forked from Networks-Learning/strategic-decisions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsyncomp.sh
executable file
·23 lines (22 loc) · 1.73 KB
/
syncomp.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
m=(10 20 50 100 200)
sparsity=(5 10 25 50 100)
k=(1 2 5 10 20)
kp=(1 2 5 10 20 30 40)
for s in {1..20}
do
for i in {0..3}
do
python -m lib.min_cost --output=./outputs/syncomp_mincost_m_${m[$i]}_k_${k[$i]}_sparsity_${sparsity[$i]}_seed_${s}_optimal.csv --m=${m[$i]} --k=${k[$i]} --sparsity=${sparsity[$i]} --seed=${s}
python -m lib.max_cover --output=./outputs/syncomp_maxcover_m_${m[$i]}_k_${k[$i]}_sparsity_${sparsity[$i]}_seed_${s}_optimal.csv --m=${m[$i]} --k=${k[$i]} --sparsity=${sparsity[$i]} --seed=${s}
python -m lib.greedy_deter --output=./outputs/syncomp_greedydet_m_${m[$i]}_k_${k[$i]}_sparsity_${sparsity[$i]}_seed_${s}_optimal.csv --m=${m[$i]} --k=${k[$i]} --sparsity=${sparsity[$i]} --seed=${s}
python -m lib.greedy_rand --output=./outputs/syncomp_greedyrand_m_${m[$i]}_k_${k[$i]}_sparsity_${sparsity[$i]}_seed_${s}_optimal.csv --m=${m[$i]} --k=${k[$i]} --sparsity=${sparsity[$i]} --seed=${s}
done
i=4
for j in {0..6}
do
python -m lib.min_cost --output=./outputs/syncomp_mincost_m_${m[$i]}_k_${kp[$j]}_sparsity_${sparsity[$i]}_seed_${s}_optimal.csv --m=${m[$i]} --k=${kp[$j]} --sparsity=${sparsity[$i]} --seed=${s}
python -m lib.max_cover --output=./outputs/syncomp_maxcover_m_${m[$i]}_k_${kp[$j]}_sparsity_${sparsity[$i]}_seed_${s}_optimal.csv --m=${m[$i]} --k=${kp[$j]} --sparsity=${sparsity[$i]} --seed=${s}
python -m lib.greedy_deter --output=./outputs/syncomp_greedydet_m_${m[$i]}_k_${kp[$j]}_sparsity_${sparsity[$i]}_seed_${s}_optimal.csv --m=${m[$i]} --k=${kp[$j]} --sparsity=${sparsity[$i]} --seed=${s}
python -m lib.greedy_rand --output=./outputs/syncomp_greedyrand_m_${m[$i]}_k_${kp[$j]}_sparsity_${sparsity[$i]}_seed_${s}_optimal.csv --m=${m[$i]} --k=${kp[$j]} --sparsity=${sparsity[$i]} --seed=${s}
done
done