-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathconverter.py
50 lines (43 loc) · 1.88 KB
/
converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import numpy as np
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--src', type=str)
parser.add_argument('--dst', type=str, default='./model.npy')
args = parser.parse_args()
state_dict = torch.load(args.src, map_location='cpu')['state_dict']
# padding = torch.zeros(13, 16)
# rgb_out = state_dict['model.rgb_net.output_layer.weight']
# print(rgb_out.shape)
# rgb_out = torch.cat([rgb_out, padding], dim=0)
model_keys = {
'per_level_scale', 'n_neurons',
'sigma_n_input', 'sigma_n_output',
'rgb_depth', 'rgb_n_input', 'rgb_n_output',
'cascade', 'box_scale',
}
new_dict = {
# 'camera_angle_x': meta['camera_angle_x'],
'K': state_dict['K'].numpy(),
'poses': state_dict['poses'].numpy(),
'directions': state_dict['directions'].numpy(),
'model.density_bitfield': state_dict['model.density_bitfield'].numpy(),
'model.hash_encoder.params': state_dict['model.hash_encoder.params'].numpy(),
# 'model.xyz_encoder.params':
# torch.cat(
# [state_dict['model.xyz_encoder.hidden_layers.0.weight'].reshape(-1),
# state_dict['model.xyz_encoder.output_layer.weight'].reshape(-1)]
# ).numpy(),
# 'model.rgb_net.params':
# torch.cat(
# [state_dict['model.rgb_net.hidden_layers.0.weight'].reshape(-1),
# rgb_out.reshape(-1)]
# ).numpy(),
'model.xyz_encoder.params': state_dict['model.xyz_encoder.params'].numpy(),
# 'model.xyz_sigmas.params': state_dict['model.xyz_sigmas.params'].numpy(),
'model.rgb_net.params': state_dict['model.rgb_net.params'].numpy(),
}
for key in model_keys:
new_dict[f'model.{key}'] = state_dict[f'model.{key}'].item()
np.save(args.dst, new_dict)