forked from neurolabusc/Clinical
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclinical_smoothmask.m
executable file
·47 lines (45 loc) · 1.38 KB
/
clinical_smoothmask.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
function oname = clinical_smoothmask (P)
% Creates binary lesion mask for an image with prefix 'x'
%new filename returned
% Example
% clinical_smoothmask ('C:\ct\script\xwsctemplate_final.nii');
if nargin <1 %no files
P = spm_select(inf,'image','Select CT[s] to normalize');
end;
for i=1:size(P,1)
ref = deblank(P(i,:));
ref = deblank(P(i,:));
[pth,nam,ext] = spm_fileparts(ref);
src = fullfile(pth,[ nam ext]);
smth =fullfile(pth,['s' nam ext]);
spm_smooth(src,smth,8,16);
%last uint8=2; int16=4; int32=8; float32=16; float64=64
Vi = spm_vol(smth);
VO = Vi;
[pth,nam,ext] = spm_fileparts(ref);
VO.fname = fullfile(pth,['x' nam ext]);
VO = spm_create_vol(VO);
clipped = 0;
thresh = 0.001;
for i=1:Vi.dim(3),
img = spm_slice_vol(Vi,spm_matrix([0 0 i]),Vi.dim(1:2),0);
for px=1:length(img(:)),
if img(px) > thresh
img(px) = 0;
clipped = clipped + 1;
else
img(px) = 1;
end;
end;
VO = spm_write_plane(VO,img,i);
end;
%thresholding done - delete the raw smoothed data
clinical_delete(smth);
%next downsample to 8 bit [optional]
clinical_8bit (VO.fname);
clinical_delete(VO.fname);
clinical_rename(fullfile(pth,['dx' nam ext]),VO.fname);
%
fprintf('clinical_smoothmask: %s had %d voxels >%f\n',VO.fname, clipped,thresh);
oname = VO.fname;
end