-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloader.py
67 lines (58 loc) · 3.07 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
__author__ = 'Mohammad'
import tensorflow as tf
from train import load_related_train_data, load_data, batch_size, get_batch_for_test, display_step
def run():
questions_vocab_processor, answers_vocab_processor, max_question_length = load_related_train_data()
questions, answers, images_paths = load_data(questions_vocab_processor, answers_vocab_processor, True)
sess = tf.Session()
saver = tf.train.import_meta_graph('vqa_model-5000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))
graph = tf.get_default_graph()
input_questions = graph.get_tensor_by_name('input_questions:0')
images = graph.get_tensor_by_name("images:0")
output_answers = graph.get_tensor_by_name('output_answers:0')
cost = graph.get_tensor_by_name('cost:0')
with sess.as_default():
sess.run(tf.global_variables_initializer())
step = 0
total_size = 0
losses = []
while step * batch_size < len(questions):
batch_in_questions, batch_in_images, batch_out, size = get_batch_for_test(step, questions, answers, images_paths, len(answers_vocab_processor.vocabulary_))
loss = sess.run(cost, feed_dict={input_questions: batch_in_questions, images: batch_in_images, output_answers: batch_out})
losses.append(loss * size)
total_size += size
if step % display_step == 0:
print("Training samples {} out of {}".format(step * batch_size, len(questions)))
print("Till now training loss= " + "{:.6f}".format(sum(losses) / total_size))
step += 1
total_train_loss = sum(losses) / total_size
print("Total Training Loss= " + "{:.6f}".format(total_train_loss))
if total_size != len(questions):
print("BUG!!!!")
print(total_size)
print(len(questions))
return
questions, answers = load_data(questions_vocab_processor, answers_vocab_processor, False)
step = 0
total_size = 0
losses = []
while step * batch_size < len(questions):
batch_in_questions, batch_in_images, batch_out, size = get_batch_for_test(step, questions, answers, images_paths, len(answers_vocab_processor.vocabulary_))
loss = sess.run(cost, feed_dict={input_questions: batch_in_questions, images: batch_in_images, output_answers: batch_out})
losses.append(loss * size)
total_size += size
if step % display_step == 0:
print("Validation samples {} out of {}".format(step * batch_size, len(questions)))
print("Till now validation loss= " + "{:.6f}".format(sum(losses) / total_size))
print("Total Training Loss= " + "{:.6f}".format(total_train_loss))
step += 1
total_validation_loss = sum(losses) / len(questions)
print("Total Validation Loss= " + "{:.6f}".format(total_validation_loss))
if total_size != len(questions):
print("BUG!!!!")
print(total_size)
print(len(questions))
return
if __name__ == "__main__":
run()