-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcessTools.py
594 lines (517 loc) · 22.6 KB
/
ProcessTools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
from sklearn import linear_model
from sklearn.utils import resample
import numpy as np
from scipy.stats import norm
import scipy.stats
import time
import sys
import os
import pandas as pd
import pingouin as pg
def MakeModeratedEffect(data,i = 0, j = 1, effect = 0):
"""Summary line.
Extended description of function.
Parameters
----------
arg1 : int
Description of arg1
arg2 : str
Description of arg2
Returns
-------
bool
Description of return value
Examples
--------
>>> func(1, "a")
True
"""
# How big is the data
N,M = data.shape
# Remove mean of each column
iD = data[:,i] - data[:,i].mean()
print(iD.mean())
jD = data[:,j] - data[:,j].mean()
print(jD.mean())
# Create the moderation regressor.
# This regressor is a vector and is converted to an array for the multiplication
mD = np.array(iD*jD)
print(mD.mean())
# Add a moderator effect to the DV
OutData = np.append(data, np.expand_dims(mD, axis = 1), axis = 1)
OutData[:,-1] = OutData[:,-1] + mD*effect
# Append the moderator to the data
return OutData
def CalculateMediationPEEffect(PointEstimate2, PointEstimate3, ia = 0, ib = 1):
"""Calculate derived effects from simple mediation model.
Given parameter estimates from a simple mediation model,
calculate the indirect effect, the total effect and the indirect effects
Parameters
----------
PointEstimate2 : array
This is an array of parameter estimates for the regression equation
of A on B. With no covariates, this will be an array of length 1
PointEstimate3 : array
This is an array of parameter estimates for the regression equation
of A and B on C. With no covariates, this will be an array of length 2
ia : int
The index of the parameter of interest from the array of beta values
in PointEstimate2
ib : int
The index of the parameter of interest from the array of beta values
in PointEstimate3
Returns
-------
IE
The indirect effect, parameter a times b
TE
The total effect, which is IE plus DE
DE
The direct effect, the effect of A on C, when B is in the model
a
The effect of A on B
b
The effect of B on C, when A is in the model
"""
# Indirect effect
# The model of B with A has one beta which is index 0
a = PointEstimate2[0][ia]
# The model of C with A and B has two betas, b has index = 1
b = PointEstimate3[0][ib]
IE = a*b
# Direct effect
DE = PointEstimate3[0][0] # This is cP
TE = DE + IE
return IE, TE, DE, a, b
def CalculateMediationResampleEffect(BSbetalist2, BSbetalist3, ia = 0, ib = 1):
# Indirect effect
a = np.squeeze(BSbetalist2[:,ia])
b = np.squeeze(BSbetalist3[:,ib])
IE = a*b
DE = np.squeeze(BSbetalist3[:,0])
TE = DE + IE
return IE, TE, DE, a, b
def JackKnife(func, data):
N,M = data.shape
# prepare output arrays
betalist = np.zeros([N,M-1])
interlist = np.zeros([N,1])
temp = np.arange(N)
for i in range(0,N):
JKresample = data[np.delete(temp, i),:]
# randomly resample the dataset with the original set with replacement
tempP = func(JKresample)
betalist[i,:] = tempP[0]
interlist[i] = tempP[1]
return betalist,interlist
def CalculateCI(BS, JK, PE, alpha):
"""Calculate confidence intervals from the bootstrap resamples
Confidence intervals are calculated using three difference methods:
Percentile
This method finds the alpha/2 percentiles at both ends of
the distribution of bootstratp resamples. First, the
index for these limits is found as: NBoot*(alpha/2).
If this is a non interger value, it is rounded in the more
conservative direction. Using these indices, the bootstrap
values are the confidence intervals.
Bias-corrected
It is possible that the distribution of bootstrap resmaples
are biased with respect to the point estimate. Ideally,
there whould be an equal number of bootstrap resample values
above and below the point estimate. And difference is considered
a bias. This approach adjusts for this bias. If there is no bias
in the bootstrap resamples, the adjustment factor is zero and no
adjustment is made so the result is the same as from the percentile
method.
Bias-corrected, accelerated
In addition to there being a possible bias in the bootstrap resamples,
it is also possible that there is some skew. The amount of skew is
calculated and used to adjust the confidence intervals in this method.
If there is no skew, this method gives the same as the bias-correct
approach. If there is no skew and no bias the results are the
same as the percentile method.
Parameters
----------
BS : array of length number of bootstrap resamples
bootstrap resamples.
JK : array of length N, the sample size
Jack-knife resamples.
PE : float
the point estimate value.
alpha : float
statstical alpha used to calculate the confidence intervals.
Returns
-------
PercCI : array of two floats
Confidence intervals calculated using the percentile method.
BCCI : array of two floats
Confidence intervals calculated using the bias-corrected method.
BCaCI : array of two floats
Confidence intervals calculated using the bias-correctd, accelerated method.
Bias : float
The size of the bias calculated from the distribution of bootstrap
resamples.
BSskew : float
The size of the skew calculated from the distribution of bootstrap
resamples.
BSskewStat : float
The statstic associated with the calculated skew in the
distribution of bootstrap resamples.
"""
# If there were no bias, the zh0 would be zero
# If there wer no skew, the acc would be zero
# The percentile CI assume bias and skew are zero
# The bias-corrected CI assume skew is zero
# The bias-correct-accelerated assumes nothing
NBoot = BS.shape[0]
N = JK.shape[0]
zA = norm.ppf(alpha/2)
z1mA = norm.ppf(1 - alpha/2)
# Percentile
Alpha1 = norm.cdf(zA)
Alpha2 = norm.cdf(z1mA)
PCTlower = np.percentile(BS,Alpha1*100)
PCTupper = np.percentile(BS,Alpha2*100)
PercCI = [PCTlower, PCTupper]
# Find resamples less than point estimate
F = np.sum(BS < PE)
BCaCI = [-1, 1]
if F > 0:
# Estimate the bias in the BS
zh0 = norm.ppf(F/NBoot)
# Calculate CI using just the bias correction
Alpha1 = norm.cdf(zh0 + (zh0 + zA))
Alpha2 = norm.cdf(zh0 + (zh0 + z1mA))
PCTlower = np.percentile(BS,Alpha1*100)
PCTupper = np.percentile(BS,Alpha2*100)
BCCI = [PCTlower, PCTupper]
# Calculate the skew/acceleration factor
# Adjust the confidence limits based on the skewness
ThetaDiff = JK.sum()/N - JK
acc = ((ThetaDiff**3).sum())/(6*((ThetaDiff**2).sum())**(3/2))
Alpha1 = norm.cdf(zh0 + (zh0 + zA)/(1 - acc*(zh0 + zA)))
Alpha2 = norm.cdf(zh0 + (zh0 + z1mA)/(1 - acc*(zh0 + z1mA)))
PCTlower = np.percentile(BS,Alpha1*100)
PCTupper = np.percentile(BS,Alpha2*100)
BCaCI = [PCTlower, PCTupper]
# Record the amount of bias and the amount of skewness in the
# resamples
Bias = F/NBoot
BSskew = scipy.stats.skew(BS)
BSskewStat = scipy.stats.skewtest(BS)[0]
return PercCI, BCCI, BCaCI, Bias, BSskew, BSskewStat
def CaclulatePercCI(BS, alpha):
# count the samples
NBoot = BS.shape[0]
# sort the resamples
sBS = np.sort(BS)
# Find the limits
Lower = int(np.floor(NBoot*alpha/2))
Upper = int(NBoot - np.ceil(NBoot*alpha/2))
percCI = [sBS[Lower], sBS[Upper]]
return percCI
def ExploreIdea2():
[a, b, cP, Sa, Sb, ScP, IE, SIE, data] = CalculateSimulatedEffectSizes(1000, 0.5, 0.5, 0.5, 99)
df = pd.DataFrame(data, columns={'C','A','B'})
print(np.corrcoef(data.T))
pg.partial_corr(data=df, x='A', y='C', covar='B').round(3)
def ExploringIdea():
# How do the variance in the simulated data, the weights, the betas and the Bs
# relate to each other?
N = 1000
data = MakeIndependentData(N, [1,1,1], [0.001,0.001,0.001], [0.25, -0.25, 0.75], 99)
PointEstimate2 = Calculate_Beta_Sklearn(data[:,[0,1]])
PointEstimate3 = Calculate_Beta_Sklearn(data)
# Point estimate mediation effects
IE, TE, DE, a, b = CalculateMediationPEEffect(PointEstimate2, PointEstimate3)
print("a: %0.3f"%(a))
print("b: %0.3f"%(b))
print("cP: %0.3f"%(DE))
print("TE: %0.3f"%(TE))
print("IE: %0.3f"%(IE))
print(Calculate_standardizedB(data, PointEstimate3[0]))
# print(CalculateKappaEffectSize(data, a, b))
N=100
NBoot = 1000
data = MakeIndependentData(N, [1,1,1], [1,1,1], [0.2, 0.2, 0], 1)
# data = MakeMultiVariableData(N,means, covs)
# Point estimates
# Model of B with A, parameter is a
PointEstimate2 = Calculate_Beta_Sklearn(data[:,[0,1]])
# Model of C with A and B, parameters are cp, b
PointEstimate3 = Calculate_Beta_Sklearn(data)
# Point estimate mediation effects
IE, TE, DE, Act_a, Act_b = CalculateMediationPEEffect(PointEstimate2, PointEstimate3)
# Bootstrap model 2
BSbetalist2, BSinterlist2 = Bootstrap_Sklearn(NBoot,Calculate_Beta_Sklearn, data[:,[0,1]])
JKbetalist2, JKinterlist2 = JackKnife(Calculate_Beta_Sklearn, data[:,[0,1]])
# Bootstrap model 3
BSbetalist3, BSinterlist3 = Bootstrap_Sklearn(NBoot,Calculate_Beta_Sklearn, data)
JKbetalist3, JKinterlist3 = JackKnife(Calculate_Beta_Sklearn, data)
# Bootstrap mediation effects
BSIE, BSTE, BSDE, BSa, BSb = CalculateMediationResampleEffect(BSbetalist2, BSbetalist3)
# Jackknifemediation effects
JKIE, JKTE, JKDE, JKa, JKb = CalculateMediationResampleEffect(JKbetalist2, JKbetalist3)
alpha = 0.05
[IEPercCI, IEBCCI, IEBCaCI, IEBSskew, IEBSskewStat] = CalculateCI(BSIE, JKIE, IE, alpha)
def CalculateSimulatedEffectSizes(N, a, b, cP, typeA):
# Using provided assigned effects, calculate the estimated effects
# and the standardied effect sizes
data = MakeIndependentData(N, [1,1,1], [1,1,1], [a, b, cP], typeA)
PointEstimate2 = Calculate_Beta_Sklearn(data[:,[0,1]])
PointEstimate3 = Calculate_Beta_Sklearn(data)
# Point estimate mediation effects
IE, TE, DE, a, b = CalculateMediationPEEffect(PointEstimate2, PointEstimate3)
temp2 = Calculate_standardizedB(data[:,[0,1]], PointEstimate2[0])
temp3 = Calculate_standardizedB(data, PointEstimate3[0])
temp4 = Calculate_standardizedB(data, PointEstimate3[1])
Sa = temp2[0]
Sb = temp3[1]
ScP = temp4[0]
cP = DE
SIE = CalculateKappaEffectSize(data, a, b)
#return Sa, Sb, ScP, SIE
return a, b, cP, Sa, Sb, ScP, IE, SIE, data
def RunEffectSizeSimulations(b):
cNamesAll = ['N','NSim','typeA','Exp_a','Exp_b','Exp_cP', 'mAct_a','stdAct_a','mAct_b','stdAct_b', 'mAct_cP','stdAct_cP','m_IE','std_IE', 'm_Sa','std_Sa','m_Sb','std_Sb', 'm_ScP','std_ScP','m_K','std_K']
dfOutAll = pd.DataFrame(columns=cNamesAll)
N = np.arange(10,101,10)
typeA = [99,1,2] # cont, unif, dicotomous
aLIST = [-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4]#np.arange(-0.5,0.1,0.5)
cPLIST = [-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4]# np.arange(-1.0,1.01,0.5)
#BtoC = [-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4]# np.arange(-1.0,1.01,0.5)
Nsim = 100
count = 0
for i1 in N:
for i3 in typeA:
for i8 in aLIST:
for i9 in cPLIST:
#for i10 in BtoC:
cNames = ['a', 'b', 'cP', 'Sa','Sb','ScP','IE','SIE']
dfOut = pd.DataFrame(columns=cNames)
for s in range(Nsim):
li = CalculateSimulatedEffectSizes(i1, i8, b, i9, i3)
row = pd.Series(li, index = cNames)
dfOut = dfOut.append(row, ignore_index = True)
liAll = [i1, Nsim, i3, i8, b, i9, dfOut['a'].mean(), dfOut['a'].std(), dfOut['b'].mean(), dfOut['b'].std(), dfOut['cP'].mean(), dfOut['cP'].std(), dfOut['IE'].mean(), dfOut['IE'].std()]
liAll.append(dfOut['Sa'].mean())
liAll.append(dfOut['Sa'].std())
liAll.append(dfOut['Sb'].mean())
liAll.append(dfOut['Sb'].std())
liAll.append(dfOut['ScP'].mean())
liAll.append(dfOut['ScP'].std())
liAll.append(dfOut['SIE'].mean())
liAll.append(dfOut['SIE'].std())
row = pd.Series(liAll, index = cNamesAll)
dfOutAll = dfOutAll.append(row, ignore_index = True)
count += 1
print(count)
dfOutAll.to_csv('SimulationsOfEffectSize_%0.1f.csv'%(b))
def CalculateKappaEffectSize(data, a, b):
# https://github.com/NCMlab/ProcessModelsNeuroImage/blob/master/FinalCode/CalculateKappa2.m
COV = np.cov(data.T)
# Calculate the permissible values of a
perm_a_1 = (COV[2,1] * COV[2,0] + np.sqrt(COV[1,1] * COV[2,2] - COV[2,1]**2) * np.sqrt(COV[0,0] * COV[2,2] - COV[2,0]**2))/(COV[0,0] * COV[2,2])
perm_a_2 = (COV[2,1] * COV[2,0] - np.sqrt(COV[1,1] * COV[2,2] - COV[2,1]**2) * np.sqrt(COV[0,0] * COV[2,2] - COV[2,0]**2))/(COV[0,0] * COV[2,2])
perm_a = np.array([perm_a_1, perm_a_2])
# Calculate the permissible values of b
perm_b_1 = np.sqrt(COV[0,0] * COV[2,2] - COV[2,0]**2)/np.sqrt(COV[0,0] * COV[1,1] - COV[0,1]**2)
perm_b_2 = -np.sqrt(COV[0,0] * COV[2,2] - COV[2,0]**2)/np.sqrt(COV[0,0] * COV[1,1] - COV[0,1]**2)
perm_b = np.array([perm_b_1, perm_b_2])
# Check the a values and find the one in the same direction as the point estimate of a
if a > 0:
temp = perm_a[perm_a > 0]
max_a = max(temp)
elif a < 0:
temp = perm_a[perm_a < 0]
max_a = min(temp)
else:
max_a = 0
# Check the b values and find the one in the same direction as the point
# estimate of b
if b > 0:
temp = perm_b[perm_b > 0]
max_b = max(temp)
elif b < 0:
temp = perm_b[perm_b < 0]
max_b = min(temp)
else:
max_b = 0
# calculate kappa
perm_ab = max_a*max_b
return (a*b)/perm_ab
def CalculateRegressionEffectSizes():
pass
def Calculate_Beta_Sklearn(data):
# using linear regression model from sklearn
lm = linear_model.LinearRegression()
# M = data.shape[1]
#fit the x,y to the model,x will be a 2d matrix and y is a array
# if M > 2:
model = lm.fit(data[:,0:-1], data[:,-1])
# else:
# model = lm.fit(data[:,[0]], data[:,-1])
return model.coef_, model.intercept_
def Calculate_standardizedB(data, beta):
return beta*data[:,0:-1].std(0)/data[:,-1].std()
def Bootstrap_Sklearn(NBoot, func, data):
# How big is the data
N,M = data.shape
# prepare output arrays
betalist = np.zeros([NBoot,M-1])
interlist = np.zeros([NBoot,1])
for i in range(0,NBoot):
# randomly resample the dataset with the original set with replacement
a = resample(data, n_samples=N, replace=True, random_state=i)
temp = func(a)
betalist[i,:] = temp[0]
interlist[i] = temp[1]
return betalist,interlist
def MakeIndependentData(N = 1000, means = [0,0,0], stdev = [1,1,1], weights = [0, 0, 0], Atype = 99):
# means = A, B, C
# weights = a, b, cP
# Make sure everything is the correct size
M = len(means)
S = len(stdev)
W = len(weights)
# try:
data = np.zeros([N,M])
# Create independent data
# columns are A, B, C
for i in range(M):
data[:,i] = np.random.normal(means[i], stdev[i], N)
if Atype == 1:
data[:,0] = np.random.uniform(20,80,N)
if Atype == 2:
data[:,0] = np.concatenate((np.zeros(int(N/2)), np.ones(int(N/2))))
# Add weights between predictors to DV
# Make C data
# Make weighted combo of A and B
data[:,1] = data[:,1] + data[:,0]*weights[0]
data[:,2] = data[:,2] + data[:,0]*weights[2] + data[:,1]*weights[1]
return data
def CalculateIndPower(NBoot, NSimMC, N, typeA, alpha, a, b, cP):
print("Starting simulations...")
t = time.time()
# Prepare a matrix for counting significant findings
PercList = np.zeros((NSimMC,5))
BCList = np.zeros((NSimMC,5))
BCaList = np.zeros((NSimMC,5))
SaList = np.zeros((NSimMC,1))
SbList = np.zeros((NSimMC,1))
ScPList = np.zeros((NSimMC,1))
SIEList = np.zeros((NSimMC,1))
IEBiasList = np.zeros((NSimMC,1))
IEBSskewList = np.zeros((NSimMC,1))
IEBSskewStatList = np.zeros((NSimMC,1))
# Repeatedly generate data for Monte Carlo simulations
for i in range(NSimMC):
print("%d of %d"%(i+1,NSimMC))
# Make data
data = MakeIndependentData(N, [1,1,1], [1,1,1], [a, b, cP], typeA)
# data = MakeMultiVariableData(N,means, covs)
# Point estimates
# Model of B with A, parameter is a
PointEstimate2 = Calculate_Beta_Sklearn(data[:,[0,1]])
# Model of C with A and B, parameters are cp, b
PointEstimate3 = Calculate_Beta_Sklearn(data)
# Point estimate mediation effects
IE, TE, DE, Act_a, Act_b = CalculateMediationPEEffect(PointEstimate2, PointEstimate3)
# Bootstrap model 2
BSbetalist2, BSinterlist2 = Bootstrap_Sklearn(NBoot,Calculate_Beta_Sklearn, data[:,[0,1]])
JKbetalist2, JKinterlist2 = JackKnife(Calculate_Beta_Sklearn, data[:,[0,1]])
# Bootstrap model 3
BSbetalist3, BSinterlist3 = Bootstrap_Sklearn(NBoot,Calculate_Beta_Sklearn, data)
JKbetalist3, JKinterlist3 = JackKnife(Calculate_Beta_Sklearn, data)
# Bootstrap mediation effects
BSIE, BSTE, BSDE, BSa, BSb = CalculateMediationResampleEffect(BSbetalist2, BSbetalist3)
# Jackknifemediation effects
JKIE, JKTE, JKDE, JKa, JKb = CalculateMediationResampleEffect(JKbetalist2, JKbetalist3)
# Calculate confidence intervals for all effects in the model
IEPercCI, IEBCCI, IEBCaCI, IEBiasList[i], IEBSskewList[i], IEBSskewStatList[i] = CalculateCI(BSIE, JKIE, IE, alpha)
TEPercCI, TEBCCI, TEBCaCI, TEBias, TEBSskew, TEBSskewStat = CalculateCI(BSTE, JKTE, TE, alpha)
DEPercCI, DEBCCI, DEBCaCI, DEBias, DEBSskew, DEBSskewStat = CalculateCI(BSDE, JKDE, DE, alpha)
aPercCI, aBCCI, aBCaCI, aBias, aBSskew, aBSskewStat = CalculateCI(BSa, JKa, Act_a, alpha)
bPercCI, bBCCI, bBCaCI, bBias, bBSskew, bBSskewStat = CalculateCI(BSb, JKb, Act_b, alpha)
# Make boolean list of whether the confidence intervals include zero
PercList[i,:] = DoCIIncludeZero(IEPercCI,TEPercCI, DEPercCI, aPercCI, bPercCI)
BCList[i,:] = DoCIIncludeZero(IEBCCI,TEBCCI, DEBCCI, aBCCI, bBCCI)
BCaList[i,:] = DoCIIncludeZero(IEBCaCI,TEBCaCI, DEBCaCI, aBCaCI, bBCaCI)
# Calculate the effect size for each simulation
SaList[i] = Calculate_standardizedB(data[:,[0,1]], PointEstimate2[0])[0]
[ScPList[i],SbList[i]] = Calculate_standardizedB(data, PointEstimate3[0])
SIEList[i] = CalculateKappaEffectSize(data, PointEstimate2[0], PointEstimate3[1])[0]
# Now that simulations have been done, how many simulations
# resulted in significant results
PercPower = PercList.sum(0)/NSimMC
BCPower = BCList.sum(0)/NSimMC
BCaPower = BCaList.sum(0)/NSimMC
# Prepare output data
# Add parameters
outdata = [NBoot, NSimMC, N, a, b, cP, typeA]
# Add the power estimates from the difference approaches
outdata.extend(PercPower)
outdata.extend(BCPower)
outdata.extend(BCaPower)
# Add mean and std of effect sizes
EffectSizeList = [SaList.mean(), SaList.std(), SbList.mean(), SbList.std(), ScPList.mean(), ScPList.std(), SIEList.mean(), SIEList.std()]
outdata.extend(EffectSizeList)
# What are the skew and bias estimates
BiasSkewList = [IEBiasList.mean(), IEBiasList.std(), IEBSskewList.mean(), IEBSskewList.std(), IEBSskewStatList.mean(), IEBSskewStatList.std()]
outdata.extend(BiasSkewList)
print("Run time was: %0.2f"%(time.time() - t))
# For each run the following should be calculated also
# standardized parameters
# skewnPess in the BS resmple
# statistical test of whether the skewness is large
# confidence intervals using
# percentile
# BCa
return outdata
def PrintPowerSimResult(outdata):
print("Power for IE with Perc: %0.3f"%(outdata[7]))
print("Power for IE with BC: %0.3f"%(outdata[12]))
print("Power for IE with BCa: %0.3f"%(outdata[17]))
def DoCIIncludeZero(IE, TE, DE, a, b):
return int(np.prod(IE)>0), int(np.prod(TE)>0), int(np.prod(DE)>0), int(np.prod(a)>0), int(np.prod(b)>0)
def main():
# make sure this script and make submussions match
if len(sys.argv[1:]) != 8:
print("ERROR")
else:
print("Getting ready")
# Pass the process ID to use for setting the seed
pid = os.getpid()
# Set the seed
np.random.seed(pid + int(time.time()))
# Run the sim
NBoot = int(sys.argv[1:][0])
NSim = int(sys.argv[1:][1])
N = int(sys.argv[1:][2])
Atype = int(sys.argv[1:][3])
a = float(sys.argv[1:][4])
cP = float(sys.argv[1:][5])
OutDir = sys.argv[1:][6]
b = float(sys.argv[1:][7])
bLIST = [-0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5]
# If this parameter is too big then assume that the sbatch array was used
if b > 0.9:
b = bLIST[int(b)-1]
alpha = 0.05
print("Calling the simulator")
outdata = CalculateIndPower(NBoot,NSim, N, Atype, alpha, a, b, cP)
print("Done with the simulations")
# Make outputfile name
clock = time.localtime()
OutFileName = "SimData_NB_%d_NSim_%d_"%(NBoot,NSim)
OutFileName = OutFileName+str(clock.tm_hour)+"_"+str(clock.tm_min)+"__"+str(clock.tm_mon)+"_"+str(clock.tm_mday)+"_"+str(clock.tm_year)
OutFileName = OutFileName+'_pid'+str(pid)+'.csv'
np.savetxt(os.path.join(OutDir, OutFileName), outdata, delimiter = ',')
def main2():
index = int(sys.argv[1:][0])
bLIST = [-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4]
RunEffectSizeSimulations(bLIST[index])
if __name__ == "__main__":
# # #MakeBatchScripts()
main()
# main2()