-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathTrainer_base.py
140 lines (116 loc) · 4.76 KB
/
Trainer_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import torch
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import AdamW
from model.loss import *
from config_base import *
# NOTE: we didn't use any TTA when evaluating
class Model:
def __init__(self, local_rank):
backbonetype, multiscaletype = MODEL_CONFIG['MODEL_TYPE']
backbonecfg, multiscalecfg = MODEL_CONFIG['MODEL_ARCH']
self.net = multiscaletype(backbonetype(**backbonecfg), **multiscalecfg)
self.name = MODEL_CONFIG['LOGNAME']
self.device()
self.optimG = AdamW(self.net.parameters(), lr=2e-4, weight_decay=1e-4)
self.lap = LapLoss()
if local_rank != -1:
self.net = DDP(self.net, device_ids=[local_rank], output_device=local_rank)
def train(self):
self.net.train()
def eval(self):
self.net.eval()
def device(self):
self.net.to(torch.device("cuda"))
def load_model(self, name=None, rank=0):
def convert(param):
return {
k.replace("module.", ""): v
for k, v in param.items()
if "module." in k and 'attn_mask' not in k and 'HW' not in k
}
if rank <= 0:
if name is None:
name = self.name
print(f"Loading {name} ckpt")
ckpt = torch.load(f'log/{name}/ckpt/{name}.pkl')
self.net.load_state_dict(convert(ckpt['model']), strict=True)
def save_model(self, rank=0, epoch=0, best=False):
if rank == 0:
os.makedirs(f'log/{self.name}/ckpt', exist_ok=True)
torch.save({
'epoch': epoch,
'model': self.net.state_dict(),
'optimizer': self.optimG.state_dict(),
},
f'log/{self.name}/ckpt/{self.name}.pkl')
if best:
torch.save({
'epoch': epoch,
'model': self.net.state_dict(),
'optimizer': self.optimG.state_dict(),
},
f'log/{self.name}/ckpt/{self.name}_best.pkl')
@torch.no_grad()
def hr_inference(self, img0, img1, TTA=False, down_scale=1.0, timestep=0.5, fast_TTA=False):
'''
Infer with down_scale flow
Note: return BxCxHxW
'''
def infer(imgs):
img0, img1 = imgs[:, :3], imgs[:, 3:6]
imgs_down = F.interpolate(imgs, scale_factor=down_scale, mode="bilinear", align_corners=False)
flow, mask = self.net.calculate_flow(imgs_down, timestep)
flow = F.interpolate(flow, scale_factor=1 / down_scale, mode="bilinear", align_corners=False) * (
1 / down_scale)
mask = F.interpolate(mask, scale_factor=1 / down_scale, mode="bilinear", align_corners=False)
pred = self.net.coraseWarp_and_Refine(imgs, flow, mask)
return pred
imgs = torch.cat((img0, img1), 1)
if fast_TTA:
imgs_ = imgs.flip(2).flip(3)
inputs = torch.cat((imgs, imgs_), 0)
preds = infer(inputs)
return (preds[0] + preds[1].flip(1).flip(2)).unsqueeze(0) / 2.
if TTA == False:
return infer(imgs)
else:
return (infer(imgs) + infer(imgs.flip(2).flip(3)).flip(2).flip(3)) / 2
@torch.no_grad()
def inference(self, img0, img1, TTA=False, timestep=0.5, fast_TTA=False):
imgs = torch.cat((img0, img1), 1)
'''
Noting: return BxCxHxW
'''
if fast_TTA:
imgs_ = imgs.flip(2).flip(3)
inputs = torch.cat((imgs, imgs_), 0)
_, _, _, preds = self.net(inputs, timestep=timestep)
return (preds[0] + preds[1].flip(1).flip(2)).unsqueeze(0) / 2.
_, _, _, pred = self.net(imgs, timestep=timestep)
if TTA == False:
return pred
else:
_, _, _, pred2 = self.net(imgs.flip(2).flip(3), timestep=timestep)
return (pred + pred2.flip(2).flip(3)) / 2
def update(self, imgs, gt, learning_rate=0, timestep=0.5, training=True):
for param_group in self.optimG.param_groups:
param_group['lr'] = learning_rate
if training:
self.train()
else:
self.eval()
if training:
flow, mask, merged, pred = self.net(imgs, timestep=timestep)
loss_l1 = (self.lap(pred, gt)).mean()
for merge in merged:
loss_l1 += (self.lap(merge, gt)).mean() * 0.5
self.optimG.zero_grad()
loss_l1.backward()
self.optimG.step()
return pred, loss_l1
else:
with torch.no_grad():
flow, mask, merged, pred = self.net(imgs, timestep=timestep)
return pred, 0