-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfewshot_linear_probe.py
428 lines (381 loc) · 23 KB
/
fewshot_linear_probe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import argparse
import torch.backends.cudnn as cudnn
from pathlib import Path
from timm.models import create_model
from fewshot_datasets import *
import utils
import os.path as osp
import warnings
from sklearn.linear_model import LogisticRegression
warnings.filterwarnings('ignore')
def get_args_parser():
parser = argparse.ArgumentParser('Few shot script', add_help=False)
parser.add_argument('--fp32-resume', action='store_true', default=False)
parser.add_argument('--batch-size', default=128, type=int)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--config', required=True, type=str, help='config')
parser.add_argument('--pretrained-bert', default=None, type=str)
parser.add_argument('--txt-embed-path', type=str, default=None, help='config')
parser.add_argument('--vis-backbone-path', type=str, default=None, help='config')
parser.add_argument('--two-branch', action='store_true', help='two branch output')
parser.set_defaults(two_branch=False)
parser.add_argument('--debug', action='store_true', help='cls and img txt contrastive learning')
parser.set_defaults(debug=False)
# NLP parameters
parser.add_argument('--desc-path', default='', type=str)
parser.add_argument('--context-length', default=0, type=int, help='max length of text description')
parser.add_argument('--sent-length', default=64, type=int, help='max number of selected sentences')
parser.add_argument('--cls-token-length', default=1, type=int, help='the length of cls token')
parser.add_argument('--loss-type', default='CE', type=str, help='loss type')
parser.add_argument('--pretrain-cvlp', action='store_true', help='sentence-level pretraining')
parser.set_defaults(pretrain_cvlp=False)
parser.add_argument('--pretrain-cvlp-path', default='', type=str,
help='path of sentence-level pretraining task ckpt')
# Model parameters
parser.add_argument('--model', default='pvt_small', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--scale-size', default=256, type=int, help='images scale size')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--img-grad', action='store_true', default=True)
parser.add_argument('--no-img-grad', action='store_false', dest='img_grad')
parser.add_argument('--train-mode', action='store_true', default=True)
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--text-lr', type=float, default=0, metavar='LR',
help='learning rate for text model (default: 0)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
parser.add_argument('--clip-ms', action='store_true', help='use clip mean & std for initialization')
parser.set_defaults(clip_ms=False)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
parser.add_argument('--teacher-model', default=None, type=str, metavar='MODEL',
help='Name of teacher model to train')
parser.add_argument('--teacher-path', type=str, default=None)
parser.add_argument('--distillation-type', default='none', choices=['none', 'feat', 'logits', 'logits_kl'],
type=str, help="")
parser.add_argument('--distillation-alpha', default=0, type=float, help="")
parser.add_argument('--distillation-beta', default=0, type=float, help="")
parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
parser.add_argument('--distillation-training-mode', action='store_true', help="")
parser.set_defaults(distillation_training_mode=False)
# * Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
parser.add_argument('--pretrained', action='store_true')
# Sampler Parameters
parser.add_argument('--weight-sample', action='store_true')
parser.add_argument('--no-weight-sample', action='store_false', dest='weight_sample')
parser.set_defaults(weight_sample=False)
parser.add_argument('--use-sqrt-freq', action='store_true')
parser.set_defaults(use_sqrt_freq=False)
# Dataset parameters
parser.add_argument('--data-path', default='', type=str,
help='dataset path')
parser.add_argument('--data-set', default='Kinetics', choices=['UCF101', 'HMDB51', 'Kinetics',
"Kinetics100_base", 'Kinetics100_test',
'k100_support_query',
'kinetics400_openset'],
type=str, help='Kinetics dataset path')
parser.add_argument('--output-dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only', default=False)
parser.add_argument('--test', action='store_true', help='Perform test only', default=False)
parser.set_defaults(test=False)
parser.add_argument('--test-p', action='store_true', help='Calculate acc for each class', default=False)
parser.add_argument('--select', action='store_true', help='Perform test only', default=False)
parser.set_defaults(select=False)
parser.add_argument('--eval-pretrain', action='store_true', help='Perform evaluation for pretraining')
parser.set_defaults(eval_pretrain=False)
parser.add_argument('--ensemble', action='store_true',
help='Perform zero-shot evaluation for pretraining like CLIP')
parser.set_defaults(ensemble=False)
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
parser.add_argument('--drop-last', action='store_true')
parser.add_argument('--no-drop-last', action='store_false', dest='drop_last')
parser.set_defaults(drop_last=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument("--port", default=29500, type=int,
help="Master node (rank 0)'s free port that needs to "
"be used for communication during distributed "
"training")
parser.add_argument('--distributed', type=bool, default=False)
parser.add_argument('--local_rank', type=int, default=0)
parser.set_defaults(broadcast_bn_buffer=True)
parser.set_defaults(use_actionclip_solver=False)
parser.add_argument('--randaug-n', type=int, default=0)
parser.add_argument('--randaug-m', type=int, default=0)
parser.add_argument('--f-ratio', type=float, default=10)
parser.add_argument('--ratio', type=float, default=1)
parser.set_defaults(only_fusion_module=False)
parser.add_argument('--only-fusion-module', type=bool, default=False)
parser.set_defaults(freeze_visual=False)
parser.add_argument('--freeze-visual', type=bool, default=False)
parser.set_defaults(pretrained_weight=False)
parser.set_defaults(dense_sample=False)
parser.add_argument('--dense-sample', action='store_true')
parser.add_argument('--test-crops', type=int, default=1)
parser.add_argument('--num-clips', type=int, default=10)
parser.add_argument('--test-batch-size', type=int, default=0)
parser.add_argument('--use-softmax', action='store_true', default=False)
parser.add_argument('--twice-sample', action='store_true')
parser.add_argument('--alpha', type=float, default=0.8)
parser.add_argument('--use-res', type=bool, default=False)
parser.add_argument('--val-interval', type=int, default=-1)
parser.add_argument('--save-interval', type=int, default=10)
parser.add_argument('--fusion-layers', type=int, default=6)
parser.add_argument('--without-dist-loss', type=bool, default=False)
parser.add_argument('--naive-txt', action='store_true', default=False)
parser.add_argument('--C', type=float, default=0.316)
parser.add_argument('--max-iter', type=int, default=1000)
parser.add_argument('--verbose', type=int, default=0)
return parser
def shot_acc(preds, labels, train_class_count, many_shot_thr=100, low_shot_thr=20):
# _, preds = output.topk(1, 1, True, True)
# preds = preds.squeeze(-1)
# [min_shot, max_shot, correct, total, acc]
shot_cnt_stats = {
"many": [many_shot_thr - 1, max(train_class_count), 0, 0, 0.],
"median": [low_shot_thr, many_shot_thr - 1, 0, 0, 0.],
"low": [0, low_shot_thr, 0, 0, 0.],
"10-shot": [0, 10, 0, 0, 0.],
"5-shot": [0, 5, 0, 0, 0.],
}
for l in torch.unique(labels):
class_correct = torch.sum((preds[labels == l] == labels[labels == l])).item()
test_class_count = len(labels[labels == l])
for stat_name in shot_cnt_stats:
stat_info = shot_cnt_stats[stat_name]
if train_class_count[l] > stat_info[0] and train_class_count[l] <= stat_info[1]:
stat_info[2] += class_correct
stat_info[3] += test_class_count
for stat_name in shot_cnt_stats:
shot_cnt_stats[stat_name][-1] = shot_cnt_stats[stat_name][2] / shot_cnt_stats[stat_name][3] * \
100.0 if shot_cnt_stats[stat_name][3] != 0 else 0.
return shot_cnt_stats
def fewshot_test(test_loader, test_datamgr, pretrain_model, args):
device = torch.device(args.device)
full_text_tokens = test_datamgr.full_text_tokens
full_end_idx = test_datamgr.full_end_idxs
n_support = args.n_support
acc_all = []
if hasattr(pretrain_model, 'fusion_model') and \
hasattr(pretrain_model.fusion_model, 'beta'):
print(f'has beta {pretrain_model.fusion_model.beta}')
with torch.no_grad():
for i, (all_images, all_targets) in enumerate(test_loader):
all_images = all_images.to(device)
all_targets = all_targets.to(device)
n_way, sq = all_targets.shape
n_query = sq - n_support
old_to_new = dict()
old_labels = all_targets[:, 0].cpu().numpy()
for new, old in enumerate(old_labels):
old_to_new[old] = new
text_tokens, end_idxs = [], []
for old in old_labels:
text_tokens.append(full_text_tokens[old])
assert len(full_text_tokens[old]) == full_end_idx[old]
end_idxs.append(full_end_idx[old])
all_targets = torch.tensor(range(n_way)).unsqueeze(dim=-1).to(device)
all_targets = all_targets.expand(n_way, sq)
support_images = all_images[:, :n_support]
support_targets = all_targets[:, :n_support]
query_images = all_images[:, n_support:]
query_targets = all_targets[:, n_support:]
# support feature
support_images = support_images.reshape((n_way * n_support, args.num_segments, 3) +
support_images.size()[-2:])
support_images = support_images.view((-1, 3) + support_images.size()[-2:])
with torch.cuda.amp.autocast():
image_features = pretrain_model.encode_image(support_images)
identity = image_features
if hasattr(pretrain_model, 'fusion_model'):
image_features = image_features.view(n_way * n_support, args.num_segments, -1)
image_features = pretrain_model.fusion_model(image_features)
if args.use_res:
assert pretrain_model.use_res == args.use_res
identity = identity.reshape((identity.shape[0] // args.num_segments, args.num_segments, -1)).mean(dim=1, keepdim=False)
if hasattr(pretrain_model.fusion_model, 'beta'):
beta = pretrain_model.fusion_model.beta
beta = torch.sigmoid(beta)
image_features = image_features * beta + identity
else:
image_features = image_features + identity
else:
image_features = image_features.reshape((n_way * n_support, -1) + image_features.shape[1:]). \
mean(dim=1, keepdim=False)
support_image_embeddings = image_features
support_image_targets = support_targets.reshape(-1)
# query feature
query_images = query_images.reshape((n_way * n_query, args.num_segments, 3) +
query_images.size()[-2:])
query_images = query_images.view((-1, 3) + query_images.size()[-2:])
with torch.cuda.amp.autocast():
image_features = pretrain_model.encode_image(query_images)
identity = image_features
if hasattr(pretrain_model, 'fusion_model'):
image_features = image_features.view(n_way * n_query, args.num_segments, -1)
image_features = pretrain_model.fusion_model(image_features)
if args.use_res:
assert pretrain_model.use_res == args.use_res
identity = identity.reshape((identity.shape[0] // args.num_segments, args.num_segments, -1)).mean(dim=1, keepdim=False)
if hasattr(pretrain_model.fusion_model, 'beta'):
beta = pretrain_model.fusion_model.beta
beta = torch.sigmoid(beta)
image_features = image_features * beta + identity
else:
image_features = image_features + identity
else:
image_features = image_features.reshape((n_way * n_query, -1) + image_features.shape[1:]). \
mean(dim=1, keepdim=False)
query_image_embeddings = image_features
query_image_targets = query_targets.reshape(-1)
support_image_embeddings = support_image_embeddings.cpu().numpy()
support_image_targets = support_image_targets.cpu().numpy()
query_image_embeddings = query_image_embeddings.cpu().numpy()
query_image_targets = query_image_targets.cpu().numpy()
# perform logistic regression
C = args.C
max_iter = args.max_iter
verbose = args.verbose
classifier = LogisticRegression(random_state=0, C=C, max_iter=max_iter, verbose=verbose)
classifier.fit(support_image_embeddings, support_image_targets)
# Evaluate using the logistic regression classifier
predictions = classifier.predict(query_image_embeddings)
accuracy = np.mean((query_image_targets == predictions).astype(np.float)) * 100.
print(f"Accuracy = {accuracy:.3f}")
acc_all.append(accuracy)
acc_all = np.asarray(acc_all)
acc_mean = np.mean(acc_all)
acc_std = np.std(acc_all)
print(f'iter num: {len(test_loader)}, {acc_mean} +- {acc_std}')
def main(args):
utils.init_distributed_mode(args)
print(args)
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
device = torch.device(args.device)
cudnn.benchmark = True
test_datamgr = SetDataManager(args.data_root_val, 'test', input_size=args.input_size,
n_way=args.n_way, n_support=args.n_support, n_query=args.n_query,
num_segments=args.num_segments, n_eposide=args.n_eposide,
args=args)
test_loader = test_datamgr.get_data_loader(args.val_list_file, args)
pretrain_model = create_model(
args.pretrain_model,
pretrained=args.pretrained,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
dataset=test_datamgr,
args=args)
vis_backbone_path = getattr(args, 'vis_backbone_path',
osp.join(args.pretrain_cvlp_path, "checkpoint.pth"))
pretrain_model.to(device)
if vis_backbone_path.endswith('.pt'):
checkpoint = {}
checkpoint['model'] = torch.jit.load(
vis_backbone_path, map_location=torch.device('cpu')).state_dict()
else:
checkpoint = torch.load(vis_backbone_path, map_location='cpu')
if 'model' in checkpoint:
msg = pretrain_model.load_state_dict(checkpoint['model'], strict=False)
else:
msg = pretrain_model.load_state_dict(checkpoint, strict=False)
print(msg)
fewshot_test(test_loader, test_datamgr, pretrain_model, args)
if __name__ == '__main__':
parser = argparse.ArgumentParser('fewshot linear probe script', parents=[get_args_parser()])
args = parser.parse_args()
args = utils.update_from_config(args)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)