-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerator.py
145 lines (128 loc) · 4.52 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
import torch.nn as nn
class Block(nn.Module): ## Class for Dense field blocks
def __init__(
self, nChannels=128, channel_rate=32, drop_rate=0.0, lnum=1
): ## lnum = block number
super(Block, self).__init__()
layers = []
layers.append(
nn.Sequential(
nn.InstanceNorm2d(nChannels + (lnum - 1) * channel_rate),
nn.LeakyReLU(0.2),
nn.Conv2d(
in_channels=nChannels + (lnum - 1) * channel_rate,
out_channels=4 * channel_rate,
kernel_size=1,
bias=None,
),
nn.InstanceNorm2d(4 * channel_rate),
)
)
if (
lnum == 3 or lnum == 7
): ## Dilation and Padding corresponding to the block number
layers.append(
nn.Conv2d(
4 * channel_rate, channel_rate, 3, dilation=2, padding=2, bias=None
)
)
elif lnum == 5:
layers.append(
nn.Conv2d(
4 * channel_rate, channel_rate, 3, dilation=3, padding=3, bias=None
)
)
else:
layers.append(
nn.Conv2d(
4 * channel_rate, channel_rate, 3, dilation=1, padding=1, bias=None
)
)
layers.append(
nn.Sequential(nn.InstanceNorm2d(channel_rate), nn.Dropout2d(drop_rate))
)
self.conv = nn.ModuleList(layers)
def forward(self, x):
for layer in self.conv:
x = layer(x)
return x
class Generator(nn.Module):
def __init__(self, nChannels=128, channel_rate=32, drop_rate=0.0, dilation=1):
super(Generator, self).__init__()
self.nChannels = nChannels
self.channel_rate = channel_rate
self.drop_rate = drop_rate
self.dilation = dilation
# Head
self.head = nn.Conv2d(3, 4 * self.channel_rate, 3, dilation=1, padding=1)
# Dense Block
self.block1 = Block(
self.nChannels, self.channel_rate, self.drop_rate, lnum=1
) ## Block 1
self.block2 = Block(
self.nChannels, self.channel_rate, self.drop_rate, lnum=2
) ## Block 2
self.block3 = Block(
self.nChannels, self.channel_rate, self.drop_rate, lnum=3
) ## Block 3
self.block4 = Block(
self.nChannels, self.channel_rate, self.drop_rate, lnum=4
) ## Block 4
self.block5 = Block(
self.nChannels, self.channel_rate, self.drop_rate, lnum=5
) ## Block 5
self.block6 = Block(
self.nChannels, self.channel_rate, self.drop_rate, lnum=6
) ## Block 6
self.block7 = Block(
self.nChannels, self.channel_rate, self.drop_rate, lnum=7
) ## Block 7
self.block8 = Block(
self.nChannels, self.channel_rate, self.drop_rate, lnum=8
) ## Block 8
self.block9 = Block(
self.nChannels, self.channel_rate, self.drop_rate, lnum=9
) ## Block 9
self.block10 = Block(
self.nChannels, self.channel_rate, self.drop_rate, lnum=10
) ## Block 10
# Tail
self.tail = nn.Sequential(
nn.LeakyReLU(0.2),
nn.Conv2d(self.channel_rate, self.channel_rate, 1, bias=None),
nn.InstanceNorm2d(self.channel_rate),
nn.Dropout2d(self.drop_rate),
)
# Last Layer
self.last_layer = nn.Sequential(
nn.Conv2d(
5 * self.channel_rate,
self.channel_rate,
3,
dilation=1,
padding=1,
bias=None,
),
nn.PReLU(self.channel_rate),
nn.Conv2d(self.channel_rate, 3, 3, dilation=1, padding=1, bias=None),
nn.Tanh(),
)
def forward(self, x):
x = self.head(x) ## Head
x1 = x
for i in range(1, 10): ## Dense blocks 1-9
d = self.__getattr__("block" + str(i))(x)
x = torch.cat([x, d], 1)
d = self.block10(x) ## 10th Dense block
x = self.tail(d) ## Tail
x = torch.cat([x, x1], 1) ## Global Skip connect
x = self.last_layer(x) ## Last layer
return x
def test():
x = torch.randn((1, 3, 256, 256))
model = Generator()
preds = model(x)
print(preds.shape) ## Output shape should be (1, 3, 256, 256)
if __name__ == "__main__":
test()