-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy patheval_engine.py
130 lines (114 loc) · 6.17 KB
/
eval_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# @Author : Ruopeng Gao
# @Date : 2022/11/21
import os
import yaml
from torch.utils import tensorboard as tb
from utils.utils import yaml_to_dict
def evaluate(config: dict):
eval_split = config["EVAL_DATA_SPLIT"]
eval_dir = config["EVAL_DIR"]
if config["EVAL_PORT"] is not None:
port = config["EVAL_PORT"]
else:
port = 22701
outputs_dir = os.path.join(eval_dir, eval_split)
os.makedirs(outputs_dir, exist_ok=True)
eval_states_path = os.path.join(outputs_dir, "eval_states.yaml")
if os.path.exists(eval_states_path):
eval_states: dict = yaml_to_dict(eval_states_path)
else:
eval_states: dict = {
"NEXT_INDEX": 0,
}
# Tensorboard Setting
tb_writer = tb.SummaryWriter(
log_dir=os.path.join(outputs_dir, "tb")
)
if config["EVAL_MODE"] == "specific":
if config["EVAL_MODEL"] is None:
raise ValueError("--eval-model should not be None.")
metrics = eval_model(model=config["EVAL_MODEL"], eval_dir=eval_dir,
data_root=config['DATA_ROOT'], dataset_name=config["DATASET"], data_split=eval_split,
threads=config["EVAL_THREADS"], port=port, config_path=config["CONFIG_PATH"])
elif config["EVAL_MODE"] == "continue":
init_index = eval_states["NEXT_INDEX"]
for i in range(init_index, 10000):
model = "checkpoint_" + str(i) + ".pth"
if os.path.exists(os.path.join(eval_dir, model)):
if os.path.exists(os.path.join(eval_dir, eval_split, model.split(".")[0] + "_tracker",
"pedestrian_summary.txt")):
pass
else:
metrics = eval_model(
model=model, eval_dir=eval_dir,
data_root=config["DATA_ROOT"], dataset_name=config["DATASET"], data_split=eval_split,
threads=config["EVAL_THREADS"], port=port, config_path=config["CONFIG_PATH"]
)
metrics_to_tensorboard(writer=tb_writer, metrics=metrics, epoch=i)
eval_states["NEXT_INDEX"] = i + 1
with open(eval_states_path, mode="w") as f:
yaml.dump(eval_states, f, allow_unicode=True)
else:
raise ValueError(f"Eval mode '{config['EVAL_MODE']}' is not supported.")
with open(eval_states_path, mode="w") as f:
yaml.dump(eval_states, f, allow_unicode=True)
return
def eval_model(model: str, eval_dir: str, data_root: str, dataset_name: str, data_split: str, threads: int, port: int,
config_path: str):
print(f"===> Running checkpoint '{model}'")
if threads > 1:
os.system(f"python -m torch.distributed.run --nproc_per_node={str(threads)} --master_port={port} "
f"main.py --mode submit --submit-dir {eval_dir} --submit-model {model} "
f"--data-root {data_root} --submit-data-split {data_split} "
f"--use-distributed --config-path {config_path}")
else:
os.system(f"python main.py --mode submit --submit-dir {eval_dir} --submit-model {model} "
f"--data-root {data_root} --submit-data-split {data_split} --config-path {config_path}")
# 将结果移动到对应的文件夹
tracker_dir = os.path.join(eval_dir, data_split, "tracker")
tracker_mv_dir = os.path.join(eval_dir, data_split, model.split(".")[0] + "_tracker")
os.system(f"mv {tracker_dir} {tracker_mv_dir}")
# 进行指标计算
data_dir = os.path.join(data_root, dataset_name)
if dataset_name == "DanceTrack" or dataset_name == "SportsMOT":
gt_dir = os.path.join(data_dir, data_split)
elif "MOT17" in dataset_name:
gt_dir = os.path.join(data_dir, "images", data_split)
else:
raise NotImplementedError(f"Eval Engine DO NOT support dataset '{dataset_name}'")
if dataset_name == "DanceTrack" or dataset_name == "SportsMOT":
os.system(f"python3 TrackEval/scripts/run_mot_challenge.py --SPLIT_TO_EVAL {data_split} "
f"--METRICS HOTA CLEAR Identity --GT_FOLDER {gt_dir} "
f"--SEQMAP_FILE {os.path.join(data_dir, f'{data_split}_seqmap.txt')} "
f"--SKIP_SPLIT_FOL True --TRACKERS_TO_EVAL '' --TRACKER_SUB_FOLDER '' --USE_PARALLEL True "
f"--NUM_PARALLEL_CORES 8 --PLOT_CURVES False "
f"--TRACKERS_FOLDER {tracker_mv_dir}")
elif "MOT17" in dataset_name:
if "mot15" in data_split:
os.system(f"python3 TrackEval/scripts/run_mot_challenge.py --SPLIT_TO_EVAL {data_split} "
f"--METRICS HOTA CLEAR Identity --GT_FOLDER {gt_dir} "
f"--SEQMAP_FILE {os.path.join(data_dir, f'{data_split}_seqmap.txt')} "
f"--SKIP_SPLIT_FOL True --TRACKERS_TO_EVAL '' --TRACKER_SUB_FOLDER '' --USE_PARALLEL True "
f"--NUM_PARALLEL_CORES 8 --PLOT_CURVES False "
f"--TRACKERS_FOLDER {tracker_mv_dir} --BENCHMARK MOT15")
else:
os.system(f"python3 TrackEval/scripts/run_mot_challenge.py --SPLIT_TO_EVAL {data_split} "
f"--METRICS HOTA CLEAR Identity --GT_FOLDER {gt_dir} "
f"--SEQMAP_FILE {os.path.join(data_dir, f'{data_split}_seqmap.txt')} "
f"--SKIP_SPLIT_FOL True --TRACKERS_TO_EVAL '' --TRACKER_SUB_FOLDER '' --USE_PARALLEL True "
f"--NUM_PARALLEL_CORES 8 --PLOT_CURVES False "
f"--TRACKERS_FOLDER {tracker_mv_dir} --BENCHMARK MOT17")
else:
raise NotImplementedError(f"Do not support this Dataset name: {dataset_name}")
metric_path = os.path.join(tracker_mv_dir, "pedestrian_summary.txt")
with open(metric_path) as f:
metric_names = f.readline()[:-1].split(" ")
metric_values = f.readline()[:-1].split(" ")
metrics = {
n: float(v) for n, v in zip(metric_names, metric_values)
}
return metrics
def metrics_to_tensorboard(writer: tb.SummaryWriter, metrics: dict, epoch: int):
for k, v in metrics.items():
writer.add_scalar(tag=k, scalar_value=v, global_step=epoch)
return