diff --git a/ush/SpatialTemporalStatsTool/README.md b/ush/SpatialTemporalStatsTool/README.md index c3fa888..e890f4a 100644 --- a/ush/SpatialTemporalStatsTool/README.md +++ b/ush/SpatialTemporalStatsTool/README.md @@ -1,28 +1,18 @@ ### April 2024 ### Azadeh Gholoubi -# Python Tool to do time/space (2D) evaluation +# Python Tool for Time/Space (2D) Evaluation ## Overview This tool provides functionalities for processing and analyzing data over time and space. -The `SpatialTemporalStats` class is designed to perform spatial and temporal averaging of observational data stored in NetCDF files. It includes features for generating grids, reading observational values, filtering data, plotting observations, and creating summary plots. +The `SpatialTemporalStats` class is designed to perform spatial and temporal statistics of data stored in NetCDF files. It includes features for generating grids, reading observational values, filtering data, plotting observations, and creating summary plots based on user settings. -### Important Methods -- `generate_grid(resolution=1)` -This method generates a grid for spatial averaging based on the specified resolution. - -- `read_obs_values(obs_files_path, sensor, var_name, channel_no, start_date, end_date, - filter_by_vars, QC_filter)` -This method reads observational values from NetCDF files, filters them based on various criteria, performs spatial averaging, and returns the averaged values. - -- `plot_obs(selected_var_gdf, var_name, region, resolution, output_path)` -This method plots observational data on a map, showing different regions and their corresponding data values. - -- `list_variable_names(file_path)` -This method lists variable names from a NetCDF file. - -- `make_summary_plots(obs_files_path, sensor, var_name, start_date, end_date, QC_filter, output_path)` -This method generates summary plots of observational data, including scatter plots of counts, means, and standard deviations. +### Important Methods of the SpatialTemporalStats Class +- `generate_grid(resolution=1)`: Generates a grid for spatial averaging based on the specified resolution. (default resolution is 1X1) +- `read_obs_values()`: Reads observational values from NetCDF files, filters them based on various criteria, performs spatial averaging, and returns the averaged values. +- `plot_obs()`: Plots observational data on a map, showing different regions and their corresponding data values. +- `list_variable_names(file_path)`: Lists variable names from a NetCDF file. +- `make_summary_plots()`: Generates summary plots of observational data, including scatter plots of counts, means, and standard deviations. ## Requirements User need to load EVA environment when working on Hera, use the following commands: @@ -33,18 +23,54 @@ module load EVA/hera ``` ## Usage -Before running the script, the user needs to specify certain parameters in `user_Analysis.py`: - -- `input_path`: Directory for input .nc files -- `output_path`: Path to output plots -- `sensor`: Sensor name -- `Channels`: Channel number (e.g., 1, 2, 3, 5) -- `var_name`: variable name -- `start_date, end_date`: Start and End date of the input files for evaluations -- `region`: Insert a number to select Global or Regional ouput plots (1: global (default), 2: polar region, 3: mid-latitudes region, 4: tropics region, 5: southern mid-latitudes region, 6: southern polar region) -- `resolution`: Resolution for grid generation (1: 1X1 degree(default), 2:2X2 degree, 3:3X3 degree) -- `filter_by_vars`: Filter by variable to generate plots based on surface type (land, water, snow, seaice) or can be an empty list for no filtering. - +`user_Analysis.py` contains the `SpatialTemporalStats` class, which encapsulates the functionalities of the tool. Here's how to use it: + +1. Import the `SpatialTemporalStats` class: + + ```python + from SpatialTemporalStats import SpatialTemporalStats +2. Create an instance of the SpatialTemporalStats class: + + ```python + my_tool = SpatialTemporalStats() + +3. Specify the parameters based on the type of plots that you want: + + - `input_path`: Directory for input .nc files + - `output_path`: Path to output plots + - `sensor`: Sensor name + - `channel_no`: Channel number (e.g., 1, 2, 3, 5) + - `var_name`: variable name + - `start_date, end_date`: Start and End date of the input files for evaluations + - `region`: Insert a number to select Global or Regional ouput plots (1: global (default), 2: polar region, 3: mid-latitudes region, 4: tropics region, 5: southern mid-latitudes region, 6: southern polar region) + - `resolution`: Resolution for grid generation (1: 1X1 degree(default), 2:2X2 degree, 3:3X3 degree) + - `filter_by_vars`: Filter by variable to generate plots based on surface type (land, water, snow, seaice) or can be an empty list for no filtering. + +4. Call `read_obs_values` to Read observational values and perform analysis: + +```python +o_minus_f_gdf = my_tool.read_obs_values( + input_path, + sensor, + var_name, + channel_no, + start_date, + end_date, + filter_by_vars, + QC_filter) +``` +5. Call `plot_obs` to plot evaluation plots based on your setting for grid size, channel, region, surface type, and filtering values: + +```python +my_tool.plot_obs(o_minus_f_gdf, var_name, region, resolution, output_path) +``` +6. Call `make_summary_plots` to generate summary plots: + +```python +summary_results = my_tool.make_summary_plots( + input_path, sensor, var_name, start_date, end_date, QC_filter, output_path +) +``` ## Notes Ensure that the `obs_files_path` and `output_path` variables are correctly set to the paths of observational files and output directory, respectively. Adjust method parameters and plotting settings as needed for your specific use case. @@ -58,22 +84,28 @@ python user_Analysis.py ``` ## Example Usage -To run the `SpatialTemporalStats` tool with your specific settings, you can use the following example code: +Here's a sample script demonstrating how to use the`SpatialTemporalStats` tool: ![image](https://github.com/NOAA-EMC/PyGSI/assets/51101867/4379cb6e-e1a7-4167-8859-ae881f2c61c1) -## Example output plots -`var_name = "Obs_Minus_Forecast_adjusted"` - -`region = 1` - -`resolution = 2` - -calling `my_tool.plot_obs()` method will produce three plots for ave,count, rms as shown below: +## Example output plots using different settings +```python +var_name = "Obs_Minus_Forecast_adjusted" +region = 1 +resolution = 2 +filter_by_vars=[] +``` +Calling `read_obs_values` and then `my_tool.plot_obs()` method will produce three plots for ave,count, rms as shown below: ![atms_n20_ch1_Obs_Minus_Forecast_adjusted_Average_region_1](https://github.com/NOAA-EMC/PyGSI/assets/51101867/b838ae92-3303-45ca-b7ba-35b11c01213c) ![atms_n20_ch1_Obs_Minus_Forecast_adjusted_Count_region_1](https://github.com/NOAA-EMC/PyGSI/assets/51101867/113ef427-9771-462a-b543-f36166ed978e) ![atms_n20_ch1_Obs_Minus_Forecast_adjusted_RMS_region_1](https://github.com/NOAA-EMC/PyGSI/assets/51101867/ed4bc44c-6364-451b-811e-b2c8a0ce5d2a) -calling `my_tool.make_summary_plots()` method will generate two summary plots: +Example plot for filtering out the locations where the land fraction is less than 0.9 +```python +filter_by_vars = [("Land_Fraction", "lt", 0.9),] +``` +![atms_n20_ch1_Obs_Minus_Forecast_adjusted_Average_region_1](https://github.com/NOAA-EMC/PyGSI/assets/51101867/978e2677-4a7b-45b3-a2e2-67674bf0803e) + +Calling read_obs_values and then my_tool.make_summary_plots() method will generate two summary plots: ![atms_n20_Obs_Minus_Forecast_adjusted_mean_std](https://github.com/NOAA-EMC/PyGSI/assets/51101867/28cc26f4-c024-4713-82e1-b9a7ed5f5d1b) ![atms_n20_Obs_Minus_Forecast_adjusted_sumamryCounts](https://github.com/NOAA-EMC/PyGSI/assets/51101867/fd835f41-5b9c-4a14-be85-4c74d49571f6)