-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
64 lines (57 loc) · 2.42 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
__author__ = 'Mohammad'
import random
import json
import skimage.io
import skimage.transform
import skimage.color
def load_image(path, size=224):
img = skimage.io.imread(path)
if len(img.shape) == 2:
img = skimage.color.gray2rgb(img)
short_edge = min(img.shape[:2])
yy = int((img.shape[0] - short_edge) / 2)
xx = int((img.shape[1] - short_edge) / 2)
crop_img = img[yy:yy + short_edge, xx:xx + short_edge]
resized_img = skimage.transform.resize(crop_img, (size, size))
return resized_img
def get_related_answers(is_train):
if is_train:
annotations = json.load(open('data/mscoco_train2014_annotations.json'))['annotations']
questions = json.load(open('data/OpenEnded_mscoco_train2014_questions.json'))['questions']
else:
annotations = json.load(open('data/mscoco_val2014_annotations.json'))['annotations']
questions = json.load(open('data/OpenEnded_mscoco_val2014_questions.json'))['questions']
related_answers = dict()
for question, annotation in zip(questions, annotations):
if question['question_id'] != annotation['question_id']:
raise AssertionError("question id's are not equal")
q = question['question']
if q not in related_answers:
related_answers[q] = set()
for ans in annotation['answers']:
related_answers[q].add(ans['answer'])
related_answers[q].add(annotation['multiple_choice_answer'])
return related_answers
def get_vqa_data(is_train, sampling_ratio):
if is_train:
annotations = json.load(open('data/mscoco_train2014_annotations.json'))['annotations']
questions = json.load(open('data/OpenEnded_mscoco_train2014_questions.json'))['questions']
images_path = 'data/train2014/COCO_train2014_'
else:
annotations = json.load(open('data/mscoco_val2014_annotations.json'))['annotations']
questions = json.load(open('data/OpenEnded_mscoco_val2014_questions.json'))['questions']
images_path = 'data/val2014/COCO_val2014_'
vqa_triplets = list()
for question, annotation in zip(questions, annotations):
if question['question_id'] != annotation['question_id']:
raise AssertionError("question id's are not equal")
q = question['question']
img_num = str(question['image_id'])
img_path = images_path
for i in range(12 - len(img_num)):
img_path += '0'
img_path += img_num + '.jpg'
vqa_triplets.append((q, annotation['multiple_choice_answer'], img_path))
if sampling_ratio < 1:
vqa_triplets = random.sample(vqa_triplets, int(round(len(vqa_triplets) * sampling_ratio)))
return vqa_triplets