-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
108 lines (88 loc) · 3.89 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torchvision.transforms as transforms
import torch.nn.functional as F
import numpy as np
from PIL import Image
import cv2
import mediapipe as mp
import json
from actions import ActionHandler
import sys
sys.path.append('../')
from neuralnet import model as nn_model
# Setting device agnostic code
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load the PyTorch model
model_path = 'assets/best_model.pth'
model_info = torch.load(model_path, map_location=torch.device('cpu'))
model = nn_model.EfficientNetB0(num_classes=36).to(device)
model.load_state_dict(model_info)
model.eval()
# Initialize MediaPipe Hands
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5)
# Load class labels from the JSON file
with open('assets/class_labels.json', 'r') as f:
class_labels = json.load(f)
# Define transforms for preprocessing the hand image
transform = transforms.Compose([
transforms.Resize((128, 128)),
transforms.ToTensor(),
])
# Initialize variables
bbox = None
predicted_class = None
# Capture video from webcam
cap = cv2.VideoCapture(0)
while cap.isOpened():
success, frame = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
# Convert the BGR image to RGB and process it with MediaPipe Hands
results = hands.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Draw the hand annotations on the image
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
# Draw bounding box around the hand with some padding
hand_landmarks_array = np.array([[data.x, data.y, data.z] for data in hand_landmarks.landmark])
x_min, y_min, z_min = np.min(hand_landmarks_array, axis=0)
x_max, y_max, z_max = np.max(hand_landmarks_array, axis=0)
padding = 0.05 # Change this value to increase/decrease the padding
x_min -= padding
y_min -= padding
x_max += padding
y_max += padding
x_min, y_min, x_max, y_max = max(0, x_min), max(0, y_min), min(1, x_max), min(1, y_max)
bbox = [int(x_min * frame.shape[1]), int(y_min * frame.shape[0]), int(x_max * frame.shape[1]), int(y_max * frame.shape[0])]
# Extract the hand image
hand_img = frame[bbox[1]:bbox[3], bbox[0]:bbox[2]]
# Preprocess hand image to tensors
pil_img = Image.fromarray(hand_img)
pil_img = transform(pil_img).unsqueeze(0)
# Inferencing to predict the class
with torch.inference_mode():
outputs = model(pil_img)
_, predicted = torch.max(outputs, 1)
confidence_value = F.softmax(outputs, dim=1).max().item()
predicted_class = predicted.item()
# Execute the corresponding action
action = class_labels[str(predicted_class)] # Convert predicted class to string
handler = ActionHandler(confidence_value, action)
handler.execute_action()
# Draw the bounding box
if bbox is not None:
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 0, 255), 3)
# Display the class name above the bounding box
if predicted_class is not None:
text = f"{action}: {confidence_value:.2f}"
(text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2)
cv2.rectangle(frame, (bbox[0], bbox[1] - text_height - 20), (bbox[0] + text_width + 20, bbox[1]), (255, 255, 255), -1)
cv2.putText(frame, text, (bbox[0], bbox[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255), thickness=2,lineType=cv2.LINE_AA)
# Display the resulting frame
cv2.imshow('ASL Detection', frame)
if cv2.waitKey(1) & 0xFF == 27:
break
cap.release()
cv2.destroyAllWindows()