forked from DeepPSP/torch_ecg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_simplified.py
349 lines (295 loc) · 12 KB
/
dataset_simplified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
"""
simplified data generator for feeding data into pytorch models,
with offline part all removed
References
----------
[1] Cai, Wenjie, and Danqin Hu. "QRS complex detection using novel deep learning neural networks." IEEE Access (2020).
[2] Tan, Jen Hong, et al. "Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals." Computers in biology and medicine 94 (2018): 19-26.
[3] Yao, Qihang, et al. "Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network." Information Fusion 53 (2020): 174-182.
"""
import json
from copy import deepcopy
from pathlib import Path
from random import randint, sample, shuffle, uniform
from typing import Dict, Tuple
import numpy as np
import torch
from scipy.io import loadmat
from torch.utils.data.dataset import Dataset
try:
import torch_ecg # noqa: F401
except ModuleNotFoundError:
import sys
sys.path.insert(0, str(Path(__file__).absolute().parents[2]))
from cfg import ModelCfg, PreprocCfg, TrainCfg # noqa: F401
from torch_ecg.augmenters.baseline_wander import gen_baseline_wander
from torch_ecg.cfg import CFG
from torch_ecg.databases import CPSC2020 as CR
from torch_ecg.utils.misc import get_record_list_recursive3, list_sum
if ModelCfg.torch_dtype == torch.float64:
torch.set_default_tensor_type(torch.DoubleTensor)
_DTYPE = np.float64
else:
_DTYPE = np.float32
__all__ = [
"CPSC2020",
]
class CPSC2020(Dataset):
"""
data generator for deep learning models,
strategy
--------
1. slice each record into short segments of length `TrainCfg.input_len`,
and of overlap length `TrainCfg.overlap_len` around premature beats
2. do augmentations for premature segments
"""
__DEBUG__ = False
__name__ = "CPSC2020"
def __init__(self, config: CFG, training: bool = True) -> None:
"""
Parameters
----------
config: dict,
configurations for the Dataset,
ref. `cfg.TrainCfg`
training: bool, default True,
if True, the training set will be loaded, otherwise the test set
"""
super().__init__()
self.config = deepcopy(config)
assert self.config.db_dir is not None, "db_dir must be specified"
self.config.db_dir = Path(self.config.db_dir)
self.reader = CR(db_dir=self.config.db_dir)
if ModelCfg.torch_dtype.lower() == "double":
self.dtype = np.float64
else:
self.dtype = np.float32
self.allowed_preproc = PreprocCfg.preproc
self.all_classes = self.config.classes
self.n_classes = len(self.config.classes)
self.training = training
split_res = self.reader.train_test_split_rec(test_rec_num=self.config.test_rec_num)
self.seglen = self.config.input_len # alias, for simplicity
# create directories if needed
# segments_dir for sliced segments
self.segments_dir = self.config.db_dir / "segments"
self.segments_dir.mkdir(parents=True, exist_ok=True)
if self.config.model_name.lower() in ["crnn", "seq_lab"]:
# for classification, or for sequence labeling
self.segments_dirs = CFG()
self.__all_segments = CFG()
self.segments_json = self.segments_dir / "crnn_segments.json"
self._ls_segments()
if self.training:
self.segments = list_sum([self.__all_segments[rec] for rec in split_res.train])
shuffle(self.segments)
else:
self.segments = list_sum([self.__all_segments[rec] for rec in split_res.test])
# elif self.config.model_name.lower() == "od": # object detection
# pass
else:
raise NotImplementedError(f"data generator for model \042{self.config.model_name}\042 not implemented")
if self.config.bw:
self._n_bw_choices = len(self.config.bw_ampl_ratio)
self._n_gn_choices = len(self.config.bw_gaussian)
def _ls_segments(self) -> None:
""" """
for item in ["data", "ann"]:
self.segments_dirs[item] = CFG()
for rec in self.reader.all_records:
self.segments_dirs[item][rec] = self.segments_dir / item / rec
self.segments_dirs[item][rec].mkdir(parents=True, exist_ok=True)
if self.segments_json.is_file():
self.__all_segments = json.loads(self.segments_json.read_text())
return
print(f"please allow the reader a few minutes to collect the segments from {self.segments_dir}...")
seg_filename_pattern = f"S\\d{{2}}_\\d{{7}}\\.{self.reader.rec_ext}"
self.__all_segments = CFG(
{
rec: get_record_list_recursive3(str(self.segments_dirs.data[rec]), seg_filename_pattern)
for rec in self.reader.all_records
}
)
if all([len(self.__all_segments[rec]) > 0 for rec in self.reader.all_records]):
self.segments_json.write_text(json.dumps(self.__all_segments, ensure_ascii=False))
@property
def all_segments(self):
return self.__all_segments
def __getitem__(self, index: int) -> Tuple[np.ndarray, np.ndarray]:
""" """
seg_name = self.segments[index]
seg_data = self._load_seg_data(seg_name)
if self.config.model_name.lower() == "crnn":
seg_label = self._load_seg_label(seg_name)
elif self.config.model_name.lower() == "seq_lab":
seg_label = self._load_seg_seq_lab(
seg=seg_name,
reduction=self.config.seq_lab_reduction,
)
# seg_ampl = np.max(seg_data) - np.min(seg_data)
seg_ampl = self._get_seg_ampl(seg_data)
# spb_indices = ann["SPB_indices"]
# pvc_indices = ann["PVC_indices"]
if self.__data_aug:
if self.config.bw:
ar = self.config.bw_ampl_ratio[randint(0, self._n_bw_choices - 1)]
gm, gs = self.config.bw_gaussian[randint(0, self._n_gn_choices - 1)]
bw_ampl = ar * seg_ampl
g_ampl = gm * seg_ampl
bw = gen_baseline_wander(
siglen=self.seglen,
fs=self.config.fs,
bw_fs=self.config.bw_fs,
amplitude=bw_ampl,
amplitude_mean=gm,
amplitude_std=gs,
)
seg_data = seg_data + bw
if len(self.config.flip) > 0:
sign = sample(self.config.flip, 1)[0]
seg_data *= sign
if self.config.random_normalize:
rn_mean = uniform(
self.config.random_normalize_mean[0],
self.config.random_normalize_mean[1],
)
rn_std = uniform(
self.config.random_normalize_std[0],
self.config.random_normalize_std[1],
)
seg_data = (seg_data - np.mean(seg_data) + rn_mean) / np.std(seg_data) * rn_std
if self.config.label_smoothing > 0:
seg_label = (1 - self.config.label_smoothing) * seg_label + self.config.label_smoothing / self.n_classes
if self.__DEBUG__:
self.reader.plot(
rec="", # unnecessary indeed
data=seg_data,
ann=self._load_seg_beat_ann(seg_name),
ticks_granularity=2,
)
seg_data = seg_data.reshape((self.config.n_leads, self.seglen))
return seg_data, seg_label
def __len__(self) -> int:
""" """
return len(self.segments)
def _get_seg_ampl(self, seg_data: np.ndarray, window: int = 80) -> float:
"""
get amplitude of a segment
Parameters
----------
seg_data: ndarray,
data of the segment
window: int, default 80 (corr. to 200ms),
window length of a window for computing amplitude, with units in number of sample points
Returns
-------
ampl: float,
amplitude of `seg_data`
"""
half_window = window // 2
ampl = 0
for idx in range(len(seg_data) // half_window - 1):
s = seg_data[idx * half_window : idx * half_window + window]
ampl = max(ampl, np.max(s) - np.min(s))
return ampl
def _get_seg_data_path(self, seg: str) -> Path:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S01_0000193"
Returns
-------
fp: Path,
path of the data file of the segment
"""
rec = seg.split("_")[0].replace("S", "A")
fp = self.segments_dir / "data" / rec / f"{seg}{self.reader.rec_ext}"
return fp
def _get_seg_ann_path(self, seg: str) -> Path:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S01_0000193"
Returns
-------
fp: Path,
path of the annotation file of the segment
"""
rec = seg.split("_")[0].replace("S", "A")
fp = self.segments_dir / "ann" / rec / f"{seg}{self.reader.rec_ext}"
return fp
def _load_seg_data(self, seg: str) -> np.ndarray:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S01_0000193"
Returns
-------
seg_data: ndarray,
data of the segment, of shape (self.seglen,)
"""
seg_data_fp = self._get_seg_data_path(seg)
seg_data = loadmat(str(seg_data_fp))["ecg"].squeeze()
return seg_data
def _load_seg_label(self, seg: str) -> np.ndarray:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S01_0000193"
Returns
-------
seg_label: ndarray,
label of the segment, of shape (self.n_classes,)
"""
seg_ann_fp = self._get_seg_ann_path(seg)
seg_label = loadmat(str(seg_ann_fp))["label"].squeeze()
return seg_label
def _load_seg_beat_ann(self, seg: str) -> Dict[str, np.ndarray]:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S01_0000193"
Returns
-------
seg_beat_ann: dict,
"SPB_indices", "PVC_indices", each of ndarray values
"""
seg_ann_fp = self._get_seg_ann_path(seg)
seg_beat_ann = loadmat(str(seg_ann_fp))
seg_beat_ann = {k: v.flatten() for k, v in seg_beat_ann.items() if k in ["SPB_indices", "PVC_indices"]}
return seg_beat_ann
def _load_seg_seq_lab(self, seg: str, reduction: int = 8) -> np.ndarray:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S01_0000193"
reduction: int, default 8,
reduction (granularity) of length of the model output,
compared to the original signal length
Returns
-------
seq_lab: np.ndarray,
label of the sequence,
of shape (self.seglen//reduction, self.n_classes)
"""
seg_beat_ann = {k: np.round(v / reduction).astype(int) for k, v in self._load_seg_beat_ann(seg).items()}
bias_thr = int(round(self.config.bias_thr / reduction))
seq_lab = np.zeros(
shape=(self.seglen // reduction, self.n_classes),
dtype=_DTYPE,
)
for p in seg_beat_ann["SPB_indices"]:
start_idx = max(0, p - bias_thr)
end_idx = min(seq_lab.shape[0], p + bias_thr + 1)
seq_lab[start_idx:end_idx, self.config.classes.index("S")] = 1
for p in seg_beat_ann["PVC_indices"]:
start_idx = max(0, p - bias_thr)
end_idx = min(seq_lab.shape[0], p + bias_thr + 1)
seq_lab[start_idx:end_idx, self.config.classes.index("V")] = 1
return seq_lab