forked from domerin0/neural-chatbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
213 lines (195 loc) · 8.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
'''
This is a chatbot based on seq2seq architecture.
'''
import math
import os
import random
import sys
import time
import numpy as np
from six.moves import xrange
import tensorflow as tf
from tensorflow.python.platform import gfile
import util.hyperparamutils as hyper_params
import util.vocabutils as vocab_utils
import util.dataprocessor as data_utils
import models.chatbot as chatbot
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float("learning_rate", 0.5, "Learning rate.")
flags.DEFINE_float("lr_decay_factor", 0.97, "Learning rate decays by this much.")
flags.DEFINE_float("grad_clip", 5.0, "Clip gradients to this norm.")
flags.DEFINE_float("train_frac", 0.7, "Percentage of data to use for \
training (rest goes into test set)")
flags.DEFINE_integer("batch_size", 100, "Batch size to use during training.")
flags.DEFINE_integer("max_epoch", 6, "Maximum number of times to go over training set")
flags.DEFINE_integer("hidden_size", 200, "Size of each model layer.")
flags.DEFINE_integer("num_layers", 2, "Number of layers in the model.")
flags.DEFINE_integer("vocab_size", 40000, "Max vocabulary size.")
flags.DEFINE_integer("dropout", 0.8, "Probability of hidden inputs being removed between 0 and 1.")
flags.DEFINE_string("data_dir", "data/", "Directory containing processed data.")
flags.DEFINE_string("raw_data_dir", "data/cornell_lines/", "Raw text data directory")
##TODO add more than one tokenizer
flags.DEFINE_string("tokenizer", "basic", "Choice of tokenizer, options are: basic (for now)")
flags.DEFINE_string("checkpoint_dir", "data/checkpoints/", "Checkpoint dir")
flags.DEFINE_integer("max_train_data_size", 0,
"Limit on the size of training data (0: no limit).")
flags.DEFINE_integer("steps_per_checkpoint", 200,
"How many training steps to do per checkpoint.")
flags.DEFINE_integer("max_target_length", 50, "max length of target response")
flags.DEFINE_integer("max_source_length", 75, "max length of source input")
flags.DEFINE_integer("convo_limits", 1, "how far back the conversation memory should be")
FLAGS = tf.app.flags.FLAGS
def main():
if not os.path.exists(FLAGS.checkpoint_dir):
os.mkdir(FLAGS.checkpoint_dir)
path = get_checkpoint_path()
print("path is {0}".format(path))
data_processor = data_utils.DataProcessor(FLAGS.vocab_size,
FLAGS.raw_data_dir,FLAGS.data_dir, FLAGS.train_frac, FLAGS.tokenizer,
FLAGS.convo_limits, FLAGS.max_target_length, FLAGS.max_source_length)
data_processor.run()
#create model
print("Creating model with...")
print("Number of hidden layers: {0}".format(FLAGS.num_layers))
print("Number of units per layer: {0}".format(FLAGS.hidden_size))
print("Dropout: {0}".format(FLAGS.dropout))
vocab_mapper = vocab_utils.VocabMapper(FLAGS.data_dir)
vocab_size = vocab_mapper.get_vocab_size()
print("Vocab size is: {0}".format(vocab_size))
FLAGS.vocab_size = vocab_size
last_test_loss = float('inf')
with tf.Session() as sess:
model = create_model(sess, path, vocab_size)
#train model and save to checkpoint
print("Beggining training...")
print("Maximum number of epochs to train for: {0}".format(FLAGS.max_epoch))
print("Batch size: {0}".format(FLAGS.batch_size))
print("Starting learning rate: {0}".format(FLAGS.learning_rate))
print("Learning rate decay factor: {0}".format(FLAGS.lr_decay_factor))
source_train_file_path = data_processor.data_source_train
target_train_file_path = data_processor.data_target_train
source_test_file_path = data_processor.data_source_test
target_test_file_path = data_processor.data_target_test
print(source_train_file_path)
print(target_train_file_path)
train_set = read_data(source_train_file_path, target_train_file_path,
FLAGS.max_train_data_size)
random.shuffle(train_set)
test_set = read_data(source_test_file_path, target_test_file_path,
FLAGS.max_train_data_size)
random.shuffle(test_set)
step_time, train_loss = 0.0, 0.0
current_step = 0
previous_losses = []
num_batches = len(train_set) / FLAGS.batch_size
batch_pointer = 0
while True:
# Get a batch and make a step.
start_time = time.time()
start_index = int(batch_pointer * FLAGS.batch_size)
end_index = int(start_index + FLAGS.batch_size)
inputs, targets, input_lengths, target_lengths =\
model.get_batch(train_set[start_index : end_index])
step_loss = model.step(sess, inputs, targets,
input_lengths, target_lengths)
batch_pointer = (batch_pointer + 1) % num_batches
step_time += (time.time() - start_time) / FLAGS.steps_per_checkpoint
train_loss += step_loss / FLAGS.steps_per_checkpoint
current_step += 1
# Once in a while, we save checkpoint, show statistics, and run tests.
if current_step % FLAGS.steps_per_checkpoint == 0:
# show statistics for the previous epoch.
print("Step {0} learning rate {1} step-time {2} training loss {3}"\
.format(model.global_step.eval(), round(model.learning_rate,4),
round(step_time, 4), round(train_loss,4)))
# Decrease learning rate if no improvement was seen over last 3 times.
#if len(previous_losses) > 2 and loss > max(previous_losses[-3:]):
# sess.run(model.learning_rate_decay_op)
previous_losses.append(train_loss)
# Run tests on test set and show their perplexity.
test_losses = []
num_test_batches = int(len(test_set) / FLAGS.batch_size)
for test_pointer in range(0, num_test_batches):
start_index = test_pointer * FLAGS.batch_size
inputs, targets, input_lengths, target_lengths =\
model.get_batch(test_set[start_index : start_index + FLAGS.batch_size])
test_loss = model.step(sess,
inputs,
targets,
input_lengths,
target_lengths,
test_mode=True)
test_losses.append(test_loss)
test_loss = float(np.mean(test_losses))
print(" step: {0} test loss: {1}".format(
model.global_step.eval(),
round(test_loss,4)))
# Save checkpoint and zero timer and loss.
if test_loss < last_test_loss:
checkpoint_path = os.path.join(path, "chatbot")
model.saver.save(sess, checkpoint_path, global_step=model.global_step)
last_test_loss = test_loss
step_time, train_loss = 0.0, 0.0
sys.stdout.flush()
def create_model(session, path, vocab_size):
model = chatbot.ChatbotModel(vocab_size=vocab_size,
hidden_size=FLAGS.hidden_size,
dropout=FLAGS.dropout,
num_layers=FLAGS.num_layers,
max_gradient_norm=FLAGS.grad_clip,
batch_size=FLAGS.batch_size,
learning_rate=FLAGS.learning_rate,
max_target_length = FLAGS.max_target_length,
max_source_length = FLAGS.max_source_length,
lr_decay_factor=FLAGS.lr_decay_factor,
decoder_mode=False)
hyper_params.save_hyper_params(path, FLAGS)
ckpt_path = tf.train.latest_checkpoint(path)
if ckpt_path:
print("Reading model parameters from {0}".format(ckpt_path))
model.saver.restore(session,ckpt_path)
else:
print("Created model with fresh parameters.")
session.run(tf.global_variables_initializer())
return model
def read_data(source_path, target_path, max_size=None):
'''
This method directly from tensorflow translation example
'''
data_set = []
with tf.gfile.GFile(source_path, mode="rb") as source_file:
with tf.gfile.GFile(target_path, mode="rb") as target_file:
source, target = source_file.readline(), target_file.readline()
counter = 0
while source and target and (not max_size or counter < max_size):
counter += 1
if counter % 100000 == 0:
print("Reading data line {0}".format(counter))
sys.stdout.flush()
source_ids = [int(x) for x in source.split()]
target_ids = [vocab_utils.GO_ID]
target_ids.extend([int(x) for x in target.split()])
target_ids.append(vocab_utils.EOS_ID)
data_set.append([source_ids, target_ids])
source, target = source_file.readline(), target_file.readline()
return data_set
def get_checkpoint_path():
'''
Check if new hyper params match with old ones
if not, then create a new model in a new Directory
Returns:
path to checkpoint directory
'''
#check if model exists with params
dir_name = "numlayers_{0}_hsize_{1}_vsize_{2}_max_tlength_{3}_max_slength_{4}".format(FLAGS.num_layers,
FLAGS.hidden_size,
FLAGS.vocab_size,
FLAGS.max_target_length,
FLAGS.max_source_length)
checkpoint_path = os.path.join(FLAGS.checkpoint_dir, dir_name)
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
return checkpoint_path
if __name__ == '__main__':
main()