-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrix.f90
137 lines (94 loc) · 3.59 KB
/
Matrix.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
MODULE Matrix
! #DES: Module containing routines for manipulating matrices, focused on explicit solutions
! for 2- and 3-dimensional matrices.
IMPLICIT NONE
CONTAINS
FUNCTION Eigenvalues2DRealSymmetric(A)
! #DES: Explicit solution for eigenvalues of a 2D real, symmetric matrix
! #DES: Obtained by solving the appropriate secular equation, det(A - lI) = 0, (a quadratic with 2 real roots)
IMPLICIT NONE
REAL(8), INTENT(IN) :: A(2,2)
REAL(8) :: eigenvalues2DRealSymmetric(2)
REAL(8) :: sum, diff, sqrtD !discriminant
IF (A(1,2) /= A(2,1)) STOP "Error: Matrix - nonsymmetric matrix passed to Eigenvalues2DRealSymmetric"
IF (A(1,2) == 0.0d0) THEN
!trivial solution - matrix is already diagonal
eigenvalues2DRealSymmetric(1) = A(1,1)
eigenvalues2DRealSymmetric(2) = A(2,2)
ELSE
sum = A(1,1) + A(2,2)
diff = A(1,1) - A(2,2)
sqrtD = SQRT(diff*diff + 4.0d0*A(1,2)*A(1,2))
eigenvalues2DRealSymmetric(1) = 0.5d0 * (sum + sqrtD)
eigenvalues2DRealSymmetric(2) = 0.5d0 * (sum - sqrtD)
ENDIF
END FUNCTION Eigenvalues2DRealSymmetric
!*
FUNCTION Eigenvalues3DRealSymmetric(A)
!https://gitlab.dune-project.org/lars.lubkoll/dune-common/commit/3e91e19881ec7a8708ba2dab17d7f8694ddb7e08
!https://en.wikipedia.org/wiki/Eigenvalue_algorithm#Direct_calculation
IMPLICIT NONE
REAL(8), INTENT(IN) :: A(3,3)
REAL(8) :: eigenvalues3DRealSymmetric(3)
REAL(8), PARAMETER :: pi = 3.14159d0
REAL(8) :: p, p1, q, p2, r, phi, diff
REAL(8) :: I(3,3), B(3,3)
INTEGER :: j
p1 = A(1,2)*A(1,2) + A(1,3)*A(1,3) + A(2,3)*A(2,3)
IF (p1 == 0.0d0) THEN
!A is already diagonal so return its diagonal entries
DO j = 1, 3
eigenvalues3DRealSymmetric(j) = A(j,j)
ENDDO
ELSE
I(:,:) = 0.0d0
DO j = 1, 3
I(j,j) = 1.0d0
ENDDO
q = trace(A) / 3.0d0
p2 = 2.0d0 * p1
DO j = 1, 3
diff = A(j,j) - q
p2 = p2 + (diff*diff)
ENDDO
p = SQRT(p2 / 6.0d0)
B(:,:) = (1.0d0 / p) * (A(:,:) - q * I(:,:)) ! I is the identity matrix
r = determinant(B) / 2.0d0
! In exact arithmetic for a symmetric matrix -1 <= r <= 1
! but computation error can leave it slightly outside this range.
IF (r <= -1.0d0) THEN
phi = pi / 3.0d0
ELSEIF (r >= 1.0d0) THEN
phi = 0.0d0
ELSE
phi = acos(r) / 3.0d0
END IF
! the eigenvalues satisfy eig3 <= eig2 <= eig1
eigenvalues3DrealSymmetric(1) = q + (2 * p * COS(phi))
eigenvalues3DRealSymmetric(3) = q + (2 * p * COS(phi + (2*pi/3)))
! since trace(A) = eig1 + eig2 + eig3
eigenvalues3DRealSymmetric(2) = (3.0d0 * q) - eigenvalues3DRealSymmetric(1) - eigenvalues3DRealSymmetric(3)
END IF
END FUNCTION Eigenvalues3DRealSymmetric
!*
REAL(8) FUNCTION determinant(A)
IMPLICIT NONE
REAL(8), INTENT(IN) :: A(3,3)
determinant = 0.0d0
determinant = determinant + (A(1,1) * (A(2,2)*A(3,3) - A(2,3)*A(3,2)))
determinant = determinant + (A(1,2) * (A(2,1)*A(3,3) - A(2,3)*A(3,1)))
determinant = determinant + (A(1,3) * (A(2,1)*A(3,2) - A(2,2)*A(3,1)))
END FUNCTION determinant
!*
REAL(8) FUNCTION trace(A)
! #DES: Compute trace of an n-by-n square matrix, the sum of the elements on the main diagonal
IMPLICIT NONE
REAL(8), INTENT(IN) :: A(:,:)
INTEGER :: i
IF (SIZE(A,1) /= SIZE(A,2)) STOP "Error: Matrix - non-square matrix received as input to trace"
trace = 0.0d0
DO i = 1, SIZE(A,1)
trace = trace + A(i,i)
ENDDO
END FUNCTION trace
END MODULE Matrix