forked from sccn/mobilab
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinvertParametricEmpiricalBayes.m
138 lines (113 loc) · 3.11 KB
/
invertParametricEmpiricalBayes.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
function [J,models] = invertParametricEmpiricalBayes(Y,K,Q1,L,eta,Omega,obj,sourceSpace)
if nargin < 5, eta = -4;end
if nargin < 5, Omega = 16;end
[N,~,Nh] = size(Q1);
D = triu(ones(Nh));
ind = find(D);
clear D;
[indI,indJ] = ind2sub([Nh Nh],ind);
% N = 0.5*Nh^2;
Nij = length(indI);
C1 = zeros(Nh);
Pi = zeros(N,N,Nh);
Pij = zeros(N,N,Nij);
iSl = zeros(Nh);
I1 = zeros(Nh,1);
I2 = zeros(Nh);
%--
% C2 = alpha*L'*L;
% C2 = L'*L;
% sqC2 = L';
%--
%--
% C2 = inv(L'*L);
A = L'*L;
iA = eye(size(L,1))./(A+eps);
sqC2 = chol(iA);
%--
[U,S,V] = svd(K*sqC2,'econ');
s = diag(S);
s2 = s.^2;
US2Ut = U*diag(s2)*U';
Sy = Y*Y';
lambda = random('Normal',eta,sqrt(Omega),Nh,1);
lambda1 = lambda;
lambda2 = random('Normal',eta,sqrt(Omega),1);
Omega = Omega*eye(Nh);
Pl = Omega(ind);
dOmega = diag(Omega)';
I = eye(size(Y,1));
% initializing J with Loreta solution => J = arg min ||v-K*J||^2 + lambda^2*||L*J||^2
plotGCV = true;
nlambda = 500;
[~,lambda2] = inverseSolutionLoreta(Y,K,L,nlambda,plotGCV);
T = V*diag(s./(s2+lambda2))*U';
H = K*T;
% T = V*diag(s./(s2+alpha))*U';
% J = T*Y; % (K'*K+alpha2*L'*L)\K'*Y;
% J = J/(std(J)+eps);
% figure;patch(sourceSpace,'FaceVertexCdata',J,'linestyle','none','FaceColor','interp','FaceLighting','phong','LineStyle','none');camlight
alpha2 = lambda2;
alpha = alpha2*Nh;
MaxError = 1e-3;
err = inf;
% optimizing lambda
while err > MaxError
% computing Sigma
[C1,iC1,c1] = getC(alpha,C1,Q1,Nh);
% computing hyperprior's covariance components
Pi = getPi(alpha,Pi,Q1,iC1,Nh);
Pij = getPij(Pij,Pi,C1,Nij,indI,indJ);
e = H*Y-Y;
el = lambda1-eta;
e_c1 = e.^2 - c1;
E_C1 = diag(e_c1);
% computing the inverse of Sl
for it=1:Nij
iSl(indI(it),indJ(it)) = 0.5*trace( Pij(:,:,it)*E_C1 + Pi(:,:,indI(it))*C1*Pi(:,:,indJ(it))*C1 ) + Pl(it);
iSl(indJ(it),indI(it)) = iSl(indI(it),indJ(it));
end
for it=1:Nh
I1(it) = -0.5*trace( Pi(:,:,it)*U*diag(e_c1+alpha*s.^2)*U' ) + dOmega*el;
end
% using the identity trace(A*B) = trace(B*A)
for it=1:Nij
I2(indI(it),indJ(it)) = -iSl(it) - 0.5*alpha*trace( US2Ut*Pij(:,:,it) );
I2(indJ(it),indI(it)) = I2(indI(it),indJ(it));
end
dl = -I2\I1;
alpha = alpha+dl;%log(I1-dl);
% alpha = alpha/alpha2;
err = sum(dl.^2);
T = V*diag(s./(s2+alpha*c1))*U';
H = K*T;
end
F = -trace(U*diag((s./(s+diag(C1))))*U*Sy) - log(det(C)) - (lambda1 - eta)'/Omega*(lambda1 - eta) + log(det(S/Omega));
C1 = diag(exp(lambda1))*Q1;
alpha2 = exp(lambda2);
T = L'*V*diag((alpha2*s./(alpha2^2*s2+diag(C1))))*U';
J = T*Y;
function [C,iC,c,ic] = getC(alpha,C,Q,Nh) %#ok
C = alpha(1)*Q(:,:,1);
for it=2:Nh,
C = C + alpha(it)*Q(:,:,it);
end
c = diag(C);
th = (max(c)-min(c))/100;
indR = c < th;
c(indR) = th;
ic = 1./c;
ic(indR) = 0;
iC = diag(ic);
function Pi = getPi(alpha,Pi,Q,iC,Nh)
for it=1:Nh
Pi(:,:,it) = -alpha(it)*iC*Q(:,:,it)*iC;
end
function Pij = getPij(Pij,Pi,C,Nij,indI,indJ)
ind = indI == indJ;
for it=1:Nij
Pij(:,:,it) = 2*Pi(:,:,indI(it))*C*Pi(:,:,indJ(it));
end
for it=1:length(ind)
Pij(:,:,ind(it)) = Pij(:,:,ind(it)) + Pi(:,:,ind(it));
end