forked from michaelgreenacre/CODAinPractice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFrontiers_ALR.R
179 lines (147 loc) · 6.89 KB
/
Frontiers_ALR.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
### RNAseq data of Jovanovic et al. (2015)
### Files obtained from Quinn et al. (2019), repository http://doi.org/10.5281/zenodo.3270954
mice <- read.csv("rnaseq-x.csv", row.names=1)
mice <- t(mice)
dim(mice)
# [1] 28 3147
### this data set has some zeros that are not exactly zero!
sum(mice<1e-10)
# [1] 34
### so redefine them as zeros
mice[which(mice<1e-10, arr.ind=TRUE)] <- 0
### replace zeros
require(zCompositions)
mice.no0 <- cmultRepl(mice, output = "p-counts")
### normalize data
mice.pro <- mice.no0 / rowSums(mice.no0)
mice.pro <- as.matrix(mice.pro)
### skip the next section if you only want to find best ALR transformation
### ----------------------------------------------------------------------
### illustrating logratio analysis and total logratio variance
### several equivalent ways to obtain logratio variance are illustrated
### make sure 'easyCODA' package is installed
require(easyCODA)
## first way: directly from sum of squared singular values of logratio analysis
mice.lra <- LRA(mice.pro, weight=FALSE)
sum(mice.lra$sv^2)
# [1] 0.2099017
## second way: computed from the variances of the centered logratios
## note the averaging (/3147) as well as the adjustment (n-1)/n to get variances as average sum of squares
mice.clr <- CLR(mice.pro, weight=FALSE)
sum(apply(mice.clr$LR, 2, var))*(27/28)/3147
# [1] 0.2099017
## third way: using easyCODA's LR.VAR function
LR.VAR(mice.clr)
# [1] 0.2099017
## fourth way: same as third way but on transposed matrix
## note the renormalization
### on transposed matrix
tmice.no0 <- t(mice.no0)
tmice.pro <- tmice.no0 / rowSums(tmice.no0)
LR.VAR(CLR(tmice.pro, weight=FALSE))
# [1] 0.2099017
### -------------------------------------------------------------------
### use function FINDALR to identify best references
### note that FINDALR has default weight=FALSE (unweighted)
### see supplmentary material script for weighted option
starttime <- Sys.time()
alr.refs <- FINDALR(mice.pro)
endtime <- Sys.time()
difftime(endtime, starttime, units="secs")
# Time difference of 82.66236 secs on Toshiba laptop
alr.refs$procrust.max # [1] 0.9977376
alr.refs$procrust.ref # 1] 1318
alr.refs$var.min # [1] 0.004145442
alr.refs$var.ref # 1] 1557
alr.refs$tot.var # [1] 0.2099017
### quartiles of transcript #1557
quantile(log(mice.pro[,1557]), c(0,0.25,0.5,0.75,1))
# 0% 25% 50% 75% 100%
# -8.322311 -8.217493 -8.177022 -8.138795 -8.034504
### top 10 for correlation
names(alr.refs$procrust.cor) <- colnames(mice.pro)
alr.refs$procrust.cor[order(alr.refs$procrust.cor, decreasing=TRUE)][1:10]
# Vcp Pafah1b1 Arf1;Arf3 Rplp0 Aco2 Canx
# 0.9977376 0.9974278 0.9970546 0.9968020 0.9965415 0.9964751
# Vamp3;Vamp2 Wdr1 Cyfip1;Shyc Rpl19
# 0.9961483 0.9960804 0.9958606 0.9957104
### top 10 for log variance
names(alr.refs$var.log) <- colnames(mice.pro)
alr.refs$var.log[order(alr.refs$var.log)][1:10]
# Bag1 Pafah1b1 Ube2l3 Rab11a;Rab11b Vamp3;Vamp2
# 0.004145442 0.006259947 0.006903511 0.007030669 0.007209450
# Tmsb4x Gnb1 Arpc3 Med15;Pcqap Anxa2
# 0.007711698 0.008519982 0.008785561 0.008980469 0.009315313
### reference "Pafah1b1" chosen, which comes second on both criteria
### number of the chosen reference "Pafah1b1"
which(colnames(mice.pro)=="Pafah1b1")
# [1] 1179
### rank of the chosen reference "Pafah1b1" in decreasing order of average relative abundance
which(sort(colMeans(mice.pro), decreasing=TRUE)==sort(colMeans(mice.pro), decreasing=TRUE)["Pafah1b1"])
# Pafah1b1
# 1617
### quartiles of transcript #1179
quantile(log(mice.pro[,1179]), c(0,0.25,0.5,0.75,1))
# 0% 25% 50% 75% 100%
# -9.685366 -9.620854 -9.569166 -9.500670 -9.371171
### -------------------------------------------------------------------
### logratio distances
mice.dist <- dist(mice.clr$LR)
alr1179.dist <- dist(ALR(mice.pro, denom=1179, weight=FALSE)$LR)
## FIGURE 4 of article
par(mar=c(4.2,4,1,1), mgp=c(2,0.7,0), las=1)
plot(mice.dist, alr1179.dist, xlab="Exact logratio distances",
ylab="Distances using ALRs", font.lab=2)
### -------------------------------------------------------------------
### LRA of all logratios and PCA of ALRs w.r.t. #1179
## %s of variance explained by dimensions
round(100*mice.lra$sv^2/sum(mice.lra$sv^2),2)
# [1] 59.24 15.54 7.62 3.97 1.93 1.85 1.23 1.15 0.98 0.75 0.68 0.62
# [13] 0.60 0.54 0.51 0.45 0.42 0.35 0.33 0.29 0.27 0.22 0.18 0.15
# [25] 0.14 0.00 0.00
## simplified sample names
mice.names <- paste(rep(c("M","M","L","L"),7), rep(c(0,1,2,4,6,9,12), each=4))
## FIGURE 5 of article
par(mar=c(4.2,4,3,1), mgp=c(2,0.7,0), font.lab=2, mfrow=c(2,1))
## LRA
plot(mice.lra$rowpcoord, type="n", asp=1, main="LRA of transcripts",
xlab="LRA dimension 1 (59.2%)", ylab="LRA dimension 2 (15.5%)")
abline(v=0, h=0, col="gray", lty=2)
text(mice.lra$rowpcoord, labels=mice.names, cex=0.8)
##PCA
alr1179 <- ALR(mice.pro, denom=1179, weight=FALSE)$LR
alr1179.pca <- PCA(alr1179, weight=FALSE)
## %s of explained variance
round(100*alr1179.pca$sv^2/sum(alr1179.pca$sv^2),2)
# [1] 61.96 14.07 6.92 3.68 2.01 1.75 1.39 1.07 1.02 0.74 0.66 0.57
# [13] 0.55 0.49 0.46 0.43 0.39 0.36 0.30 0.27 0.25 0.21 0.18 0.14
# [25] 0.13 0.00 0.00 0.00
alr1179.rpc <- alr1179.pca$rowpcoord
plot(alr1179.pca$rowpcoord, type="n", asp=1, main="PCA of ALRs w.r.t. 1179",
xlab="PCA dimension 1 (62.0%)", ylab="PCA dimension 2 (14.1%)")
abline(v=0, h=0, col="gray", lty=2)
text(alr1179.pca$rowpcoord, labels=mice.names, cex=0.8)
### ----------------------------------------------------------------------------
### Finding ALRs for different sized data sets, from 500 to 3000 in steps of 500
procrustes.sim <- matrix(0, 100, 7)
colnames(procrustes.sim) <- c(100, seq(500, 3000, 500))
procrustes.ref <- matrix(0, 100, 7)
colnames(procrustes.ref) <- c(100, seq(500, 3000, 500))
set.seed(123)
for(i in 1:100) {
for(j in 1:7) {
ncomp <- c(100, seq(500, 3000, 500))[j]
simul <- sample(1:ncol(mice.no0))[1:ncomp]
mice.sub <- mice.pro[,simul]
mice.sub.pro <- mice.sub / rowSums(mice.sub)
results <- FINDALR(mice.sub.pro)
procrustes.sim[i,j] <- results$procrust.max
procrustes.ref[i,j] <- simul[results$procrust.ref]
}
}
par(mar=c(4.2,4,3,1), mgp=c(2,0.7,0), font.lab=2, mfrow=c(1,1), las=1)
boxplot(as.numeric(procrustes.sim) ~ factor(rep(1:7, each=100)), ylim=c(0.987,0.999), bty="n", xaxt="n", yaxt="n",
xlab="Number of components", ylab="Procrustes correlations", pars=list(boxwex=0.5))
axis(1, at=1:7, labels=c(100, seq(500, 3000, 500)), cex.axis=0.9)
axis(2, at=seq(0.987,0.999, 0.002), labels=seq(0.987,0.999, 0.002), cex.axis=0.8)
procrustes.ref