-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcloud_to_img.py
62 lines (49 loc) · 2.39 KB
/
cloud_to_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from skimage import io
from matplotlib.lines import Line2D
colors = sns.color_palette('Paired', 9 * 2)
names = ['Car', 'Van', 'Truck', 'Pedestrian', 'Person_sitting', 'Cyclist', 'Tram', 'Misc', 'DontCare']
file_id = '000010'
scan_dir = f'/media/mmohseni/ubuntu/projects/thesis/data_ENet/kitti/training/velodyne/{file_id}.bin'
im_path = f'/media/mmohseni/ubuntu/projects/thesis/data_ENet/kitti/training/image_2/{file_id}.png'
label_dir = f'/media/mmohseni/ubuntu/projects/thesis/data_ENet/kitti/training/label_2/{file_id}.txt'
calib_path = f'/media/mmohseni/ubuntu/projects/thesis/data_ENet/kitti/training/calib/{file_id}.txt'
if __name__ == '__main__':
# load point clouds
scan = np.fromfile(scan_dir, dtype=np.float32).reshape(-1, 4)
# load image
img = np.array(io.imread(im_path), dtype=np.int32)
# load labels
with open(label_dir, 'r') as f:
labels = f.readlines()
# load calibration file
with open(calib_path, 'r') as f:
lines = f.readlines()
P2 = np.array(lines[2].strip().split(' ')[1:], dtype=np.float32).reshape(3, 4)
R0 = np.array(lines[4].strip().split(' ')[1:], dtype=np.float32).reshape(3, 3)
V2C = np.array(lines[5].strip().split(' ')[1:], dtype=np.float32).reshape(3, 4)
fig = plt.figure(figsize=(12, 6))
# draw image
plt.imshow(img)
# transform the pointcloud from velodyne coordiante to camera_0 coordinate
scan_hom = np.hstack((scan[:, :3], np.ones((scan.shape[0], 1), dtype=np.float32))) # [N, 4]
scan_C0 = np.dot(scan_hom, np.dot(V2C.T, R0.T)) # [N, 3]
# transform the pointcloud from camera_0 coordinate to camera_2 coordinate
scan_C0_hom = np.hstack((scan_C0, np.ones((scan.shape[0], 1), dtype=np.float32))) # [N, 4]
scan_C2 = np.dot(scan_C0_hom, P2.T) # [N, 3]
scan_C2_depth = scan_C2[:, 2]
scan_C2 = (scan_C2[:, :2].T / scan_C2[:, 2]).T
# remove points outside the image
inds = scan_C2[:, 0] > 0
inds = np.logical_and(inds, scan_C2[:, 0] < img.shape[1])
inds = np.logical_and(inds, scan_C2[:, 1] > 0)
inds = np.logical_and(inds, scan_C2[:, 1] < img.shape[0])
inds = np.logical_and(inds, scan_C2_depth > 0)
plt.scatter(scan_C2[inds, 0], scan_C2[inds, 1], c=-scan_C2_depth[inds], alpha=0.5, s=1, cmap='viridis')
# fig.patch.set_visible(False)
plt.axis('off')
plt.tight_layout()
plt.savefig('examples/kitti_cloud_to_img.png', bbox_inches='tight')
plt.show()