forked from neurolabusc/Clinical
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclinical_mrnormseg.m
executable file
·429 lines (416 loc) · 18.9 KB
/
clinical_mrnormseg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
function clinical_mrnormseg (T1,lesion,T2, UseSCTemplates, vox, bb, DeleteIntermediateImages, ssthresh, cleanup, isEnantiomorphic, AutoSetOrigin)
% This script normalizes MR scans using normalization-segmetnation
%Inputs
% T1 = Filename[s] for T1 scans
% lesion = OPTIONAL Filename[s] for lesion maps [drawn on T2 if is T2 is specified, otherwise drawn on T1]
% T2 = OPTIONAL Filename[s] for T2 weighted images
% UseSCTemplates = OPTIONAL 0=normalize to young individuals, else normalize to template based on older adults
% vox = OPTIONAL Voxel size in mm, multiple rows for multiple resolutions (e.g. [3 3 3; 1 1 1])
% bb = OPTIONAL Bounding box
% DeleteIntermediateImages= OPTIONAL Should files used inbetween stages be saved?
% ssthresh = OPTIONAL Thresold for brain extraction, e.g. 0.1 will have tissue that has combine GM+WM probability >10%
% cleanup = Tissue cleanup level
% isEnantiomorphic = if true then Enantiomorphic rather than lesion-masked normalization
% Example: Normalize T1 scan from elderly person
% clinical_mrnormseg('c:\dir\t1.nii');
% Example: Normalize T1 scan from elderly person to 1mm isotropic
% clinical_mrnormseg('c:\dir\t1.nii','','',1,[1 1 1]);
% Example: Normalize T1 scan and lesion from person with stroke, with lesion drawn on T1
% clinical_mrnormseg('c:\dir\t1.nii','c:\dir\t1lesion.nii' );
% Example: Normalize T1 scan and lesion from person with stroke, with lesion drawn on T2
% clinical_mrnormseg('c:\dir\t1.nii','c:\dir\t2lesion.nii','c:\dir\t2.nii' );
% Note: could be T2, FLAIR, etc. but second image (lesion) is aligned to third image ("T2")
% clinical_mrnormseg('C:\t1','C:\lesion.nii','C:\flair.nii');
% UseSCTemplates = If 1, uses 'stroke control' template (good for elderly), if 0 then uses SPM's default tissue templates
% Set to 0.0 if you do not want a brain extracted T1
fprintf('MR normalization-segmentation version 7/7/2016 - for use with high-resolution images that allow accurate segmentation\n');
lesionname = '';
if nargin <1 %no files
T1 = spm_select(inf,'image','Select T1 images');
end;
if nargin < 1 %no files
lesion = spm_select(inf,'image','Optional: select lesion maps (same order as T1)');
else
if nargin <2 %T1 specified, no lesion map specified
lesion = '';
end;
end;
if (nargin < 1 & length(lesion) > 1) %no files passed, but user has specified both T1 and lesion images...
T2 = spm_select(inf,'image','Select T2 images (only if lesions are not drawn on T1, same order as T1)');
else %T1 specified, no T2 specified
if nargin <3 %no files
T2 = '';
end;
end;
if nargin < 4 %no template specified
UseSCTemplates= 1; %assume old individual
end;
if nargin < 5 %no voxel size
vox = [2 2 2];
end;
if nargin < 6 %no bounding box
bb = [-78 -112 -50; 78 76 85];
end; % std tight (removes some cerebellum) -> [-78 -112 -50; 78 76 85] ch2 -> [ -90 -126 -72; 90 90 108]
if nargin < 7 %delete images
DeleteIntermediateImages = 1;
end;
if nargin < 8 %brain extraction threshold
ssthresh = 0.005; %0.1;
end;
if nargin < 9 %cleanup not specified
cleanup = 2; %2= thorough cleanup; 1=light cleanup, 0= nocleanup
end;
if ~exist('isEnantiomorphic','var')
isEnantiomorphic = true;
end
if isempty(lesion)
isEnantiomorphic = false;
end
if exist('AutoSetOrigin', 'var') && (AutoSetOrigin)
for i=1:size(T1,1)
v = deblank(T1(i,:));
if ~isempty(lesion)
v = strvcat(v, deblank(lesion(i,:)) );
end
if ~isempty(T2)
v = strvcat(v, deblank(T2(i,:)) );
end
clinical_setorigin(v,1); %coregister to T1
end;
end;
smoothlesion = true;
tic
if (length(lesion) < 1) && (~isempty(T2))
fprintf('You can not process T2 images without T1 scans\n');
return;
end;
for i=1:size(T1,1), %repeat for each image the user selected
[pth,nam,ext] = spm_fileparts(deblank(T1(i,:)));
T1name = fullfile(pth,[ nam ext]); %the T1 image has no prefix
if (clinical_filedir_exists(T1name ) == 0) %report if files do not exist
disp(sprintf(' No T1 image found named: %s', T1name ))
return
end;
if length(lesion) > 0
[pthL,namL,extL] = spm_fileparts(deblank(lesion(i,:)));
lesionname = fullfile(pthL,[namL extL]);
if (clinical_filedir_exists(lesionname ) == 0) %report if files do not exist
disp(sprintf(' No lesion image found named: %s', lesionname ))
return
end;
end;
if length(T2) > 0 %if 3rd image (T2) exists - use it to coreg 2nd (lesion) to 1st (T1)
[pth2,nam2,ext2] = spm_fileparts(deblank(T2(i,:)));
T2name = fullfile(pth2,[nam2 ext2]); %the T2 pathological image has the prefix 'p'
if (clinical_filedir_exists(T2name ) == 0) %report if files do not exist
disp(sprintf(' No T2/FLAIR/DWI image found named: %s', T2name ))
return
end;
if ~lesionMatchT2Sub (T2name,lesionname)
return;
end
%next coreg
coregbatch{1}.spm.spatial.coreg.estwrite.ref = {[T1name ,',1']};
coregbatch{1}.spm.spatial.coreg.estwrite.source = {[T2name ,',1']};
coregbatch{1}.spm.spatial.coreg.estwrite.other = {[lesionname ,',1']};
coregbatch{1}.spm.spatial.coreg.estwrite.eoptions.cost_fun = 'nmi';
coregbatch{1}.spm.spatial.coreg.estwrite.eoptions.sep = [4 2];
coregbatch{1}.spm.spatial.coreg.estwrite.eoptions.tol = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
coregbatch{1}.spm.spatial.coreg.estwrite.eoptions.fwhm = [7 7];
coregbatch{1}.spm.spatial.coreg.estwrite.roptions.interp = 1;
coregbatch{1}.spm.spatial.coreg.estwrite.roptions.wrap = [0 0 0];
coregbatch{1}.spm.spatial.coreg.estwrite.roptions.mask = 0;
coregbatch{1}.spm.spatial.coreg.estwrite.roptions.prefix = 'r';
spm_jobman('run',coregbatch);
namL = ['r' namL]; %resliced data now has prefix 'r'
lesionname = fullfile(pthL,[namL extL]); %the lesion image has the prefix 'l'
if (DeleteIntermediateImages == 1) clinical_delete(fullfile(pth2,['r' nam2 ext2])); end;
elseif length(lesionname) > 0 %if no T2, but lesion, make sure lesion matches T1
if ~lesionMatchT2Sub (T1name,lesionname)
return;
end
end;%if lesion present
%next - generate mask
if length(lesion) > 0
if isEnantiomorphic
maskname = fullfile(pthL,[ namL extL]);
else
clinical_smoothmask(lesionname);
maskname = fullfile(pthL,['x' namL extL]);
end;
if smoothlesion == true
slesionname = clinical_smooth(lesionname, 3); %lesions often drawn in plane, with edges between planes - apply 3mm smoothing
else
slesionname = lesionname;
end; %if smooth lesion
end; %if lesion available
%next normalize...
if UseSCTemplates == 1 %
disp(sprintf('Using stroke control tissue probability maps'));
gtemplate = fullfile(fileparts(which(mfilename)),'scgrey.nii');
wtemplate= fullfile(fileparts(which(mfilename)),'scwhite.nii');
ctemplate = fullfile(fileparts(which(mfilename)),'sccsf.nii');
else
disp(sprintf('Using default SPM tissue probability maps'));
gtemplate = fullfile(spm('Dir'),'tpm','grey.nii');
wtemplate = fullfile(spm('Dir'),'tpm','white.nii');
ctemplate = fullfile(spm('Dir'),'tpm','csf.nii');
if ~exist(gtemplate,'file')
gtemplate = fullfile(spm('Dir'),'toolbox','OldSeg','grey.nii');
end;
if ~exist(wtemplate,'file')
wtemplate = fullfile(spm('Dir'),'toolbox','OldSeg','white.nii');
end;
if ~exist(ctemplate,'file')
ctemplate = fullfile(spm('Dir'),'toolbox','OldSeg','csf.nii');
end;
end;
%report if templates are not found
if (clinical_filedir_exists(gtemplate) == 0) || (clinical_filedir_exists(wtemplate) == 0) || (clinical_filedir_exists(ctemplate) == 0) %report if files do not exist
disp(sprintf('Unable to find templates'));
return
end;
if isEnantiomorphic
eT1name = entiamorphicSub(T1name, maskname);
normbatch{1}.spm.spatial.preproc.data = {[eT1name ,',1']}; %6/2014 added []
else
normbatch{1}.spm.spatial.preproc.data = {[T1name ,',1']}; %6/2014 added []
end
if ssthresh > 0
normbatch{1}.spm.spatial.preproc.output.GM = [0 0 1];
normbatch{1}.spm.spatial.preproc.output.WM = [0 0 1];
normbatch{1}.spm.spatial.preproc.output.CSF = [0 0 1]; %CR 2013
else
normbatch{1}.spm.spatial.preproc.output.GM = [0 0 0];
normbatch{1}.spm.spatial.preproc.output.WM = [0 0 0];
normbatch{1}.spm.spatial.preproc.output.CSF = [0 0 0];
end;
normbatch{1}.spm.spatial.preproc.output.biascor = 1;
normbatch{1}.spm.spatial.preproc.output.cleanup = cleanup;
normbatch{1}.spm.spatial.preproc.opts.tpm = {
gtemplate
wtemplate
ctemplate
};
normbatch{1}.spm.spatial.preproc.opts.ngaus = [2; 2; 2; 4];
normbatch{1}.spm.spatial.preproc.opts.regtype = 'mni';
normbatch{1}.spm.spatial.preproc.opts.warpreg = 1;
normbatch{1}.spm.spatial.preproc.opts.warpco = 25;
normbatch{1}.spm.spatial.preproc.opts.biasreg = 0.0001;
normbatch{1}.spm.spatial.preproc.opts.biasfwhm = 60;
normbatch{1}.spm.spatial.preproc.opts.samp = 3;
if ~isempty(lesion) && ~isEnantiomorphic
normbatch{1}.spm.spatial.preproc.opts.msk = {[maskname ,',1']};
else
normbatch{1}.spm.spatial.preproc.opts.msk = {''};
end;
fprintf('Unified segmentation of %s with cleanup level %d threshold %f, job %d/%d\n', T1name, cleanup, ssthresh, i, size(T1,1));
fprintf(' If segmentation fails: use SPM''s DISPLAY tool to set the origin as the anterior commissure\n');
spm_jobman('run',normbatch);
%next reslice...
if isEnantiomorphic
reslicebatch{1}.spm.spatial.normalise.write.subj.matname = {fullfile(pth,['e' nam '_seg_sn.mat'])};
biasPrefix = '';
tissuePrefix = 'e';
else
reslicebatch{1}.spm.spatial.normalise.write.subj.matname = {fullfile(pth,[ nam '_seg_sn.mat'])};
biasPrefix = 'm';
tissuePrefix = '';
end
reslicebatch{1}.spm.spatial.normalise.write.roptions.preserve = 0;
reslicebatch{1}.spm.spatial.normalise.write.roptions.bb = bb;
reslicebatch{1}.spm.spatial.normalise.write.roptions.interp = 1;
reslicebatch{1}.spm.spatial.normalise.write.roptions.wrap = [0 0 0];
for res = 1:size(vox,1)
if res > 1
pref = ['w' num2str(res-1)];
else
pref = 'w';
end
%next lines modified 7/7/2016 for SPM12 compatibility
if length(T2) > 0
reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {[fullfile(pth,[biasPrefix nam ext]) ,',1']; [slesionname ,',1']; [fullfile(pth2,[ nam2 ext2]),',1']};
%reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {fullfile(pth,[biasPrefix nam ext]) ,',1; ',slesionname ,',1; ', fullfile(pth2,[ nam2 ext2]),',1'};
elseif length(lesion) > 0
reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {[fullfile(pth,[biasPrefix nam ext]) ,',1']; [slesionname ,',1']}
%reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {fullfile(pth,[biasPrefix nam ext]) ,',1; ',slesionname ,',1;'};
else
reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {[fullfile(pth,[biasPrefix nam ext]) ,',1']}; %m is bias corrected
end;
reslicebatch{1}.spm.spatial.normalise.write.roptions.prefix = pref;
reslicebatch{1}.spm.spatial.normalise.write.roptions.vox = vox(res,:) ;
spm_jobman('run',reslicebatch);
%next: reslice tissue maps
if ssthresh > 0
c1 = fullfile(pth,['c1' tissuePrefix nam ext]);
c2 = fullfile(pth,['c2' tissuePrefix nam ext]);
c3 = fullfile(pth,['c3' tissuePrefix nam ext]);
reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {[c1 ,',1']; [c2,',1']; [c3,',1']};
%reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {c1 ,',1; ',c2,',1;' ,c3,',1'};
spm_jobman('run',reslicebatch);
if (res == length(vox)) && (DeleteIntermediateImages == 1)
clinical_delete(c1);
clinical_delete(c2);
clinical_delete(c3);
end;
if length(lesion) > 0 %we have a lesion
[pthLs,namLs,extLs] = spm_fileparts(slesionname);
clinical_binarize(fullfile(pthLs,[pref namLs extLs])); %lesion maps are considered binary (a voxel is either injured or not)
les = fullfile(pthLs,['b' pref namLs extLs]);
else
les = '';
end;
c1 = fullfile(pth,[pref 'c1' tissuePrefix nam ext]);
c2 = fullfile(pth,[pref 'c2' tissuePrefix nam ext]);
extractsub(ssthresh, fullfile(pth,[pref biasPrefix nam ext]), c1, c2, '', les);
if (DeleteIntermediateImages == 1)
clinical_delete(c1);
clinical_delete(c2);
%clinical_delete(c3);
end;
end; %thresh > 0
end; %for each resolution
%we now have our normalized images with the 'w' prefix.
%The optional next lines delete the intermediate images
if (DeleteIntermediateImages == 1)
if isEnantiomorphic
clinical_delete(fullfile(pth,['e' nam ext]));
end
clinical_delete(fullfile(pth,['m' nam ext]));
end; %mT1 is the bias corrected T1
if length(lesion) > 0 %we have a lesion
if (DeleteIntermediateImages == 1) clinical_delete(maskname ); end; %lesion mask
[pthLs,namLs,extLs] = spm_fileparts(slesionname);
%clinical_binarize(fullfile(pthLs,['w' namLs extLs])); %lesion maps are considered binary (a voxel is either injured or not)
if (DeleteIntermediateImages == 1) clinical_delete(fullfile(pthLs,['w' namLs extLs])); end; %we can delete the continuous lesion map
clinical_nii2voi(fullfile(pthLs,['bw' namLs extLs]));
end;
if length(T2) > 0 %We have a T2, and resliced T2->T1->MNI, delete intermediate image in T1 space
if (DeleteIntermediateImages == 1) clinical_delete(lesionname ); end; %intermediate lesion in T1 space
if smoothlesion
if (DeleteIntermediateImages == 1) clinical_delete(slesionname); end;
end;
end;
end; %for each image in T1name
toc
function extractsub(thresh, t1, c1, c2, c3, PreserveMask)
%subroutine to extract brain from surrounding scalp
% t1: anatomical scan to be extracted
% c1: gray matter map
% c2: white matter map
% c3: [optional] spinal fluid map
% PreserveMask: [optional] any voxels with values >0 in this image will be spared
[pth,nam,ext] = spm_fileparts(t1);
%load headers
mi = spm_vol([t1 ,',1']);%bias corrected T1
gi = spm_vol(c1);%Gray Matter map
wi = spm_vol(c2);%White Matter map
%load images
m = spm_read_vols(mi);
g = spm_read_vols(gi);
w = spm_read_vols(wi);
if length(c3) > 0
ci = spm_vol(c3);%CSF map
c = spm_read_vols(ci);
w = c+w;
end;
w = g+w;
if (length(PreserveMask) >0)
mski = spm_vol(PreserveMask);%bias corrected T1
msk = spm_read_vols(mski);
w(msk > 0) = 1;
end;
if thresh <= 0
m=m.*w;
else
mask= zeros(size(m));
for px=1:length(w(:)),
if w(px) >= thresh
mask(px) = 255;
end;
end;
spm_smooth(mask,mask,1); %feather the edges
mask = mask / 255;
m=m.*mask;
end;
mi.fname = fullfile(pth,['render', nam, ext]);
mi.dt(1) = 4; %16-bit precision more than sufficient uint8=2; int16=4; int32=8; float32=16; float64=64
spm_write_vol(mi,m);
%end for extractsub
function dimsMatch = lesionMatchT2Sub (T2,lesion)
dimsMatch = true;
if (length(T2) < 1) || (length(lesion) < 1), return; end
lhdr = spm_vol(lesion); %lesion header
t2hdr = spm_vol(T2); %pathological scan header
if ~isequal(lhdr.dim,t2hdr.dim);
dimsMatch = false;
fprintf('%s ERROR: Dimension mismatch %s %s: %dx%dx%d %dx%dx%d\n',mfilename, T2,lesion, t2hdr.dim(1),t2hdr.dim(2),t2hdr.dim(3), lhdr.dim(1),lhdr.dim(2),lhdr.dim(3));
end
%end dimsMatch()
function intactImg = entiamorphicSub (anatImg, lesionImg)
%Generates image suitable for Enantiomorphic normalization, see www.pubmed.com/18023365
% anatImg : filename of anatomical scan
% lesionImg : filename of lesion map in register with anatomical
%returns name of new image with two 'intact' hemispheres
if ~exist('anatImg','var') %no files specified
anatImg = spm_select(1,'image','Select anatomical image');
end
if ~exist('lesionImg','var') %no files specified
lesionImg = spm_select(1,'image','Select anatomical image');
end
if (exist(anatImg,'file') == 0) || (exist(lesionImg,'file') == 0)
error('%s unable to find files %s or %s',mfilename, anatImg, lesionImg);
end
%create flipped image
hdr = spm_vol([anatImg ,',1']);
img = spm_read_vols(hdr);
[pth, nam, ext] = spm_fileparts(anatImg);
fname_flip = fullfile(pth, ['LR', nam, ext]);
hdr_flip = hdr;
hdr_flip.fname = fname_flip;
hdr_flip.mat = [-1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] * hdr_flip.mat;
spm_write_vol(hdr_flip,img);
%coregister data
hdr_flip = spm_vol(fname_flip);
x = spm_coreg(hdr_flip,hdr);
%apply half of transform to find midline
x = (x/2);
M = spm_matrix(x);
MM = spm_get_space(fname_flip);
spm_get_space(fname_flip, M*MM); %reorient flip
M = inv(spm_matrix(x));
MM = spm_get_space(hdr.fname);
spm_get_space(hdr.fname, M*MM); %#ok<MINV> %reorient original so midline is X=0
%reorient the lesion as well
MM = spm_get_space(lesionImg);
spm_get_space(lesionImg, M*MM); %#ok<MINV> %reorient lesion so midline is X=0
%reslice to create a mirror image aligned in native space
P = char([hdr.fname,',1'],[hdr_flip.fname,',1']);
flags.mask = 0;
flags.mean = 0;
flags.interp = 1;
flags.which = 1;
flags.wrap = [0 0 0];
flags.prefix = 'r';
spm_reslice(P,flags);
delete(fname_flip); %remove flipped file
fname_flip = fullfile(pth,['rLR' nam ext]);%resliced flip file
%load lesion, blur
hdrLesion = spm_vol(lesionImg);
imgLesion = spm_read_vols(hdrLesion);
rdata = +(imgLesion > 0); %binarize raw lesion data, + converts logical to double
spm_smooth(rdata,imgLesion,4); %blur data
rdata = +(imgLesion > 0.1); %dilate: more than 20%
spm_smooth(rdata,imgLesion,8); %blur data
%now use lesion map to blend flipped and original image
hdr = spm_vol([anatImg ,',1']);
img = spm_read_vols(hdr);
hdr_flip = spm_vol(fname_flip);
imgFlip = spm_read_vols(hdr_flip);
rdata = (img(:) .* (1.0-imgLesion(:)))+ (imgFlip(:) .* imgLesion(:));
rdata = reshape(rdata, size(img));
delete(fname_flip); %remove resliced flipped file
hdr_flip.fname = fullfile(pth,['e' nam ext]);%image with lesion filled with intact hemisphere
spm_write_vol(hdr_flip,rdata);
intactImg = hdr_flip.fname;
%end entiamorphicSub()