-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
120 lines (99 loc) · 3.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
from typing import List, Tuple
class TextTransform:
"""Maps characters to integers and vice versa with optimized processing"""
def __init__(self):
base_map = """' 0\n<SPACE> 1\na 2\nb 3\nc 4\nd 5\ne 6\nf 7\ng 8\nh 9\ni 10\nj 11\nk 12\nl 13\nm 14\nn 15\no 16\np 17\nq 18\nr 19\ns 20\nt 21\nu 22\nv 23\nw 24\nx 25\ny 26\nz 27"""
# Pre-compute char_map and index_map using dictionary comprehensions
self.char_map = {
line.split()[0]: int(line.split()[1]) for line in base_map.split("\n")
}
self.index_map = {v: k for k, v in self.char_map.items()}
self.index_map[1] = " " # Special case for space
# Pre-compute diacritic mapping
self.diacritic_map = {
char: replacement
for chars, replacement in [
("áàäâãåāăąǎ", "a"),
("éèëêēěęė", "e"),
("íìïîīįǐ", "i"),
("óòöôõōøőǒ", "o"),
("úùüûūůűǔ", "u"),
("çčć", "c"),
("ñń", "n"),
("žźż", "z"),
("ğģǵ", "g"),
("łľļ", "l"),
("šśşș", "s"),
("ťț", "t"),
("ýÿ", "y"),
]
for char in chars
}
# Add special character mappings
special_chars = {
"æ": "ae",
"œ": "oe",
"å": "a",
"ø": "o",
"đ": "d",
"ʃ": "sh",
"ʒ": "zh",
"ð": "d",
"þ": "th",
"ŋ": "n",
"ɖ": "d",
"ă": "a",
"ą": "a",
"ơ": "o",
"ư": "u",
"ắ": "a",
"à": "a",
}
self.diacritic_map.update(special_chars)
# Pre-compute the default space value
self.space_value = self.char_map["<SPACE>"]
# Cache for processed characters
self._char_cache = {}
def _process_char(self, c: str) -> int:
"""Process a single character with caching"""
if c in self._char_cache:
return self._char_cache[c]
# Convert diacritics first, then look up in char_map
normalized_char = self.diacritic_map.get(c, c)
result = self.char_map.get(normalized_char, self.space_value)
self._char_cache[c] = result
return result
def text_to_int(self, text: str) -> List[int]:
"""Optimized conversion of text to integer sequence"""
return [self._process_char(c) for c in text.lower()]
def int_to_text(self, labels: List[int]) -> str:
"""Optimized conversion of integer labels to text"""
return "".join(self.index_map[i] for i in labels).replace("<SPACE>", " ")
def GreedyDecoder(
output: torch.Tensor,
labels: torch.Tensor,
label_lengths: torch.Tensor,
blank_label: int = 28,
collapse_repeated: bool = True,
) -> Tuple[List[str], List[str]]:
"""Optimized greedy decoder"""
arg_maxes = torch.argmax(output, dim=2)
decodes = []
targets = []
# Process targets first
for i, length in enumerate(label_lengths):
targets.append(text_transform.int_to_text(labels[i][:length].tolist()))
# Process decodes
for args in arg_maxes:
if collapse_repeated:
# Use tensor operations for faster processing
mask = torch.ones_like(args, dtype=torch.bool)
mask[1:] = args[1:] != args[:-1]
args = args[mask]
# Filter out blank labels
decode = [idx.item() for idx in args if idx != blank_label]
decodes.append(text_transform.int_to_text(decode))
return decodes, targets
# Initialize TextProcess for text processing
text_transform = TextTransform()