-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbishop.py
113 lines (86 loc) · 5.96 KB
/
bishop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import argparse
import os
import torch
from exp.exp_bishop import Exp_BiSHop
from utils.tools import get_feature_importance, get_random_feature, _openml_get_info, _check_data
from utils.wandb_config import _login, _sweep_config, _log_config
import wandb
classification_list = ['categorical_classification', 'categorical_classification_small', 'categorical_classification_large',
'numerical_classification', 'numerical_classification_small', 'numerical_classification_large']
regression_list = ['categorical_regression', 'categorical_regression_small', 'categorical_regression_large',
'numerical_regression', 'numerical_regression_small', 'numerical_regression_large']
def main():
parser = argparse.ArgumentParser(description='BiSHop')
parser.add_argument('--data', type=str, default='OpenML', help='data')
parser.add_argument('--root_path', type=str, default='./datasets/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='adult.csv', help='data file')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location to store model checkpoints')
parser.add_argument('--task_id', type=int, help='OpenML taskid')
parser.add_argument('--benchmark_name', type=str, help='name of the benchmark')
parser.add_argument('--out_len', type=int, default=24, help='length of the output sequence')
parser.add_argument('--patch_dim', type=int, default=8, help='length of the segment')
parser.add_argument('--emb_dim', type=int, default=32, help='embedding dimension')
parser.add_argument('--n_agg', type=int, default=4, help='window size for segment merge')
parser.add_argument('--factor', type=int, default=10, help='factor for the TwoStageAttentionLayer')
parser.add_argument('--d_model', type=int, default=256, help='dimension of feed-forwar network')
parser.add_argument('--d_ff', type=int, default=512, help='dimension of MLP in transformer')
parser.add_argument('--n_heads', type=int, default=4, help='num of heads')
parser.add_argument('--e_layers', type=int, default=3, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers respect to encoder layer')
parser.add_argument('--dropout', type=float, default=0.2, help='dropout')
parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--train_epochs', type=int, default=200, help='train epochs')
parser.add_argument('--patience', type=int, default=40, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=5e-5, help='optimizer initial learning rate')
parser.add_argument('--lradj', type=str, default='type1',help='adjust learning rate')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--mode', type=str, default='entmax', help='mode')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3',help='device ids of multile gpus')
parser.add_argument('--record', default=False, action='store_true', help='Wandb Record')
# please only use one of these three argument
parser.add_argument('--rf_most', type=int, default=0, help='Percentage of important feature remove')
parser.add_argument('--rf_least', type=int, default=0, help='Percentage of unimportant feature remove')
parser.add_argument('--rf_rand', type=int, default=0, help='Percentage of randomly remove features')
parser.add_argument('--project', type=str, default='BiSHop', help='project name')
parser.add_argument('--sweep', default=False, action='store_true', help='HPO Sweep')
parser.add_argument('--seed', type=int, default=66, help='Seed')
args = parser.parse_args()
if args.record: _login()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.devices = args.devices.replace(' ','')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
if args.sweep: _sweep_config(args)
args, extra = _check_data(args)
print('Args in experiment:')
print(args)
Exp = Exp_BiSHop
for ii in range(args.itr):
if args.data == 'OpenML': dataname = args.task_id
else: dataname = args.data
if not args.sweep and args.record: _log_config(dataname, args, ii)
# setting record of experiments
setting = 'BiSHop_{}_sl{}_win{}_fa{}_dm{}_nh{}_el{}_eb{}_rfm{}_rfl{}_rfr{}_itr{}'.format(dataname,
args.patch_dim, args.n_agg, args.factor,
args.d_model, args.n_heads, args.e_layers,
args.emb_dim, args.rf_most, args.rf_least,
args.rf_rand, ii)
exp = Exp(args, extra) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
_, _, _, test_loader = exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
if args.benchmark_name in classification_list or args.task == 'classification':
acc, f1, auc = exp.test(setting, test_loader)
if args.record: wandb.log({"Accuracy": acc, "F1": f1, "AUC": auc})
elif args.benchmark_name in regression_list or args.task == 'regression':
mse, mae, rmse, mape, mspe, r2 = exp.test(setting, test_loader)
if args.record: wandb.log({"MSE": mse, "MAE": mae, "RMSE": rmse, "MAPE": mape, "MSPE": mspe, "R2":r2})
torch.cuda.empty_cache()
wandb.finish()
main()