Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Loading model does not work #28

Open
egpbos opened this issue Sep 19, 2017 · 8 comments
Open

Loading model does not work #28

egpbos opened this issue Sep 19, 2017 · 8 comments

Comments

@egpbos
Copy link
Member

egpbos commented Sep 19, 2017

In the tutorial, loading the pre-trained model does not work.

model = load_model('./model/model.h5')

Gives:

---------------------------------------------------------------------------
SystemError                               Traceback (most recent call last)
<ipython-input-26-5d87631adf41> in <module>()
----> 1 model = load_model('./model/model.h5')

~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/models.py in load_model(filepath, custom_objects, compile)
    237             raise ValueError('No model found in config file.')
    238         model_config = json.loads(model_config.decode('utf-8'))
--> 239         model = model_from_config(model_config, custom_objects=custom_objects)
    240 
    241         # set weights

~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/models.py in model_from_config(config, custom_objects)
    311                         'Maybe you meant to use '
    312                         '`Sequential.from_config(config)`?')
--> 313     return layer_module.deserialize(config, custom_objects=custom_objects)
    314 
    315 

~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/layers/__init__.py in deserialize(config, custom_objects)
     52                                     module_objects=globs,
     53                                     custom_objects=custom_objects,
---> 54                                     printable_module_name='layer')

~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
    137                 return cls.from_config(config['config'],
    138                                        custom_objects=dict(list(_GLOBAL_CUSTOM_OBJECTS.items()) +
--> 139                                                            list(custom_objects.items())))
    140             with CustomObjectScope(custom_objects):
    141                 return cls.from_config(config['config'])

~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/models.py in from_config(cls, config, custom_objects)
   1212         for conf in config:
   1213             layer = layer_module.deserialize(conf, custom_objects=custom_objects)
-> 1214             model.add(layer)
   1215         return model
   1216 

~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/models.py in add(self, layer)
    473                           output_shapes=[self.outputs[0]._keras_shape])
    474         else:
--> 475             output_tensor = layer(self.outputs[0])
    476             if isinstance(output_tensor, list):
    477                 raise TypeError('All layers in a Sequential model '

~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs)
    600 
    601             # Actually call the layer, collecting output(s), mask(s), and shape(s).
--> 602             output = self.call(inputs, **kwargs)
    603             output_mask = self.compute_mask(inputs, previous_mask)
    604 

~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/layers/core.py in call(self, inputs, mask)
    648         if has_arg(self.function, 'mask'):
    649             arguments['mask'] = mask
--> 650         return self.function(inputs, **arguments)
    651 
    652     def compute_mask(self, inputs, mask=None):

~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/layers/core.py in <lambda>(x)
    176 
    177     # Input shape
--> 178         4D tensor with shape:
    179         `(samples, channels, rows, cols)` if data_format='channels_first'
    180         or 4D tensor with shape:

SystemError: unknown opcode

This is on macOS, with conda Python 3.6.2. pip freeze gives the following list:

appnope==0.1.0
bleach==1.5.0
certifi==2016.2.28
cycler==0.10.0
decorator==4.1.2
entrypoints==0.2.3
h5py==2.7.0
html5lib==0.9999999
ipykernel==4.6.1
ipython==6.1.0
ipython-genutils==0.2.0
ipywidgets==6.0.0
jedi==0.10.2
Jinja2==2.9.6
jsonschema==2.6.0
jupyter==1.0.0
jupyter-client==5.1.0
jupyter-console==5.2.0
jupyter-core==4.3.0
Keras==2.0.8
Markdown==2.6.9
MarkupSafe==1.0
matplotlib==2.0.2
mcfly==1.0.1
mistune==0.7.4
nbconvert==5.2.1
nbformat==4.4.0
notebook==5.0.0
numpy==1.13.1
pandas==0.20.3
pandocfilters==1.4.2
pexpect==4.2.1
pickleshare==0.7.4
prompt-toolkit==1.0.15
protobuf==3.4.0
ptyprocess==0.5.2
Pygments==2.2.0
pyparsing==2.2.0
python-dateutil==2.6.1
pytz==2017.2
PyYAML==3.12
pyzmq==16.0.2
qtconsole==4.3.1
scikit-learn==0.19.0
scipy==0.19.1
simplegeneric==0.8.1
six==1.10.0
tensorflow==1.3.0
tensorflow-tensorboard==0.1.6
terminado==0.6
testpath==0.3
tornado==4.5.2
traitlets==4.3.2
wcwidth==0.1.7
Werkzeug==0.12.2
widgetsnbextension==3.0.2
@egpbos
Copy link
Member Author

egpbos commented Sep 19, 2017

The most relevant packages in that pip list I guess are:

h5py==2.7.0
Keras==2.0.8
mcfly==1.0.1
numpy==1.13.1
protobuf==3.4.0
scikit-learn==0.19.0
tensorflow==1.3.0

@wmkouw
Copy link

wmkouw commented Sep 19, 2017

On WSL (Windows Subsystem Linux), the same model load command gives:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-22-b568fbdcb1f4> in <module>()
----> 1 model = load_model('./model/model.h5')

/home/wmkouw/anaconda2/envs/mcfly/lib/python2.7/site-packages/keras/models.pyc in load_model(filepath, custom_objects, compile)
    231             raise ValueError('No model found in config file.')
    232         model_config = json.loads(model_config.decode('utf-8'))
--> 233         model = model_from_config(model_config, custom_objects=custom_objects)
    234 
    235         # set weights

/home/wmkouw/anaconda2/envs/mcfly/lib/python2.7/site-packages/keras/models.pyc in model_from_config(config, custom_objects)
    305                         'Maybe you meant to use '
    306                         '`Sequential.from_config(config)`?')
--> 307     return layer_module.deserialize(config, custom_objects=custom_objects)
    308 
    309 

/home/wmkouw/anaconda2/envs/mcfly/lib/python2.7/site-packages/keras/layers/__init__.pyc in deserialize(config, custom_objects)
     52                                     module_objects=globs,
     53                                     custom_objects=custom_objects,
---> 54                                     printable_module_name='layer')

/home/wmkouw/anaconda2/envs/mcfly/lib/python2.7/site-packages/keras/utils/generic_utils.pyc in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
    137                 return cls.from_config(config['config'],
    138                                        custom_objects=dict(list(_GLOBAL_CUSTOM_OBJECTS.items()) +
--> 139                                                            list(custom_objects.items())))
    140             with CustomObjectScope(custom_objects):
    141                 return cls.from_config(config['config'])

/home/wmkouw/anaconda2/envs/mcfly/lib/python2.7/site-packages/keras/models.pyc in from_config(cls, config, custom_objects)
   1207         model = cls()
   1208         for conf in config:
-> 1209             layer = layer_module.deserialize(conf, custom_objects=custom_objects)
   1210             model.add(layer)
   1211         return model

/home/wmkouw/anaconda2/envs/mcfly/lib/python2.7/site-packages/keras/layers/__init__.pyc in deserialize(config, custom_objects)
     52                                     module_objects=globs,
     53                                     custom_objects=custom_objects,
---> 54                                     printable_module_name='layer')

/home/wmkouw/anaconda2/envs/mcfly/lib/python2.7/site-packages/keras/utils/generic_utils.pyc in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
    137                 return cls.from_config(config['config'],
    138                                        custom_objects=dict(list(_GLOBAL_CUSTOM_OBJECTS.items()) +
--> 139                                                            list(custom_objects.items())))
    140             with CustomObjectScope(custom_objects):
    141                 return cls.from_config(config['config'])

/home/wmkouw/anaconda2/envs/mcfly/lib/python2.7/site-packages/keras/layers/core.pyc in from_config(cls, config, custom_objects)
    692         elif function_type == 'lambda':
    693             # Unsafe deserialization from bytecode
--> 694             function = func_load(config['function'], globs=globs)
    695         else:
    696             raise TypeError('Unknown function type:', function_type)

/home/wmkouw/anaconda2/envs/mcfly/lib/python2.7/site-packages/keras/utils/generic_utils.pyc in func_load(code, defaults, closure, globs)
    198         if isinstance(defaults, list):
    199             defaults = tuple(defaults)
--> 200     code = marshal.loads(code.encode('raw_unicode_escape'))
    201     if globs is None:
    202         globs = globals()

ValueError: bad marshal data (unknown type code)

Other sources suggest bad marshal data is due to discrepancies in Python versions:
keras-team/keras#7440

conda version 4.3.25, python version 2.7.13

pip freeze:

backports-abc==0.5
backports.shutil-get-terminal-size==1.0.0
backports.ssl-match-hostname==3.5.0.1
backports.weakref==1.0rc1
bleach==1.5.0
certifi==2017.7.27.1
click==6.7
configparser==3.5.0
cycler==0.10.0
decorator==4.1.2
entrypoints==0.2.3
enum34==1.1.6
Flask==0.12.2
Flask-Cors==3.0.3
funcsigs==1.0.2
functools32==3.2.3.post2
gevent==1.2.2
greenlet==0.4.12
h5py==2.7.1
html5lib==0.9999999
ipykernel==4.6.1
ipython==5.5.0
ipython-genutils==0.2.0
ipywidgets==7.0.1
itsdangerous==0.24
Jinja2==2.9.6
jsonschema==2.6.0
jupyter==1.0.0
jupyter-client==5.1.0
jupyter-console==5.2.0
jupyter-core==4.3.0
Keras==2.0.6
Mako==1.0.7
Markdown==2.6.9
MarkupSafe==1.0
matplotlib==2.0.2
mcfly==1.0.1
mistune==0.7.4
mock==2.0.0
nbconvert==5.3.1
nbformat==4.4.0
notebook==5.1.0
numpy==1.13.1
olefile==0.44
pandas==0.20.3
pandocfilters==1.4.2
pathlib2==2.3.0
pbr==3.1.1
pexpect==4.2.1
pickleshare==0.7.4
Pillow==4.2.1
prompt-toolkit==1.0.15
protobuf==3.4.0
ptyprocess==0.5.2
Pygments==2.2.0
pygpu==0.7.1
pyparsing==2.2.0
python-dateutil==2.6.1
pytz==2017.2
PyYAML==3.12
pyzmq==16.0.2
qtconsole==4.3.1
quiver-engine==0.1.4.1.4
scandir==1.5
scikit-learn==0.19.0
scipy==0.19.1
simplegeneric==0.8.1
singledispatch==3.4.0.3
six==1.10.0
subprocess32==3.2.7
tensorflow==1.3.0
tensorflow-tensorboard==0.1.6
terminado==0.6
testpath==0.3.1
Theano==0.9.0
tornado==4.5.2
traitlets==4.3.2
wcwidth==0.1.7
webencodings==0.5
Werkzeug==0.12.2
widgetsnbextension==3.0.3

@egpbos
Copy link
Member Author

egpbos commented Sep 19, 2017

Fixed my problem by reverting to Python 3.5, as suggested here: https://github.com/fchollet/keras/issues/

@cwmeijer: might be nice to add this to the documentation.

@majthehero
Copy link

@egpbos could you correct the link, it points to list of all issues now? I have the same problem. Thanks :)

@egpbos
Copy link
Member Author

egpbos commented May 14, 2018

Sorry, I don't remember the full link, does reverting to Python 3.5 not work for you @majthehero ?

@majthehero
Copy link

It works 👍 I didn't notice that you wrote that, thanks.

@florian-huber
Copy link
Contributor

It indeed seems to be inherent to Keras that models made+saved under python 3.5 often cannot be loaded under python 3.6.
keras-team/keras#9595
One workaround seems to be to save the architecture as code, and then only the weights in an h5 file.

dafnevk pushed a commit that referenced this issue Nov 28, 2018
@ragapriy
Copy link

ragapriy commented Nov 5, 2021


ValueError Traceback (most recent call last)
in
17 #model = load_model('facenet_model/model.h5')
18 #return model
---> 19 model = keras.models.load_model('facenet_model/model.h5', custom_objects={'triplet_loss': triplet_loss})

~\anaconda3\lib\site-packages\tensorflow\python\keras\saving\save.py in load_model(filepath, custom_objects, compile, options)
180 if (h5py is not None and (
181 isinstance(filepath, h5py.File) or h5py.is_hdf5(filepath))):
--> 182 return hdf5_format.load_model_from_hdf5(filepath, custom_objects, compile)
183
184 filepath = path_to_string(filepath)

~\anaconda3\lib\site-packages\tensorflow\python\keras\saving\hdf5_format.py in load_model_from_hdf5(filepath, custom_objects, compile)
175 raise ValueError('No model found in config file.')
176 model_config = json.loads(model_config.decode('utf-8'))
--> 177 model = model_config_lib.model_from_config(model_config,custom_objects=custom_objects)
178
179 # set weights

~\anaconda3\lib\site-packages\tensorflow\python\keras\saving\model_config.py in model_from_config(config, custom_objects)
53 'Sequential.from_config(config)?')
54 from tensorflow.python.keras.layers import deserialize # pylint: disable=g-import-not-at-top
---> 55 return deserialize(config, custom_objects=custom_objects)
56
57

~\anaconda3\lib\site-packages\tensorflow\python\keras\layers\serialization.py in deserialize(config, custom_objects)
169 """
170 populate_deserializable_objects()
--> 171 return generic_utils.deserialize_keras_object(
172 config,
173 module_objects=LOCAL.ALL_OBJECTS,

~\anaconda3\lib\site-packages\tensorflow\python\keras\utils\generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
352
353 if 'custom_objects' in arg_spec.args:
--> 354 return cls.from_config(
355 cls_config,
356 custom_objects=dict(

~\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py in from_config(cls, config, custom_objects)
2236 # be constructed for FunctionalModel
2237 from tensorflow.python.keras.engine import functional # pylint: disable=g-import-not-at-top
-> 2238 return functional.Functional.from_config(
2239 config, custom_objects=custom_objects)
2240

~\anaconda3\lib\site-packages\tensorflow\python\keras\engine\functional.py in from_config(cls, config, custom_objects)
614 ValueError: In case of improperly formatted config dict.
615 """
--> 616 input_tensors, output_tensors, created_layers = reconstruct_from_config(
617 config, custom_objects)
618 model = cls(inputs=input_tensors, outputs=output_tensors,

~\anaconda3\lib\site-packages\tensorflow\python\keras\engine\functional.py in reconstruct_from_config(config, custom_objects, created_layers)
1202 # First, we create all layers and enqueue nodes to be processed
1203 for layer_data in config['layers']:
-> 1204 process_layer(layer_data)
1205 # Then we process nodes in order of layer depth.
1206 # Nodes that cannot yet be processed (if the inbound node

~\anaconda3\lib\site-packages\tensorflow\python\keras\engine\functional.py in process_layer(layer_data)
1184 from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top
1185
-> 1186 layer = deserialize_layer(layer_data, custom_objects=custom_objects)
1187 created_layers[layer_name] = layer
1188

~\anaconda3\lib\site-packages\tensorflow\python\keras\layers\serialization.py in deserialize(config, custom_objects)
169 """
170 populate_deserializable_objects()
--> 171 return generic_utils.deserialize_keras_object(
172 config,
173 module_objects=LOCAL.ALL_OBJECTS,

~\anaconda3\lib\site-packages\tensorflow\python\keras\utils\generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
352
353 if 'custom_objects' in arg_spec.args:
--> 354 return cls.from_config(
355 cls_config,
356 custom_objects=dict(

~\anaconda3\lib\site-packages\tensorflow\python\keras\layers\core.py in from_config(cls, config, custom_objects)
1003 def from_config(cls, config, custom_objects=None):
1004 config = config.copy()
-> 1005 function = cls._parse_function_from_config(
1006 config, custom_objects, 'function', 'module', 'function_type')
1007

~\anaconda3\lib\site-packages\tensorflow\python\keras\layers\core.py in _parse_function_from_config(cls, config, custom_objects, func_attr_name, module_attr_name, func_type_attr_name)
1055 elif function_type == 'lambda':
1056 # Unsafe deserialization from bytecode
-> 1057 function = generic_utils.func_load(config[func_attr_name], globs=globs)
1058 elif function_type == 'raw':
1059 function = config[func_attr_name]

~\anaconda3\lib\site-packages\tensorflow\python\keras\utils\generic_utils.py in func_load(code, defaults, closure, globs)
455 except (UnicodeEncodeError, binascii.Error):
456 raw_code = code.encode('raw_unicode_escape')
--> 457 code = marshal.loads(raw_code)
458 if globs is None:
459 globs = globals()

ValueError: bad marshal data (unknown type code)

Im having this issue can anyone please tell how to solve this.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants