-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathroleplay_Multi-round_dialog_generation2.py
119 lines (111 loc) · 4.97 KB
/
roleplay_Multi-round_dialog_generation2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from transformers import LlamaTokenizer,AutoModelForCausalLM
import torch
ckpt = 'Baichuan-13B-Chat_4bit'
device = torch.device('cuda')
#tokenizer = LlamaTokenizer.from_pretrained(ckpt)
# from auto_gptq import AutoGPTQForCausalLM
# model = AutoGPTQForCausalLM.from_quantized(ckpt, device_map="auto").half()
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(ckpt,trust_remote_code=True)
from auto_gptq import AutoGPTQForCausalLM
model = AutoGPTQForCausalLM.from_quantized(ckpt, device_map="auto",trust_remote_code=True).half()
# from transformers.generation.utils import GenerationConfig
# from transformers import BitsAndBytesConfig
# model = AutoModelForCausalLM.from_pretrained(ckpt,
# trust_remote_code=True,
# quantization_config=BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_compute_dtype=torch.bfloat16,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type='nf4'
# ),
# device_map="auto")
with open('filter1.txt', 'r', encoding='utf-8') as f:
sensitive_words = [line.strip() for line in f.readlines()]
def generate(prompt):
print("1",prompt,"2")
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
generate_ids = model.generate(input_ids=input_ids,
max_length=2048,
# do_sample = True,
# eos_token_id=tokenizer.eos_token_id )
num_beams=1,
do_sample=True, top_p=0.9, temperature=0.95, repetition_penalty=1.05, eos_token_id=tokenizer.eos_token_id)
output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
response = output[len(prompt):]
# print(response)
print("回答:",response)
return response
import random
import json
from tqdm import tqdm
filename0 = "seed_prompt.json"
filename2 = "roleplay_data.json"
translations = []
total_lines = 10000
sum_str = ""
def getq(sum_str):
result = generate(sum_str)
result = result.strip()
while any(word in result for word in sensitive_words):
if any(word in result for word in sensitive_words):
print("error reloop")
result = generate(sum_str)
result = result.strip()
return result
def geta(sum_str):
result = generate(sum_str)
result = result.strip()
while any(word in result for word in sensitive_words):
if any(word in result for word in sensitive_words):
print("error reloop")
result = generate(sum_str)
result = result.strip()
return result
max_history_len=1000
with tqdm(total=total_lines, desc="指令进度") as pbar:
while pbar.n < total_lines:
count=0
with open(filename0, "r", encoding="utf-8") as file:
lines2 = file.readlines()
random.shuffle(lines2)
i=0
count=0
sum_str = ""
i=0
for line2 in lines2:
i+=1
data2 = json.loads(line2.strip())
question3 = data2["instruction"]
name=question3.split(":")[0]
name=name.replace("人格","")
name=name.replace("的","")
history=[]
for _ in range(6):
input_text=f'''要求扮演下面角色,并且根据角色的设定内容模仿代入角色相应的对话口吻和风格:{question3}<6>\n'''
for history_id, history_utr in enumerate(history[-max_history_len:]):
input_text = input_text + history_utr + '\n'
prompt = input_text +f"根据上面内容与{name}发起日常对话,只写出一句即可<6>\n对话:"
prompt = prompt.strip()
q=getq(prompt)
#q=q.replace("人类:","")
# q=q.replace("答案:","")
# q=q.replace("说:",":")
history.append("人类:"+q+"<6>")
sum_str2=f'''要求扮演下面角色,并且根据角色的设定内容模仿代入角色相应的对话口吻和风格:{question3}<6>\n'''
for history_id, history_utr in enumerate(history[-max_history_len:]):
sum_str2 = sum_str2 + history_utr + '\n'
sum_str2 = sum_str2+f"{name}:"
a=geta(sum_str2)
history.append(f"{name}:"+a+"<6>")
sum_str2=sum_str2+a
json_data = {'instruction':sum_str2, "input": "", 'output': ""}
with open(filename2, 'a', encoding='utf-8') as f:
f.write('\n')
f.write(json.dumps(json_data, ensure_ascii=False))
pbar.update(1)
if i==6:
break
if pbar.n >= total_lines:
break