-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaceblurring.py
160 lines (126 loc) · 4.76 KB
/
faceblurring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import concurrent.futures
import os
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from timeit import default_timer as timer
import cv2
# import torch
from colorama import Fore, init
from insightface.app import FaceAnalysis
from tqdm import tqdm
from faceblurring import faceblurring, settings, utils
def main():
init(autoreset=True)
print(
"""
###########################################
KidVision Faceblurring
###########################################
"""
)
################
# --- INPUTS ---
part_id, input_dir = utils.get_inputs()
det_size, backend = utils.check_device()
# Step zero: Generate any outputs
output_dir = os.path.join(
os.path.expanduser("~"),
"Desktop",
settings.OUTPUT_FOLDER,
f"Participant_{part_id}",
)
output_dir_images = os.path.join(output_dir, "images")
if not os.path.exists(output_dir_images):
os.makedirs(output_dir_images)
# Step one: create the face detector
detector = FaceAnalysis(allowed_modules=["detection"], providers=backend)
detector.prepare(ctx_id=0, det_size=det_size)
# Step two: create the list of video files
vid_files = utils.get_video_files(input_dir)
# Create the output timelapse
out_tlc = cv2.VideoWriter(
os.path.join(output_dir, "timelapse.avi"),
cv2.VideoWriter_fourcc(*"DIVX"),
settings.OUT_VID_FPS,
(1920, 1080),
)
img_id = 1
written_frames = 0
start_time = timer()
for vid in tqdm(vid_files, "Timelapse Files"):
video = cv2.VideoCapture(vid)
vid_name = Path(vid).stem
vid_length = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
vid_frame_n = 0
sv_frames = utils.gen_step_frames(
video.get(cv2.CAP_PROP_FPS), settings.STEP_VID_LENGTH
)
frames = []
with tqdm(
total=vid_length, leave=False, desc=f"Processing frames (file: {vid_name})",
) as frame_pbar:
while video.isOpened():
success, frame = video.read()
if success:
if vid_frame_n == 0:
# Only run the check on the first frame
tlc_vid = utils.is_tlc_video(frame)
current_sv_frame = next(sv_frames)
if not tlc_vid:
frame_pbar.set_description(
f"Loading frames (file: {vid_name} is a step video)"
)
if (tlc_vid) or (not tlc_vid and current_sv_frame == vid_frame_n):
faces = detector.get(frame)
frames.append((img_id, frame, faces))
img_id += 1
if vid_frame_n >= current_sv_frame:
current_sv_frame = next(sv_frames)
frame_pbar.update(1)
vid_frame_n += 1
else:
break
video.release()
processed_frames = []
with ThreadPoolExecutor() as executor:
future_to_frame = {
executor.submit(
faceblurring.process_and_save_frame,
frame,
frame_img_id,
faces,
output_dir_images,
part_id,
vid_name,
): frame_img_id
for frame_img_id, frame, faces in frames
}
for future in tqdm(
concurrent.futures.as_completed(future_to_frame),
desc="Saving frames",
total=len(future_to_frame),
leave=False,
):
frame_img_id, processed_frame = future.result()
processed_frames.append((frame_img_id, processed_frame))
processed_frames.sort(key=lambda x: x[0])
for frame_img_id, processed_frame in processed_frames:
out_tlc.write(processed_frame)
out_tlc.release()
end_time = timer()
total_time = round(end_time - start_time, 3)
print(
f"[INFO] Created {img_id-1} images in {total_time} seconds ({round((img_id-1)/total_time,1)} fps)."
)
# Step four: create csv file of images
csv_path = os.path.join(output_dir, f"{part_id}_ImageLog.csv")
utils.create_csv(output_dir_images, img_id, csv_path)
utils.print_instructions(output_dir, csv_path)
# Step six: delete from csv
utils.delete_images(csv_path, output_dir_images, part_id, settings.DEBUG)
# Step seven: delete the original files
if not settings.DEBUG:
utils.tidy_up(vid_files, output_dir)
input("Finished! Press any key to close...")
if __name__ == "__main__":
main()