fXY//HXu3OaZ5oLhdzccpdUd2QoJYRM8UMyhMg8Rd2oqGhAhpAGGRqUqIwlERo0aBIlJClSqSiNp3P9/vh+d1bbWefsc9rnu/Za+/X0WI+z1nf8rP1oWde6rs+QqkKSJEmak0UG3QBJkiRNXQaLkiRJ6stgUZIkSX0ZLEqSJKkvg0VJkiT1ZbAoSZKkvgwWJUmS1JfBoiRJkvoyWJQkSVJfMwfdAE0d99x4pcv5SAOw5BpPGXQTpGlr1t3Xpsv7TeZ37aIrPbyTtptZlCRJUl9mFiVJkroy+95Bt2C+mVmUJElSX2YWJUmSulKzB92C+WawKEmS1JXZwxcsWoaWJElSX2YWJUmSOlKWoSVJktSXZWhJkiSNEjOLkiRJXbEMLUmSpL6clFuSJEmjxMyiJElSVyxDS5IkqS9HQ0uSJGmUmFmUJEnqiJNyS5IkqT/L0JIkSRolZhYlSZK6YhlakiRJfTkptyRJkkaJmUVJkqSuWIaWJElSX46GliRJ0igxsyhJktQVy9CSJEnqyzK0JEmSRomZRUmSpI5UDd88iwaLkiRJXbHPoiRJkvqyz6IkSZJGiZlFSZKkrliGliRJUl+zh2+Ai2VoSZIk9WVmUZIkqSuWoSVJktSXo6ElSZI0SswsSpIkdcUytCRJkvqyDC1JkqRRYmZRkiSpK0OYWTRYlCRJ6kiVk3JLkiRphJhZlCRJ6oplaEmSJPU1hFPnWIaWJElSX2YWJUmSumIZWpIkSX1ZhpYkSdJUkWSFJMcnuTzJZUme2LPvPUkqyUpzu4aZRUmSpK50X4b+NHByVW2XZDFgKYAkDwG2Bq6e1wXMLEqSJHWlZk/eYx6SLA88FTgcoKrurqpb2t0HAu8Dal7XMViUJEkaQkl2SnJ+z2OncYesA9wAHJHkwiSHJVk6yfOBa6vq4oncxzK0JElSVyaxDF1VhwCHzOWQmcCGwNuq6pwknwb2pMk2bj3R+5hZlCRJ6srs2ZP3mLdrgGuq6pz29fE0weM6wMVJrgLWAi5Islq/ixgsSpIkjaCqug74c5L/ajdtCVxQVatU1dpVtTZNQLlhe+wcWYaWJEnqSvfzLL4NOKodCX0l8Nr5vYDBoiRJUlc6njqnqi4CNprL/rXndQ3L0JIkSerLzKIkSVJXhnC5P4NFSZKkrnS/gssDZhlakiRJfZlZlCRJ6oplaEmSJPVlGVqSJEmjxMyiJElSV4Yws2iwKEmS1JWqQbdgvlmGliRJUl9mFiVJkrpiGVqSJEl9DWGwaBlakiRJfZlZlCRJ6oqTckuSJKkvy9CSJEkaJWYWJUmSujKE8ywaLEqSJHXFMrQkSZJGiZlFSZKkrgxhZtFgUZIkqStDOHWOZWhJkiT1ZWZRkiSpIzXb0dCSJEnqZwj7LFqGliRJUl9mFiVJkroyhANcDBYlSZK6Yp9FSZIk9WWfRUmSJI0SM4uSJEldGcLMosGiJElSV2r4+ixahpYkSVJfQxUsJnlNktsG3Y6uJNk8SSVZadBtkSRJk2D27Ml7dMQy9BSR5CrgoKr6eM/ms4DVgb8PpFGasv74p2t47+4fu+/1NX/5K299/Q5s++yteM+HPsZfrvsba6y2Kp/YazeWX27ZAbZUGi1rrbUGX/7Sp1ll1ZWoKg477Cg+e9DhALzlza9l551fw7333ssPfnAau+62z4BbqynJqXM0marqbuC6QbdDU886D1uLb37lcwDce++9PP0FO7Dl057EYV87jk032oDX7/BSDvvacRx+5HG8+82vG3BrpdExa9Ysdnnfh7nwoktZZpmlOfeck/nRaT9j1VVWZtvnPZMNn/AM7r77blZe+cGDbqo0aRZaGTrJ6Um+kOQTSW5KckOSdyRZPMnnktyS5OokO/Scs2+S3ya5I8lVSfZPssQ87vO8JL9McmeSPybZJ8liE2zjVUk+mOSLSf6Z5Joku4w7ZvkkhyS5PsmtSX6aZKNxx+zYvpfbk3wnyZuTVM/+RyQ5Kcl1Sf6V5IIkz+39WwEPAw5oy87Vbr+vDJ1kufbv8rxx9946yT1JVmlfr5nk60lubh/fS7LuRP4eGk6/OP8iHrLm6qyx2qr85Odn8/xnbwXA85+9FT/+2dkDbp00Wq677nouvOhSAG677V9cfvnvWHON1XjjG1/F/gd8jrvvvhuAG26wIKQ+avbkPTqysPssbg/cCvwvsC/wKeBE4ApgI+ArwGFJVm+P/xewI/AY4M3Ay4AP9Lt4kmcCRwEHAY9tz90O+Oh8tPFdwK+ADYH9gP2TPLG9foDvAWsCzwUeD/wM+PFYm9tjDwM+B2wAfBv48Lh7LAP8AHgGsD7wTeBbSR7d7n8RcA3wEZqy8+rjzqeq/gl8h+Zv2mt74NSquj7JUsBPgDuBpwFPBP4K/KjdpxH0g9N+yjZbPQ2Av998Cyuv9CAAVnrwivz95lsG2TRppD3sYWuxwfrrcc65F7Luug/nyU/ehLPO+A4//tHxbPSE9QfdPE1Vs2vyHh1Z2MHir6tqz6r6HfBJ4Ebgnqr6dFX9niY4CrAZQFXtVVVnVtVVVfV9mqDv5XO5/geAA6rqiKr6Q1X9BHg/8KY20JuIH1bVQVX1+6r6LPB7YMt23xY0AeB2VXVue8yHgCuBsYzo29tr7FdVV1TVocAJvTeoqour6uCq+lV7jX2AC2gCW6rqJuBe4Naquq6q+pWejwS2TbIsQJIlgRe226EJrgO8tqouqarLgTfSBKvPncP1SLJTkvOTnH/YV4+Z4J9MU8U999zD6Wecw9ZPf8p/7EvCxD8GkubH0ksvxXHHHsq737sHt956GzNnzmDFFVfgSU9+Hu/fdW+OOfrgQTdRmjQLu8/iJWNPqqqSXE+TxRvbdk+Sm4GxEup2wDuBR9IEODPaRz9PADZJ8v6ebYsASwKr0WTVJtzG1l/G2tNefynghnFfuksAj2ifP5om49frHOANYy+SLA3sQROwrQ4s2l5j/L3n5QfA7TQB4leBbWmCwxN72rsOcOu49i7V0977qapDgEMA7rnxyuHrdTvN/fwX5/OYRz2ClR60IgAPXnEFbrjxJlZe6UHccONNPGiF5QfcQmn0zJw5k28ceyjHHHMCJ574AwCuveav9z0/7/yLmD17Niut9CBuvPGmQTZVU1A5Kfd/uGfc6+qzbZEkmwJfpynhvgu4hSYY+jj9LdIe/4057LvhAbRxLOO6CPA34D/TNvDPCV4fmvfwLOC9wO9oAr6vAhPqW3lfw5rg+jia0vNX239PqKrbe9p7EU2GcTz/H2sEff/U09nmGZvf93rzJ2/KST/4Ea/f4aWc9IMfscVTnji4xkkj6tBDPsFll/+eT336kPu2nfTtU9h88ydx+k/PYt11H85iiy1moKg5czT0A7IZcG1V7TW2IcnD5nHOBcCj25L2wnABsCowu6qu7HPM5cDG47ZtMu71k4GvVtU3AdpBO4+g6bs55m7mnkUdcyTwsyT/TROA9paXL6Ap299YVXZWG3G333EnZ593IXu87+33bXv9Di/lPR/6KN/67imssdoqfGKv/xtgC6XRs9mTNmaHV27HJb/6Deef90MAPvShfTniy1/nsEM/wUUXnsbdd9/Djq9754BbKk2eqRQsXgGsmWR74Gzgmcy9vyI0fR6/m+RPwHHALGA9YJOqet8ktOlHwJnASUneRxMYrkYTpP2oqn4OfAY4ox1FfSLwVJoy8fj39sIkJ9FkMvegKUP3ugp4SpIjgbuq6sY5Naiqzmrf79E0fUBP69l9FE328qQkuwNXAw8Bng8c3PYd1YhYasklOPMHx91v2wrLL8fhn9l3QC2SRt+ZZ53HzMXWnOO+V7/m7XPcLt1Ph6OYJ8uUWcGlqr4DHEAzYvoSmpHDu8/jnFOA59AMRDm3fexKEyRNRpsK2Ab4MXAo8FuaoPS/aPo2UlVn0/RPfHvb7hfQjKq+s+dS7wauB35O0+/wF+3zXrvTBHZ/YN4l9KNoRlV/varu7Wnv7TTB6pU0pfnLaUacrwjcPOE3LkmSFo4hHA2dGsIFrae6JAcCW1XV4wbdlvnhABdpMJZcY07doiV1Ydbd13Y6bcS/PrL9pH3XLr37UZ20fSqVoYdWW4I+FbgN2Ap4E2BnMUmSdH+Ohp46kjyFpuQ7R1W1zCTebiOavoLLA38EdgM+PYnXlyRJo8DR0FPK+TQTai90VfX/uriPJElS10Y2WKyqO2hWY5EkSZoahnA09MgGi5IkSVPOEJahp8zUOZIkSZp6zCxKkiR1xLWhJUmS1J9laEmSJI0SM4uSJEldGcLMosGiJElSV4Zw6hzL0JIkSerLzKIkSVJXLENLkiSpnxrCYNEytCRJkvoysyhJktSVIcwsGixKkiR1peMVXJJcBdwK3AvMqqqN2u1vA97Sbv9eVb2v3zUMFiVJkkbbFlV149iLJFsAzwfWr6q7kqwyt5MNFiVJkroyNcrQOwP7VtVdAFV1/dwOdoCLJElSV2bXpD2S7JTk/J7HTnO4YwE/TPLLnv2PAp6S5JwkP02y8dyabGZRkiRpCFXVIcAh8zjsyVV1bVtqPjXJ5TTx34OATYGNgeOSPLyq5pj2NFiUJEnqSJ94bGHe79r23+uTnABsAlwDfKsNDs9NMhtYCbhhTtewDC1JktSVSSxDz0uSpZMsO/Yc2Bq4FDgR2KLd/ihgMeDGftcxsyhJkjSaVgVOSAJNzHd0VZ2cZDHgS0kuBe4GXt2vBD12oiRJkrrQ4WjoqroSWH8O2+8GXjnR6xgsSpIkdcS1oSVJkjRSzCxKkiR1ZQgziwaLkiRJXel2aehJYRlakiRJfZlZlCRJ6sgwDnAxWJQkSerKEAaLlqElSZLUl5lFSZKkrgzhABeDRUmSpI4MY59Fy9CSJEnqy8yiJElSVyxDS5IkqZ9hLEMbLEqSJHVlCDOL9lmUJElSX2YWJUmSOlJDmFk0WJQkSerKEAaLlqElSZLUl5lFSZKkjliGliRJUn9DGCxahpYkSVJfZhYlSZI6YhlakiRJfQ1jsGgZWpIkSX2ZWZQkSerIMGYWDRYlSZK6Uhl0C+abZWhJkiT1ZWZRkiSpI5ahJUmS1FfNtgwtSZKkEWJmUZIkqSOWoSVJktRXORpakiRJo8TMoiRJUkcsQ0uSJKkvR0NLkiRppJhZlCRJ6kjVoFsw/wwWJUmSOmIZWpIkSSPFzKIkSVJHhjGz2DdYTLLc3E6sqn9OfnMkSZJG16j1Wfw1UEBvCDz2uoCHLsR2SZIkaQroGyxW1UO6bIgkSdKoG8Yy9IQGuCR5WZL/a5+vleQJC7dZkiRJo6cqk/boyjyDxSQHAVsAO7SbbgcOXpiNkiRJ0tQwkdHQT6qqDZNcCFBVNyVZbCG3S5IkaeSM6trQ9yRZhGZQC0keDAzhW5UkSRqs2R2WjyfLRPosfg74JrBykg8DZwD7LdRWSZIkaUqYZ2axqr6a5JfAVu2ml1TVpQu3WZIkSaOny4Epk2WiK7jMAO6hKUW7RKAkSdICGMmpc5J8ADgGWANYCzg6yW4Lu2GSJEkavIlkFl8FPL6qbgdIsg9wIfCxhdkwSZKkUTNqy/2N+eu442a22yRJkjQfhrEM3TdYTHIgTR/Fm4BfJzmlfb01cF43zZMkSdIgzS2zODbi+dfA93q2/2LhNUeSJGl0DeM8i32Dxao6vMuGSJIkjbqRnDonySOAfYD/BpYY215Vj1qI7ZIkSdIUMJE5E78MHAEEeDZwHHDsQmyTJEnSSKqavEdXJhIsLlVVpwBU1R+q6oM0QaMkSZLmw+zKpD26MpGpc+5KsgjwhyRvAq4Fll24zZIkSdJUMJHM4ruApYG3A5sBbwB2XJiNkiRJGkVVmbTHRCSZkeTCJN9tX2+Z5IIkFyU5I8kj53WNeWYWq+qc9umtwA4TapkkSZL+wwBWcHkHcBmwXPv6C8Dzq+qyJG8GPgi8Zm4XmNuk3CfQTMI9R1X1ovltrSRJkrqRZC3gOTSz2ry73Vz8O3BcHvjLvK4zt8ziQQ+kgRo+yz1ki0E3QZqWXrXGEwfdBEkd6XhS7k8B7+P+Y01eD3w/yR3AP4FN53WRuU3KfdoDbaEkSZL+bTIn5U6yE7BTz6ZDquqQdt9zgeur6pdJNu855l3ANlV1TpJdgE/SBJB9TWQ0tCRJkqaYNjA8pM/uzYBtk2xDs6jKckm+Bzy6ZzzKscDJ87rPREZDS5IkaRJ0Nc9iVe1WVWtV1drAy4AfA88Hlk8ytgrfM2gGv8zVhDOLSRavqrsmerwkSZLur/vB0D33rpqV5A3AN5PMBm5mAtMhTmRt6E2Aw2lGzDw0yfrA66vqbQ+wzZIkSdNKxwNcAKiq04HT2+cnACfMz/kTKUN/Bngu8Pf2JhcDDpuVJEmaBiZShl6kqv6U3C8SvnchtUeSJGlkTeZo6K5MJFj8c1uKriQzgLcBVyzcZkmSJI2e2YNuwAKYSBl6Z5pZvx8K/I1m8sadF2ajJEmSNDVMZG3o62mGXEuSJOkBKEawDJ3kUOYw0ruqdprD4ZIkSepj9iDnzllAE+mz+KOe50sALwT+vHCaI0mSpKlkImXoY3tfJ/kacMZCa5EkSdKImj2KZeg5WAdYdbIbIkmSNOpGtc/izfy7z+IiwE3ArguzUZIkSZoa5hosppmJe33g2nbT7Koawq6ZkiRJgzeM8yzONVisqkry/apar6sGSZIkjaphLENPZFLui5I8fqG3RJIkSVNO38xikplVNQt4PHBekj8A/wJCk3TcsKM2SpIkjYRRK0OfC2wIbNtRWyRJkkbaqAWLAaiqP3TUFkmSJE0xcwsWV07y7n47q+qTC6E9kiRJI2sYB7jMLVicASwDQ/iuJEmSpqDZQxhVzS1Y/GtVfaSzlkiSJGnKmWefRUmSJE2OUVsbesvOWiFJkjQNDOMyeH0n5a6qm7psiCRJkqaeuS73J0mSpMkzavMsSpIkaRLNzvD1WZzI2tCSJEmapswsSpIkdWQYB7gYLEqSJHVkGPssWoaWJElSX2YWJUmSOjJqy/1JkiRpEg3jCi6WoSVJktSXmUVJkqSOOBpakiRJfQ1jn0XL0JIkSerLzKIkSVJHhnGeRYNFSZKkjgxjn0XL0JIkSerLzKIkSVJHhnGAi8GiJElSR4axz6JlaEmSJPVlZlGSJKkjw5hZNFiUJEnqSA1hn0XL0JIkSerLzKIkSVJHLENLkiSpr2EMFi1DS5IkqS8zi5IkSR0ZxuX+DBYlSZI6MowruFiGliRJUl9mFiVJkjoyjANcDBYlSZI6MozBomVoSZIk9WVmUZIkqSOOhpYkSVJfwzga2mBRkiSpI/ZZlCRJ0kgxsyhJktQR+yxKkiSpr9lDGC5ahpYkSVJfZhYlSZI64gAXSZIk9VWT+JiIJDOSXJjku+3rdZKck+T3SY5Nsti8rmGwKEmSNLreAVzW83o/4MCqeiRwM/C6eV3AYFGSJKkjsyfxMS9J1gKeAxzWvg7wdOD49pCvAC+Y13XssyhJktSRjldw+RTwPmDZ9vWDgVuqalb7+hpgzXldxMyiJEnSEEqyU5Lzex479ex7LnB9Vf3ygd7HzKIkSVJHJnOexao6BDikz+7NgG2TbAMsASwHfBpYIcnMNru4FnDtvO5jZlGSJKkjXY2GrqrdqmqtqlobeBnw46raHvgJsF172KuBk+bVZoNFSZKk6eP9wLuT/J6mD+Ph8zrBMrQkSVJHBjEpd1WdDpzePr8S2GR+zjdYlCRJ6ohrQ0uSJGmkmFmUJEnqyPDlFQ0WJUmSOjOIPosPlGVoSZIk9WVmUZIkqSPDOMDFYFGSJKkjwxcqWoaWJEnSXJhZlCRJ6sgwDnAxWJQkSepIDWEh2jK0JEmS+jKzKEmS1BHL0JIkSeprGKfOsQwtSZKkvswsSpIkdWT48ooGi5IkSZ0ZxjL0yASLSV4DHFRVywy6LROVpICXVNXxczlmT2C7qlqvs4ZpSltrrdU57LADWWWVlagqvvSlo/nc547ga187iHXXfTgAK6ywHLfc8k823XSbAbdWGi0zF1+UXY/9CIsuviiLzJjB+T84m5MOPI5dj9uLJZZZAoDlHrw8V178ew7aaf8Bt1aaHCMTLA6p1YGbAZKsDfwR2Liqzu855uPAZztvmaasWbPuZddd9+aiiy5lmWWW5qyzvstpp53BDju89b5j9t33g/zjH/8cYCul0TTrrns44BUf5q7b72TGzBnsdvze/Or0C9n3pR+675g3f+G9XHTqeQNspaayYRwN7QCXAaqq66rqrnkcc1tV/b2rNmnqu+6667nooksBuO22f3H55b9njTVWvd8xL37xczjuuG8PonnSyLvr9jsBmDFzBjNmzrhfJ7QlllmSxzxpPS744bkDap2muprE/3VlIMFiktOTfCHJJ5LclOSGJO9IsniSzyW5JcnVSXboOWffJL9NckeSq5Lsn2SJedzneUl+meTOJH9Msk+SxSbYxquS7JnkyCS3JbkuyXvHHfPQJCckubV9fCvJWj37H5LkpPY93p7k8iQv69lfSbZrX/6x/fe8dvvp7TF7Jrm0fb51kruTPHhcOz6a5JKe109K8tP2nte2f+vlJvK+NVwe+tC12GCDx3LeeRfdt22zzTbhb3+7kT/84arBNUwaYVlkEfb8/gF86peH8+szLuHKi353374Nt96Ey878FXfedscAWyhNrkFmFrcHbgX+F9gX+BRwInAFsBHwFeCwJKu3x/8L2BF4DPBm4GXAB/pdPMkzgaOAg4DHtuduB3x0Ptr4buAyYENgD+CjSV7UXn8R4CRgVWCL9rEGcGKStOd/Hliq3fdY4J3ALX3utUn777NoytMvmsMxpwE3Ai/peZ8BXgEc2b5+HPBD4NvA+u11NgC+NB/vW0Ng6aWX4phjDmaXXT7Crbfedt/2l750W77xDbOK0sJSs2ez5za78J4nvpF11n8kaz7qIfft+99tn8w53z5jgK3TVDd7Eh9dGWSw+Ouq2rOqfgd8kiYIuqeqPl1Vvwc+AgTYDKCq9qqqM6vqqqr6Pk3Q9/K5XP8DwAFVdURV/aGqfgK8H3hTTzA3L+dU1T5VdUVVfRH4Kk0ACbAl8D/AK6rq/Laf4StoAsst22MeBpxRVRdX1R+r6uSqOrnPvW5o//17W56+afwBVXUv8HWaQHvMZsBDgKPb17sAx1bVJ6rqd1V1DrAz8OIkq4y/ZpKdkpyf5PxZs24bv1tT1MyZMznmmIM59tgTOemkf/8nNWPGDJ7//Gdx/PHfGWDrpOnhjn/ezuVnX8p6T3s8AMusuCzrrP9ILv7JBQNumaYyy9Dz576yaVUVcD3wq55t99AM/lgFIMl2Sc5oy8G3AQcCD53L9Z8AfKAtId/WnnM0sDSw2gTbePYcXv93+/wxwF+q6qqeNl8J/KXnmE8DH0xydpK9kzxhgvedmyOBzZI8rH29PfDTqrqmff0E4JXj3veZ7b5HjL9YVR1SVRtV1UYzZw7NQPJp7+CD9+e3v/09n/nMYffb/vSnP5krrvgD11573YBaJo22ZR+0HEsutxQAiy6+GI998vpc94drAdhomydy8Y9/yay77hlkE6VJN8jR0OM/TdVn2yJJNqXJqH0YeBdNKXdbmpHC/SzSHv+NOey7YQ7bJlMBVNXhSU4BtgG2As5K8rGq2nOBL1x1QZLLgVck+ThNSfp9PYcsAhxGE0yPd+2C3ldTx5OetBHbb/9ifvWry/jFL74PwB57HMApp/yEl7zkeQ5skRai5VdZkdd94q0sssgiZJFw3vfO4uIf/xKATZ63Gd//wgkDbqGmumEcDT0sU+dsBlxbVXuNbejJrPVzAfDotqS9oDadw+vL2ueXAWskWXssu5jk4TT9Fn8zdkKb8TsEOCTJ+4F3AHvO4V53t//OmEC7jqTJKF5KkyntnafxAuCxD/B9awo766zzWXLJOf/nv9NO753jdkmT45rL/8SHn7PLHPft/7I9Om6NhtHsGr5JuYdl6pwrgDWTbJ/k4Ul2Zu79FaHp8/iKJB9Jsl6SR7el7PmZJXXTJLslWTfJG4BX8e+M3Y9oSulHJdkoyUY0A2ouAH4MkOTTSZ7VtnkDmsErv/nP2wBNGf4O4JlJVk2y/FzadRRNqXsv4DtV1Tuh3n7AJkkOTvL4JI9M8twkX5yP9y1JkgQMSbBYVd8BDqAZMX0J8Axg93mccwrwHJqRyOe2j12Bq+fj1p+kGcRyIbA3sPvYaittP8vn05S0f9I+rgNe0O6D5u/7WZoA8VTgb8Cr+7R3FvB24PU0/R5Pmst7+xNwBs1o5yPH7bsEeCqwNvBT4GLgY+29JUnSANUkPrqSGsJ0aBeSXEWzfODc+kWOlCWXfJj/MUgD8PJVNx50E6Rp60tXHT/RGVImxSse9sJJ+649+k8ndNL2ocgsSpIkaTCGZYDLpEryFOAH/fZXlXPISJKkSdfl/IiTZVoGi8D5NKua9FVVa3fTFEmSNF04dc6QqKo7AKeWkSRJmodpGSxKkiQNwmzL0JIkSepnGPssOhpakiRJfZlZlCRJ6ogDXCRJktTXMC6GYhlakiRJfZlZlCRJ6oijoSVJktSXfRYlSZLUl1PnSJIkaaSYWZQkSeqIfRYlSZLUl1PnSJIkaaSYWZQkSeqIo6ElSZLUl6OhJUmSNFLMLEqSJHXE0dCSJEnqy9HQkiRJGilmFiVJkjpiGVqSJEl9ORpakiRJI8XMoiRJUkdmD+EAF4NFSZKkjgxfqGgZWpIkSXNhZlGSJKkjjoaWJElSX8MYLFqGliRJUl9mFiVJkjrS5XJ/SZYAfgYsThPzHV9VeyQ5CtgIuAc4F3hjVd3T7zpmFiVJkjoym5q0xwTcBTy9qtYHNgCelWRT4Cjg0cDjgCWB18/tImYWJUmSRlA1aczb2peLto+qqu+PHZPkXGCtuV3HzKIkSVJHahIOa8BwAAAYt0lEQVT/NxFJZiS5CLgeOLWqzunZtyiwA3Dy3K5hsChJktSRqpq0R5Kdkpzf89hpDve7t6o2oMkebpJkvZ7dnwd+VlU/n1ubLUNLkiQNoao6BDhkgsfekuQnwLOAS5PsAawMvHFe55pZlCRJ6kiXA1ySrJxkhfb5ksAzgMuTvB54JvDyqpo9r+uYWZQkSepIl1PnAKsDX0kygyZBeFxVfTfJLOBPwNlJAL5VVR/pdxGDRUmSpBFUVZcAj5/D9vmK/wwWJUmSOjKMy/0ZLEqSJHVkolPeTCUOcJEkSVJfZhYlSZI6MrvbAS6TwmBRkiSpI5ahJUmSNFLMLEqSJHXEMrQkSZL6sgwtSZKkkWJmUZIkqSOWoSVJktSXZWhJkiSNFDOLkiRJHbEMLUmSpL4sQ0uSJGmkmFmUJEnqSNXsQTdhvhksSpIkdWS2ZWhJkiSNEjOLkiRJHSlHQ0uSJKkfy9CSJEkaKWYWJUmSOmIZWpIkSX0N4woulqElSZLUl5lFSZKkjgzjcn8Gi5IkSR2xz6IkSZL6cuocSZIkjRQzi5IkSR2xDC1JkqS+nDpHkiRJI8XMoiRJUkcsQ0uSJKkvR0NLkiRppJhZlCRJ6ohlaEmSJPXlaGhJkiSNFDOLkiRJHakhHOBisChJktQRy9CSJEkaKWYWJUmSOuJoaEmSJPU1jH0WLUNLkiSpLzOLkiRJHbEMLUmSpL6GMVi0DC1JkqS+zCxKkiR1ZPjyipBhTIdK+k9JdqqqQwbdDmm68bOnUWcZWhodOw26AdI05WdPI81gUZIkSX0ZLEqSJKkvg0VpdNhnShoMP3saaQ5wkSRJUl9mFiVJktSXwaIkSZL6MliUJElSXwaLkiRJ6stgUZIkSX0ZLEpTUJL/+GzOaZukyZck45/3bpOmm5mDboCk+0uySFXNbp+vCywBXFNVNw+2ZdLo6/38jW0CqpxnTtOY8yxKU0iSjH0pJfkIsB2wOLAYcCjwlar60wCbKI2scT/U3gQ8EVgBOBvYz4BR05VlLWkK6QkUdwXeCLyjqh5B82X1FuDBA2yeNNJ6AsX9gA8BfwFOBT4KHJRkqQE2TxoYy9DSFJNkSWBzYLeqOjXJ84CtgV2r6oIkM4HZ40plkiZBks2AFwP/r6rOSLIlcA9wQVXd3nNczDRqujCzKA3YHAauLAOsC5ye5GnA0cD7q+rgJEsAbwMe03EzpZE09vnrGcCyKnBdGyi+CDgReHtVHZ5k+SRbwL+rANJ0YLAoDVhP6etl7esbgMuAo4DvAW+rqi+2h68IvBDYZABNlUZOT4Z+5fbfO2hixzcDXwZ26fn8bQS8N8nDu22lNFgGi9IUkGQN4Igk7283HQusBJxXVV9uj1kOOLzd/9XOGymNqCQvBU5O8mDgKpoBZQcCH6+qg9tjlgDeCdwC/HFATZUGwj6L0tRwE/AVmswFNKWvdYHtkvwG+B1NeWxxYJOqujfJjKq6dyCtlUbL4jSjnleuqsuSfBHYC1g3ySuBO4GdgNWADauq5jDFjjSynDpH6lDbLypz+pJJ8lTgx8CLqurbSZYGNgReBMwC/gx8vqpmJZlZVbO6bLs07Mb6JfbMOtA7Vc4vgJuqapv29Y7AtsBWwC+B64BXVtU9/lDTdGOwKHUkyWpVdV3P6/+lmWz72p5thwIPA17Ve+y46/hFJU2yJM8B9qYZTPbDdtviNN1BbgFubzOK/lDTtGOfRakDST4PHNE+XyTJJjRzJx6RZPcki7aHHk9Tfn5oe+yi469loCjNnyTHJnl2z+t3JTkrybPbfooAF9F8Jz6759S7q+raqvpXGyjGQFHTkZlFqQNJ1gL+1pawlq+qf7TT4jwReA9Nh/nvAB8Hvg7MrKrnDK7F0mhoRy6/EvhYVd3TbnsqTZ/EpYAZwIeq6ntJng58E3huVZ05qDZLU43BotShJK8FDgIeW1VXtduWBz5IEzg+AriYZlLurarqjMG0VBo9Sd4K3FpVX2lfb0mzpOZLaPolXgqsB5wF7GMWUWoYLEoL0fj+hW2G8RvAKsDTx9Z5TjIDWJpmxOUrgX8CW1hylhZc7+evXarvyzRzlH6oqr7Wc9zmwFNoPn9rAidU1Ys7b7A0RRksSgtJu9LDolX1wySH0WQ03tWWxb5M0y/xaVX1p96lw5I8DLi67SPlYBZpASRZvar+2j5/I810VA+mWQFpK2DPqjpq3DmrAa8APmNWUfo3g0VpkrXTcywNnAPcAFwPPAPYvKoubo/pDRifWlVXJ1l0rE9Ve4zzuEkLoF3f+TRgM2AHmmz9RlV1VZL1gLcDWwB7VNXR7TmLVdXdPddw1LPUMliUFpIky9Is27ca8JaeJcPG9j8c+BLwEOAZVXVl962URkeSldvlMknyVeB5NANYnlxVl/QcNxYwbk4TMB4zgOZKQ8Opc6SFoJ3yZhXgrzSrr2yX5Jm9x7TB4Y40E24f0HkjpRGS5Oc0JeYxvwGWB2bTZPrvU1WXAp+hmQT/i0me0VU7pWFkZlGaJP3KxklWAU4Bbgb2q6pTxu1/EPAP+yZKC66du/TiqrorySI00+KsBfwfTYZxu6o6bdyqLY+kGQm9v58/qT+DRWkSjPsCWp8mq3gpzaoP/0iyDvAt4Ebg08DJwE+An1TV7u15DmaRFsC4z9//Af8L7FxVf2lnGjgKeCbwwqo6vT3uwzTLZ/6tfe3nT+rDYFF6gMaNZP4o8FJgWZqBLScBh7YjntcBjmn3zQTuBp7Q26le0vzp/fy1r7cBvkvTH/jDVfXndtDZ0cBzgY/RBI4rA48zQJTmzWBRmiRJPgC8hWZd5x8lOZJmio4TacrPf0yyJs3I6CVpgshZjrqUFsy4jOLawPVVdXu7EsspwJHA7lX15/aYzwIb0MxS8P/aFZWcdUCaB4NFaRIkeTTwReDAqjqxHczyDZoO9BsA36cJGP807jxLX9ICGBco7g48FjgU+GkbBPYGjHtU1dXtsSsDN7bzmPpDTZoAR0NLC6DtQD82pyI0JefPAKe1c7x9GXhfVb0AOBd4MbB/ktV7r2OgKC2YnkBxX+CtwLHAJW2gmKr6MfAcYHtg93aqKqrqhjZQjIGiNDEGi9IC6Clbbda+vgn4UVXdSjMB8HeBw9tjrmkf1wF/67ip0shK8myaYPCZVfUt4KZ2FZYtk6xSVT+kCRh3BF7We25ZVpMmbOagGyANk3Glr/8Bfpbk3VX1qar6R3vYg4ACFgPuoZm+46PAt9qMhn2kpMkxE7gW+HOSx9IEhK9s992ZZMuqOjXJxsDFg2qkNOzMLEoT1JatxgLFtwKvBu4CPplkl55DrwT+B/hGknOB9YATDRSlBdfT5eN+z2lWQDqCZiqqNYG9gdcBiwMbAlTVL8cGk3XXYml0+MGRJqhnepy9gTfQLBd2CfA0YL8ki1fV3lW1W5JZNFNz/Al4W1Xd62AWacGMy+ivSPPddUNVfaddLWkD4KvAj6vq7+0gln8Ad/Rexz6K0oJxNLQ0H5KsStMf8XNV9eV22yo0weNewK5Vtf8cznPUpbQAxs1j+kFgW5pJ7/8C7AmcPjZXaZs5XIZmEu7lgaf5A0164CxDS/PnXuDhNP0SAaiq62kGs5wJ7JvkvWP7xkZNGyhKC6YnUNwDeAdwGLAbcBvweeDVSZZKsli7/TiaYHKLsYz+YFoujQ6DRamPsUBvnJuA7wCbJXnU2Maqug64ADgN+GCS17Tb7Z8oPUDtCOcXAe+qqkOq6piq2hr4Oc3az+u02cXLgLOAJ7ZT6Mw0syg9cAaL0hyM6yP1sCSPa/skzgaOBx4HvCHJf7XHLAM8lGZJsZOAFyRZelxHfEkLZgawEnAzQJIlAKrqtcDtwNva18dX1Z7tYJYZZvSlyeEAF2mccaOe96LpI7UqcE2S79P0k1qdZoDLlkmuphmROaOqjkjySOC/gbucy02aP+PXegaoqmuT/AN4BfC9qrqz/fF2F/AbmqmqGHeOGUVpkphZlMbp6SO1G7AT8H6a4PA64PXA+lV1KE0242vAncDJwP+2l1gTuJwmGyJpgtqM/tjnb80kD06ybLt7D+CpST4O0AaK0MxjenP3rZWmDzOL0jht6XhZ4BnALlV1cpKtgacC762qC9tO8z+rqtN7zlsryVuAFwCb9XyZSZqHcRn9fYBtaH6knZnk61X1jSRrAbsl2RT4LfBfwHLA7oNqtzQdmFmUxmkzGzNoSs9jgeI3adZ6PqTtL/U6mn6LALTZjw/QLC22eVX9uvuWS8NpXEbxDTRTUR0A7EszX+LhSV5TVQcCzwf+SrNC0nk0mf5ZjnqWFh4zi5r2+vSRujnJXTTTcDweeGdVja31vApN36lbaZcQq6pbk+wOzKyqv3bXemn49WQUNwKeALy/qo5ut60BXA3sn+SaqvoR8JLe853HVFq4zCxqWhuX0XhIkhV6MhQfAx4BnF9Vh6exLPAFmg71x/VcJ1V1g4GitGCSPIVmKpztgUXHtlfVX2iW8/sNsGl77P2+uwwUpYXLYFHTWk9G4yPAiTRfSLslWRf4NnAwsH6Ss4ATgB/QDGDZunfCX0c9Sw9MVf2cpivHTODZSdbu2fcn4O80a647f6nUMYNFTUu9mYkkO9KMev4M8HXglTQjL9epqn2A5wG/A66iCRg3csJfafL0/Oj6JM1glU2BncYCxiRL0/xIu2ZATZSmNdeG1rSWZEOastdZVfXNdtvLgffQjLY8oKoumsN5MwwUpckzbiL8/wPeDVwLnA+sSNMlZOOxdaAldcfMoqatto/UmcCOwJJj26vqGODjNNNyvDvJk8afa6AoTa6qmt2zlvpHgX2A9WhWRjqlqtavqruTLDq360iafAaLmrbG9ZHavJ3DbWzf12mm7tgc2GogDZSmmXEB44E06z4/AlgtyYPb7fcMsInStOTUOZqWxsrIVfXJNlPxduDPSQ5tR19SVccmuRE4fZBtlYbd2PRUvdNUzWnKKvh3wFhVs6tqvyQzaVZOWjrJJ6vquq7bL0139lnUtDWuj9QHgJ2BQ4H7AsaeY+2jKC2AcZ+zxYF7el73/VwlWXQsi9h+Pl9FszLSjR01XVLLYFHT2hw61b8ROB74mF9K0gMz7vP1NuBpwFLAn4Gd+02BMy4D+QqaKavurqp/ddNySb3ss6hpbQ6d6o+h6SP194E2TBoBPYHivjT9g8+m+TG2A81SmkuMP2dcoPgG4EiajKKBojQg9lnUSHoAfaR27Tl3kX6ZD0n99S6/l2QDYFvgpVX1syTPBWYB36qqO3vOWYRmfvuxz+sbgf2BF1fVdzt/E5LuY2ZRI6d3CT9gsZ7MYfUs5Xc/bcA4c+y4sUst/NZKoyPJIUnWrapZY58nYFVgRhsoPp8me79LVR2cZNm2zEz7Y218oLhjVZ0wiPci6d8MFjVS5tBH6ijgu0m+2O7r15k+PZmQV7dfeA5okSYoycOBjYFTk6zTs17z34Grk7yTpqT83qr6YrvvMcCLkjyu5zrvoFmX/bVjE+VLGiyDRY2USeojdQTNhNySJqiqrqSZ4ua3wE/b4BGaYHEN4JPAfmOBYpIlgT3bY37dbluTZrnNt1TVt7prvaS5cTS0RsIc+kgdDbypp4/U0cD7qurgnnP69ZF6jaUvaeLG/eB6ArAvzQ+up1fV75M8EfhR+/g58DfgNcAqwOPbsnWAGcCKVXXDAN6GpD7MLGqo2UdKGryxAWHt818CuwGXA6cneVRVnQ1sDcwG3gy8lmb6nA3HPrvVmGWgKE09ZhY1tNoy1zeBFYEtquqP7faNaPo8fQ/Yi54+Ukk2Ad4HfLiqftVuewewB/B6S1/SxM1txoAkG9Os7/zfNBnGK5IsQ5M9vLuq7miPu68qIGlqMljUUGtLXh+l6Si/eVVdmWQd4Lvttt2rau/22CVpgsvbaabxmN32kToR+GRVHTOQNyENoXGDyXYANgTuBM6uqm+32zcB9gYeTfOD7g/jrjHH6awkTS0GixpK9pGSpoYk+wOvAM4C7gKeB7y7qr7U7t+YJsP/dGDt8UtpSpr67LOooWQfKWnw2tkDXkozcfZLgZOB5YDD2u4dVNV5NMHi52h+tEkaMmYWNVTsIyVNDW23jr2Bq6vq0+2sA0cBHwbWBN4FvK6qjhh33gznMJWGi8GihoZ9pKTBmdMPtSQPBRanyeB/H/hCVX0qyZbAqe1h29sfWBpulqE1NHoCxf1pRjuvCawFfDXJju0x59JMxv0b4LIka4y7hoGiNJ/aH1ljn78XJHlrkidV1dVV9TvgscBtwFfaU8aevxz4xkAaLWnSGCxqqNhHSupez2CyfYCvAW8EzkiyT/uD7HbgccDTkjwI+CBN5erYcXOgShpCfoA1NNo+Uo8GDqyqc9o+Up8H3kuTZTwwyT+r6oiqOhM4sz3PPlLSAhjrttHOHLA6sCnwjKr6RZLXAgcAY1NSHUaTRbwa+Bfwop5r2EdYGmL2WdSUZR8paXDG9RFeBVgW2Bn4YFXd2W7fEdgPOJRmEvxZND/cTqqqex1MJo0GM4uaksb3kaLpm3hBVZ3VbtuWOfeROpkmyyHpAej5/H0U2AZ4JPBX4EjgovaYLzVJR/YBVgPeWVXntOfNMFCURoN9FjUl2UdKGoyx+Uvb5y8FXk3T//cg4EHAzkkePXZMO/n23jTB4m092+36IY0Iv1A1pdhHShqsnoziFsDmNGXnI9ptVwC7ArOSfLaqLm/P+VySz49Nlt9vLlRJw8lgUVPGuC+ZlWmCwgv5d8nriDaI3I9mfsWjaErP9pGSJlGS1Wh+jK0C/G5se0/ZeVdgdpIvVtWl7b7q7T4iaXQYLGrKsI+UNDVU1XVJXggcD2yb5LSquqTd96UkBXwGuAq4tOc8R0xKI8g+ixo4+0hJU08bHL4EWAF4Z5LH9ew7AngZ8KkBNU9Sh5w6R1NG20fqJcB5PX2kdqQpeZ0K3NdHqt0X+0hJC1eSxwOH02T3PzlWdu7Z7zym0ogzs6gpoaeP1A40mQzgvizivsAzgLckWa9nn32kpIWsqi4EdqSZfWCvJA8ft99AURpxBouaEqrqOuCFNH0Ut03yPz37vkSzFvRrgGeOO8/UuLSQVdVFwFuAW2j6KUqaRixDa0pJsj7wZZpR0AdW1a969j0HONlMhjQYdv2QpieDRU059pGSpq6xgHHQ7ZDUHYNFTUlJNqBZb/Ya4D1VdeWAmyRJ0rRkn0VNSfaRkiRpajCzqCnNPlKSJA2WwaKmPPtISZI0OAaLkiRJ6ss+i5IkSerLYFGSJEl9GSxKkiSpL4NFSdNOknuTXJTk0iTfSLLUA7jW5km+2z7fNsmuczl2hSRvXoB77JnkvRPdPu6YLyfZbj7utXaSS+d9pKTpwmBR0nR0R1VtUFXrAXcDb+rdmcZ8//9jVX27qvadyyErAPMdLErSIBksSprufg48ss2o/TbJV4FLgYck2TrJ2UkuaDOQywAkeVaSy5NcALxo7EJJXpPkoPb5qklOSHJx+3gSsC/wiDareUB73C5JzktySZIP91zrA0muSHIG8F/zehNJ3tBe5+Ik3xyXLd0qyfnt9Z7bHj8jyQE9937jA/1DShpNBouSpq0kM4FnA79qN60LfL6qHgv8C/ggsFVVbQicD7w7yRI0S1E+D3gCsFqfy38G+GlVrQ9sCPwa2BX4Q5vV3CXJ1u09NwE2AJ6Q5KlJngC8rN22DbDxBN7Ot6pq4/Z+lwGv69m3dnuP5wAHt+/hdcA/qmrj9vpvSLLOBO4jaZqZOegGSNIALJnkovb5z4HDgTWAP1XVL9rtmwL/DZyZBGAx4Gzg0cAfq+p3AEmOBHaawz2eDrwKoKruBf6RZMVxx2zdPi5sXy9DEzwuC5xQVbe39/j2BN7Tekn2pil1LwOc0rPvuHYFpN8lubJ9D1sD/9PTn3H59t5XTOBekqYRg0VJ09EdVbVB74Y2IPxX7ybg1Kp6+bjj7nfeAxTgY1X1xXH3eOcCXOvLwAuq6uIkrwE279k3fvWFau/9tqrqDSpJsvYC3FvSCLMMLUlz9gtgsySPBEiydJJHAZcDayd5RHvcy/ucfxqwc3vujCTLA7fSZA3HnALs2NMXcs0kqwA/A16QZMkky9KUvOdlWeCvSRYFth+37yVJFmnb/HDgt+29d26PJ8mjkiw9gftImmbMLErSHFTVDW2G7pgki7ebP1hVVyTZCfhektv/f3t3aBMBDIZh+O0AsAfbMAAOA4oJWISwABMwAbkAySWsgOQsAkOKuBMImpzneUxd+6fqS/unbX+NffLHFDfV3RjjsvquruecmzHG0+FpmsdD3+JZtTmcbH5WF3PO7RjjoXqrPqrXI0q+rZ6r3WH8XdN79VKdVldzzq8xxn37Xsbt2C++q86P2x3gP/E3NAAAS66hAQBYEhYBAFgSFgEAWBIWAQBYEhYBAFgSFgEAWBIWAQBYEhYBAFj6AUKnTvAeBBeFAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "