-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
247 lines (195 loc) · 8.83 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import csv
from pathlib import Path
import pydicom
from pprint import pprint
import tqdm
from pydicom import dcmread
from utils.dataloaders import MIDIEvalDataLoader
from dcm_deidentifiers.utils import list_all_files
from dcm_deidentifiers.phi_detectors import DcmRobustPHIDetector
from dcm_deidentifiers.img_deidentifier import DCMImageDeidentifier
def id_map_csv_to_dict(csvfile: str):
id_map = {}
with open(path_mapping_file, mode ='r')as file:
mapping = csv.reader(file)
for idx, lines in enumerate(mapping):
if idx == 0:
continue
id_map[lines[0]] = lines[1]
return id_map
def get_dcm_paths_from_series(seriesUID: str, series_output_map: dict):
series_path = series_output_map.get(seriesUID, '')
if series_path == "":
print(f"No path found for given series id {seriesUID}")
return
full_series_path = anonymizer_output_path / 'data' / series_path
alldcms = list_all_files(full_series_path)
if len(alldcms) == 0:
print(f"No dicom found for given series id {seriesUID}")
return
return alldcms
def extract_tags(dcm, gt_ds, annon_ds, tagvalues):
elements = dcm
gt_elements = gt_ds
annon_elements = annon_ds
parent_tag = None
if isinstance(dcm, pydicom.dataelem.DataElement):
parent_tag = dcm.tag
if len(dcm.value) == 0:
return
elements = dcm.value[0]
gt_elements = None
if gt_ds and len(gt_ds.value) > 0:
gt_elements = gt_ds.value[0]
annon_elements = None
if annon_ds and len(annon_ds.value) > 0:
annon_elements = annon_ds.value[0] if annon_ds else None
for element in elements:
deidelem = gt_elements.get(element.tag) if gt_elements else None
dcmannonelem = annon_elements.get(element.tag) if annon_elements else None
if element.VR == 'OW':
continue
elif element.VR == 'SQ':
extract_tags(element, deidelem, dcmannonelem, tagvalues)
continue
# targettags.append(element.tag)
deidval = ""
if deidelem:
deidval = str(deidelem.value)
dcmannonval = ""
if dcmannonelem:
dcmannonval = str(dcmannonelem.value)
changed = False
if dcmannonval != deidval:
changed = True
element_tag_str = str(element.tag)
if parent_tag:
element_tag_str = f"{str(parent_tag)} - {str(element.tag)}"
values_tuple = (element_tag_str, element.VR, element.name, str(element.value), deidval, dcmannonval, changed)
tagvalues.append(values_tuple)
def find_mismatched_tags(tagvalues: list[tuple]):
n_mismatched = 0
mismatched_tags = []
for row in tagvalues:
gt_val = row[4]
target_val = row[5]
if gt_val != target_val:
if row[1] == 'UI' and not (gt_val == "" or target_val == ""):
continue
elif row[1] in ('DA', 'DT', 'TM') and not (gt_val == "" or target_val == ""):
if len(gt_val) != len(target_val):
pass
continue
elif row[0] in ('(0010, 0010)', '(0010, 0020)'):
continue
n_mismatched += 1
mismatched_tags.append(row[2])
return n_mismatched, mismatched_tags
def find_mismatched_in_pixel_data(imganonymizer: DCMImageDeidentifier, dcm_deid_gt, dcm_deid):
gt_note, _, _ = imganonymizer.extract_texts_as_note(dcm_deid_gt.pixel_array)
gt_texts = gt_note.split('\n')
deidentified_note, _, _ = imganonymizer.extract_texts_as_note(dcm_deid.pixel_array)
deidentified_texts = deidentified_note.split('\n')
diff = abs(len(deidentified_texts) - len(gt_texts))
# if diff > 0:
# print(gt_note)
# print(deidentified_note)
return diff, len(gt_texts)
def evaluate_series_by_index(
series_idx, loader, series_output_path_map, imganonymizer: DCMImageDeidentifier,
evaluate_pixel_data: bool = True
):
(rawdcm, metadata), (deiddcm, deiddcm_metadata) = loader.get_raw_n_deid_patient(series_idx, include_metadata=True)
deidentfied_dcm_paths = get_dcm_paths_from_series(metadata['Series UID'], series_output_path_map)
anonymized_dcms = []
for dcmpath in deidentfied_dcm_paths:
with open(dcmpath, 'rb') as infile:
deidentfied_dcm = dcmread(infile)
anonymized_dcms.append(deidentfied_dcm)
total_elements = 0
total_mismatched = 0
mismatching_tags = {}
if len(rawdcm) != len(deiddcm) or len(rawdcm) != len(anonymized_dcms):
print(f"{metadata['Series UID']} Skipped, raw and deidentifed dicoms number mismatch.")
return total_elements, total_mismatched, mismatching_tags
for idx, dcm in enumerate(rawdcm):
deid_gt = deiddcm[idx]
anonymized = anonymized_dcms[idx]
tagvalues = []
extract_tags(dcm, deid_gt, anonymized, tagvalues)
n_mismatched, mismatched_tags = find_mismatched_tags(tagvalues)
total_elements += len(dcm)
total_mismatched += n_mismatched
for tag in mismatched_tags:
if tag in mismatching_tags:
mismatching_tags[tag] += 1
else:
mismatching_tags[tag] = 1
# image anonymization evaluation
if evaluate_pixel_data:
n_img_mismatched, total_img_txts = find_mismatched_in_pixel_data(imganonymizer, deid_gt, anonymized)
total_elements += total_img_txts
total_mismatched += n_img_mismatched
if n_img_mismatched > 0:
mismatching_tags['text_from_image'] = n_img_mismatched
return total_elements, total_mismatched, mismatching_tags
if __name__ == "__main__":
root_data_dir = '/home/r079a/Desktop/de-identification/dataset'
loader = MIDIEvalDataLoader(
rawimagespath=Path(root_data_dir, 'images/manifest-1617826555824'),
deidimagespath=Path(root_data_dir, 'images-2/manifest-1617826161202'),
uidsmappath=Path(root_data_dir, 'Pseudo-PHI-DICOM-Dataset-uid_crosswalk.csv'),
)
detector = DcmRobustPHIDetector()
img_anonymizer = DCMImageDeidentifier(phi_detector=detector)
anonymizer_output_path = Path(root_data_dir, 'anonymizer-output/Pseudo-PHI-DICOM-Data-10-removed-ctp-custom')
path_mapping_file = Path(anonymizer_output_path, 'mappings/path_mapping.csv')
series_output_map = id_map_csv_to_dict(path_mapping_file)
total_series = 26
total_elements = 0
total_mismatched = 0
mismatching_tags = {}
mismatching_tags_idx = {}
progress_bar = tqdm.tqdm(total=total_series)
for i in range(total_series):
current_elements, current_mismatched, current_mismatching_tags = evaluate_series_by_index(
i, loader, series_output_map, img_anonymizer, evaluate_pixel_data=True
)
total_elements += current_elements
total_mismatched += current_mismatched
for tag in current_mismatching_tags.keys():
if tag in mismatching_tags:
mismatching_tags[tag] += 1
mismatching_tags_idx[tag].append(i)
else:
mismatching_tags[tag] = 1
mismatching_tags_idx[tag] = [i]
progress_bar.update(1)
progress_bar.close()
matching_accuracy = ((total_elements - total_mismatched) / total_elements) * 100
print('Evaluation of the anonymization process complete')
print("=================================================")
print(f"Anonymization Closeness Score {round(matching_accuracy, 3)}%")
print("=================================================")
print("Mismatched Tags Summary:")
print("--------------------------------------------")
for tag in mismatching_tags.keys():
mismatched_idx_str = ','.join(str(x) for x in mismatching_tags_idx[tag])
print(f"\t{tag}: {mismatching_tags[tag]} -> {mismatched_idx_str}")
print("---------------------------------------------")
# VR which needs to be replaced by AI
# LO, ST, LT
# PN -> empty
# Custom Rules
# (0x0008, 0x2111) | Derivation Description | remove -> replace / AI
# (0x0010, 0x2180) | Occupation | remove -> keep
# (0x0012, 0x0051) | Clinical Trial Time Point Description | keep -> remove
# (0x0012, 0x0010), (0x0012, 0x0020) | Clinical Trial Sponsor Name/Protocol ID | replace -> remove
# (0x0012, 0x0021), (0x0012, 0x0030), (0x0012, 0x0031) | Clinical Trial Site .. | empty -> remove
# (0x0012, 0x0042) | Clinical Trial Subject Reading ID | replace -> remove
# (0x0010, 0x4000) | Patient Comments | remove -> replace
# (0x0040, 0x0009) | Scheduled Procedure Step ID | remove -> keep
# (0x0020, 0x4000) | Image Comments | remove -> replace
# (0x0018, 0x700C) | Date of Last Detector Calibration | incrementdate -> empty
# (0x0018, 0x700A) | Detector ID | remove -> empty
# ?? (0x0028, 0x0034) | Pixel Aspect Ratio | remove