From b36a35e796f35df800f4b77bfc7f8696647abfef Mon Sep 17 00:00:00 2001 From: Azadeh Gholoubi <51101867+azadeh-gh@users.noreply.github.com> Date: Thu, 26 Sep 2024 15:04:29 -0400 Subject: [PATCH] Feature/spatial temporal stats tool (#149) * Adding SpatialTemporalStatsTool to ush * Create README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Modified codes * pycodestyle * Update README.md * Update README.md * (1) Make O-F bias plot using symmetric colorbar and set cmap to bwr. (2) The index for studied_cycle_files (data frame subset from parent) does not alway start from zer0; therefore, assign index variable to get the actual index from parent dataframe (#148) Co-authored-by: Emily Liu * Updated the code to speed up the process of making summary plots. * Coding norms --------- Co-authored-by: Emily Liu --- ush/SpatialTemporalStatsTool/README.md | 115 +++++ .../SpatialTemporalStats.py | 444 ++++++++++++++++++ ush/SpatialTemporalStatsTool/user_Analysis.py | 70 +++ 3 files changed, 629 insertions(+) create mode 100644 ush/SpatialTemporalStatsTool/README.md create mode 100644 ush/SpatialTemporalStatsTool/SpatialTemporalStats.py create mode 100644 ush/SpatialTemporalStatsTool/user_Analysis.py diff --git a/ush/SpatialTemporalStatsTool/README.md b/ush/SpatialTemporalStatsTool/README.md new file mode 100644 index 0000000..e890f4a --- /dev/null +++ b/ush/SpatialTemporalStatsTool/README.md @@ -0,0 +1,115 @@ +### April 2024 +### Azadeh Gholoubi +# Python Tool for Time/Space (2D) Evaluation + +## Overview +This tool provides functionalities for processing and analyzing data over time and space. + +The `SpatialTemporalStats` class is designed to perform spatial and temporal statistics of data stored in NetCDF files. It includes features for generating grids, reading observational values, filtering data, plotting observations, and creating summary plots based on user settings. + +### Important Methods of the SpatialTemporalStats Class +- `generate_grid(resolution=1)`: Generates a grid for spatial averaging based on the specified resolution. (default resolution is 1X1) +- `read_obs_values()`: Reads observational values from NetCDF files, filters them based on various criteria, performs spatial averaging, and returns the averaged values. +- `plot_obs()`: Plots observational data on a map, showing different regions and their corresponding data values. +- `list_variable_names(file_path)`: Lists variable names from a NetCDF file. +- `make_summary_plots()`: Generates summary plots of observational data, including scatter plots of counts, means, and standard deviations. + +## Requirements +User need to load EVA environment when working on Hera, use the following commands: +``` +cd GDASApp/modulefiles/ +module load EVA/hera + +``` + +## Usage +`user_Analysis.py` contains the `SpatialTemporalStats` class, which encapsulates the functionalities of the tool. Here's how to use it: + +1. Import the `SpatialTemporalStats` class: + + ```python + from SpatialTemporalStats import SpatialTemporalStats +2. Create an instance of the SpatialTemporalStats class: + + ```python + my_tool = SpatialTemporalStats() + +3. Specify the parameters based on the type of plots that you want: + + - `input_path`: Directory for input .nc files + - `output_path`: Path to output plots + - `sensor`: Sensor name + - `channel_no`: Channel number (e.g., 1, 2, 3, 5) + - `var_name`: variable name + - `start_date, end_date`: Start and End date of the input files for evaluations + - `region`: Insert a number to select Global or Regional ouput plots (1: global (default), 2: polar region, 3: mid-latitudes region, 4: tropics region, 5: southern mid-latitudes region, 6: southern polar region) + - `resolution`: Resolution for grid generation (1: 1X1 degree(default), 2:2X2 degree, 3:3X3 degree) + - `filter_by_vars`: Filter by variable to generate plots based on surface type (land, water, snow, seaice) or can be an empty list for no filtering. + +4. Call `read_obs_values` to Read observational values and perform analysis: + +```python +o_minus_f_gdf = my_tool.read_obs_values( + input_path, + sensor, + var_name, + channel_no, + start_date, + end_date, + filter_by_vars, + QC_filter) +``` +5. Call `plot_obs` to plot evaluation plots based on your setting for grid size, channel, region, surface type, and filtering values: + +```python +my_tool.plot_obs(o_minus_f_gdf, var_name, region, resolution, output_path) +``` +6. Call `make_summary_plots` to generate summary plots: + +```python +summary_results = my_tool.make_summary_plots( + input_path, sensor, var_name, start_date, end_date, QC_filter, output_path +) +``` + ## Notes + Ensure that the `obs_files_path` and `output_path` variables are correctly set to the paths of observational files and output directory, respectively. + Adjust method parameters and plotting settings as needed for your specific use case. + Make sure to define the `filter_by_variable` method as needed for filtering observational data based on variable values. + +To run the tool: + +``` +python user_Analysis.py + +``` + +## Example Usage +Here's a sample script demonstrating how to use the`SpatialTemporalStats` tool: +![image](https://github.com/NOAA-EMC/PyGSI/assets/51101867/4379cb6e-e1a7-4167-8859-ae881f2c61c1) + +## Example output plots using different settings +```python +var_name = "Obs_Minus_Forecast_adjusted" +region = 1 +resolution = 2 +filter_by_vars=[] +``` +Calling `read_obs_values` and then `my_tool.plot_obs()` method will produce three plots for ave,count, rms as shown below: +![atms_n20_ch1_Obs_Minus_Forecast_adjusted_Average_region_1](https://github.com/NOAA-EMC/PyGSI/assets/51101867/b838ae92-3303-45ca-b7ba-35b11c01213c) +![atms_n20_ch1_Obs_Minus_Forecast_adjusted_Count_region_1](https://github.com/NOAA-EMC/PyGSI/assets/51101867/113ef427-9771-462a-b543-f36166ed978e) +![atms_n20_ch1_Obs_Minus_Forecast_adjusted_RMS_region_1](https://github.com/NOAA-EMC/PyGSI/assets/51101867/ed4bc44c-6364-451b-811e-b2c8a0ce5d2a) + +Example plot for filtering out the locations where the land fraction is less than 0.9 +```python +filter_by_vars = [("Land_Fraction", "lt", 0.9),] +``` +![atms_n20_ch1_Obs_Minus_Forecast_adjusted_Average_region_1](https://github.com/NOAA-EMC/PyGSI/assets/51101867/978e2677-4a7b-45b3-a2e2-67674bf0803e) + +Calling read_obs_values and then my_tool.make_summary_plots() method will generate two summary plots: +![atms_n20_Obs_Minus_Forecast_adjusted_mean_std](https://github.com/NOAA-EMC/PyGSI/assets/51101867/28cc26f4-c024-4713-82e1-b9a7ed5f5d1b) +![atms_n20_Obs_Minus_Forecast_adjusted_sumamryCounts](https://github.com/NOAA-EMC/PyGSI/assets/51101867/fd835f41-5b9c-4a14-be85-4c74d49571f6) + + + + + diff --git a/ush/SpatialTemporalStatsTool/SpatialTemporalStats.py b/ush/SpatialTemporalStatsTool/SpatialTemporalStats.py new file mode 100644 index 0000000..2ba6b46 --- /dev/null +++ b/ush/SpatialTemporalStatsTool/SpatialTemporalStats.py @@ -0,0 +1,444 @@ +import os +from datetime import datetime + +import geopandas as gpd +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import xarray +from shapely.geometry import Point, Polygon + + +class SpatialTemporalStats: + def __init__(self): + self.grid_gdf = None + self.obs_gdf = None + + def generate_grid(self, resolution=1): + self.resolution = resolution + # Generate the latitude and longitude values using meshgrid + grid_lons, grid_lats = np.meshgrid( + np.arange(-180, 181, resolution), np.arange(-90, 91, resolution) + ) + + # Flatten the arrays to get coordinates + grid_coords = np.vstack([grid_lons.flatten(), grid_lats.flatten()]).T + + # Create a GeoDataFrame from the coordinates + self.grid_gdf = gpd.GeoDataFrame( + geometry=[ + Polygon( + [ + (lon, lat), + (lon + resolution, lat), + (lon + resolution, lat + resolution), + (lon, lat + resolution), + ] + ) + for lon, lat in grid_coords + ], + crs="EPSG:4326", + ) # CRS for WGS84 + self.grid_gdf["grid_id"] = np.arange(1, len(self.grid_gdf) + 1) + + def _extract_date_times(self, filenames): + date_times = [] + for filename in filenames: + # Split the filename by '.' to get the parts + parts = filename.split(".") + + # Extract the last part which contains the date/time information + date_time_part = parts[-2] + + # date/time format in filename is 'YYYYMMDDHH', can parse it accordingly + year = int(date_time_part[:4]) + month = int(date_time_part[4:6]) + day = int(date_time_part[6:8]) + hour = int(date_time_part[8:10]) + + # Construct the datetime object + date_time = datetime(year, month, day, hour) + + date_times.append(date_time) + + return date_times + + def read_obs_values( + self, + obs_files_path, + sensor, + var_name, + channel_no, + start_date, + end_date, + filter_by_vars, + QC_filter, + ): + self.sensor = sensor + self.channel_no = channel_no + # read all obs files + all_files = os.listdir(obs_files_path) + obs_files = [ + os.path.join(obs_files_path, file) + for file in all_files + if file.endswith(".nc4") and "diag_%s_ges" % sensor in file + ] + + # get date time from file names + files_date_times_df = pd.DataFrame() + + files_date_times = self._extract_date_times(obs_files) + files_date_times_df["file_name"] = obs_files + files_date_times_df["date_time"] = files_date_times + files_date_times_df["date"] = pd.to_datetime( + files_date_times_df["date_time"].dt.date + ) + + # read start date + start_date = datetime.strptime(start_date, "%Y-%m-%d") + end_date = datetime.strptime(end_date, "%Y-%m-%d") + + studied_cycle_files = files_date_times_df[ + ( + (files_date_times_df["date"] >= start_date) + & ((files_date_times_df["date"] <= end_date)) + ) + ]["file_name"] + + studied_gdf_list = [] + for this_cycle_obs_file in studied_cycle_files: + ds = xarray.open_dataset(this_cycle_obs_file) + + Combined_bool = ds["Channel_Index"].data == channel_no + + if QC_filter: + QC_bool = ds["QC_Flag"].data == 0 + Combined_bool = Combined_bool * QC_bool + + # apply filters by variable + for this_filter in filter_by_vars: + filter_var_name, filter_operation, filter_value = this_filter + if filter_operation == "lt": + this_filter_bool = ds[filter_var_name].data <= filter_value + else: + this_filter_bool = ds[filter_var_name].data >= filter_value + Combined_bool = ( + Combined_bool * ~this_filter_bool + ) # here we have to negate the above bool to make it right + + this_cycle_var_values = ds[var_name].data[Combined_bool] + this_cycle_lat_values = ds["Latitude"].data[Combined_bool] + this_cycle_long_values = ds["Longitude"].data[Combined_bool] + this_cycle_long_values = np.where( + this_cycle_long_values <= 180, + this_cycle_long_values, + this_cycle_long_values - 360, + ) + + geometry = [ + Point(xy) for xy in zip(this_cycle_long_values, this_cycle_lat_values) + ] + + # Create a GeoDataFrame + this_cycle_gdf = gpd.GeoDataFrame(geometry=geometry, crs="EPSG:4326") + this_cycle_gdf["value"] = this_cycle_var_values + + studied_gdf_list.append(this_cycle_gdf) + + studied_gdf = pd.concat(studied_gdf_list) + + # Perform spatial join + joined_gdf = gpd.sjoin(studied_gdf, self.grid_gdf, op="within", how="right") + + # Calculate average values of points in each polygon + self.obs_gdf = self.grid_gdf.copy() + self.obs_gdf[var_name + "_Average"] = joined_gdf.groupby("grid_id")[ + "value" + ].mean() + self.obs_gdf[var_name + "_RMS"] = joined_gdf.groupby("grid_id")["value"].apply( + lambda x: np.sqrt((x**2).mean()) + ) + self.obs_gdf[var_name + "_Count"] = joined_gdf.groupby("grid_id")[ + "value" + ].count() + + # convert count of zero to null. This will help also for plotting + self.obs_gdf[var_name + "_Count"] = np.where( + self.obs_gdf[var_name + "_Count"].values == 0, + np.nan, + self.obs_gdf[var_name + "_Count"].values, + ) + + return self.obs_gdf + + def plot_obs(self, selected_var_gdf, var_name, region, resolution, output_path): + self.resolution = resolution + var_names = [var_name + "_Average", var_name + "_Count", var_name + "_RMS"] + + for _, item in enumerate(var_names): + plt.figure(figsize=(12, 8)) + ax = plt.subplot(1, 1, 1) + + if region == 1: + # Plotting global region (no need for filtering) + title = "Global Region" + filtered_gdf = selected_var_gdf + + elif region == 2: + # Plotting polar region (+60 latitude and above) + title = "Polar Region (+60 latitude and above)" + filtered_gdf = selected_var_gdf[ + selected_var_gdf.geometry.apply( + lambda geom: self.is_polygon_in_polar_region(geom, 60) + ) + ] + + elif region == 3: + # Plotting northern mid-latitudes region (20 to 60 latitude) + title = "Northern Mid-latitudes Region (20 to 60 latitude)" + filtered_gdf = selected_var_gdf[ + selected_var_gdf.geometry.apply( + lambda geom: self.is_polygon_in_latitude_range(geom, 20, 60) + ) + ] + + elif region == 4: + # Plotting tropics region (-20 to 20 latitude) + title = "Tropics Region (-20 to 20 latitude)" + filtered_gdf = selected_var_gdf[ + selected_var_gdf.geometry.apply( + lambda geom: self.is_polygon_in_latitude_range(geom, -20, 20) + ) + ] + + elif region == 5: + # Plotting southern mid-latitudes region (-60 to -20 latitude) + title = "Southern Mid-latitudes Region (-60 to -20 latitude)" + filtered_gdf = selected_var_gdf[ + selected_var_gdf.geometry.apply( + lambda geom: self.is_polygon_in_latitude_range(geom, -60, -20) + ) + ] + + elif region == 6: + # Plotting southern polar region (less than -60 latitude) + title = "Southern Polar Region (less than -60 latitude)" + filtered_gdf = selected_var_gdf[ + selected_var_gdf.geometry.apply(lambda geom: geom.centroid.y < -60) + ] + + min_val, max_val, std_val, avg_val = ( + filtered_gdf[item].min(), + filtered_gdf[item].max(), + filtered_gdf[item].std(), + filtered_gdf[item].mean(), + ) + + if item == "Obs_Minus_Forecast_adjusted_Average": + max_val_cbar = 5.0 * std_val + min_val_cbar = -5.0 * std_val + cmap = "bwr" + else: + max_val_cbar = max_val + min_val_cbar = min_val + cmap = "jet" + + cbar_label = ( + "grid=%dx%d, min=%.3lf, max=%.3lf, bias=%.3lf, std=%.3lf\n" + % ( + resolution, + resolution, + min_val, + max_val, + avg_val, + std_val, + ) + ) + + filtered_gdf.plot( + ax=ax, + cmap=cmap, + vmin=min_val_cbar, + vmax=max_val_cbar, + column=item, + legend=True, + missing_kwds={"color": "lightgrey"}, + legend_kwds={ + "orientation": "horizontal", + "shrink": 0.5, + "label": cbar_label, + }, + ) + + plt.title("%s\n%s ch:%d %s" % (title, self.sensor, self.channel_no, item)) + plt.savefig( + os.path.join( + output_path, + "%s_ch%d_%s_region_%d.png" + % (self.sensor, self.channel_no, item, region), + ) + ) + plt.close() + + def is_polygon_in_polar_region(self, polygon, latitude_threshold): + """ + Check if a polygon is in the polar region based on a latitude threshold. + """ + # Get the centroid of the polygon + centroid = polygon.centroid + + # Extract the latitude of the centroid + centroid_latitude = centroid.y + + # Check if the latitude is above the threshold + return centroid_latitude >= latitude_threshold + + def is_polygon_in_latitude_range(self, polygon, min_latitude, max_latitude): + """ + Check if a polygon is in the specified latitude range. + """ + # Get the centroid of the polygon + centroid = polygon.centroid + + # Extract the latitude of the centroid + centroid_latitude = centroid.y + + # Check if the latitude is within the specified range + return min_latitude <= centroid_latitude <= max_latitude + + def list_variable_names(self, file_path): + ds = xarray.open_dataset(file_path) + print(ds.info()) + + def make_summary_plots( + self, + obs_files_path, + sensor, + var_name, + start_date, + end_date, + QC_filter, + output_path, + ): + self.sensor = sensor + # read all obs files + all_files = os.listdir(obs_files_path) + obs_files = [ + os.path.join(obs_files_path, file) + for file in all_files + if file.endswith(".nc4") and "diag_%s_ges" % sensor in file + ] + + # get date time from file names. + # alternatively could get from attribute but that needs reading the entire nc4 + files_date_times_df = pd.DataFrame() + + files_date_times = self._extract_date_times(obs_files) + files_date_times_df["file_name"] = obs_files + files_date_times_df["date_time"] = files_date_times + files_date_times_df["date"] = pd.to_datetime( + files_date_times_df["date_time"].dt.date + ) + + # read start date + start_date = datetime.strptime(start_date, "%Y-%m-%d") + end_date = datetime.strptime(end_date, "%Y-%m-%d") + + studied_cycle_files = files_date_times_df[ + ( + (files_date_times_df["date"] >= start_date) + & ((files_date_times_df["date"] <= end_date)) + ) + ]["file_name"] + index = studied_cycle_files.index + + Summary_results = [] + + # get unique channels from one of the files + ds = xarray.open_dataset(studied_cycle_files[index[0]]) + unique_channels = np.unique(ds["Channel_Index"].data).tolist() + print("Total Number of Channels ", len(unique_channels)) + Allchannels_data = {} + for this_channel in unique_channels: + Allchannels_data[this_channel] = np.empty(shape=(0,)) + for this_cycle_obs_file in studied_cycle_files: + ds = xarray.open_dataset(this_cycle_obs_file) + if QC_filter: + QC_bool = ds["QC_Flag"].data == 0 + for this_channel in unique_channels: + channel_bool = ds["Channel_Index"].data == this_channel + + this_cycle_channel_var_values = ds[var_name].data[ + channel_bool * QC_bool + ] + Allchannels_data[this_channel] = np.append( + Allchannels_data[this_channel], this_cycle_channel_var_values + ) + + for this_channel in unique_channels: + this_channel_values = Allchannels_data[this_channel] + squared_values = [x**2 for x in this_channel_values] + mean_of_squares = sum(squared_values) / len(squared_values) + rms_value = mean_of_squares ** 0.5 + Summary_results.append( + [ + this_channel, + np.size(this_channel_values), + np.std(this_channel_values), + np.mean(this_channel_values), + rms_value, + ] + ) + + Summary_resultsDF = pd.DataFrame( + Summary_results, columns=["channel", "count", "std", "mean", "rms"]) + # Plotting + plt.figure(figsize=(10, 6)) + plt.scatter(Summary_resultsDF["channel"], Summary_resultsDF["count"], s=50) + plt.xlabel("Channel") + plt.ylabel("Count") + plt.title("%s %s" % ((self.sensor, var_name))) + plt.grid(True) + plt.tight_layout() + plt.savefig( + os.path.join( + output_path, "%s_%s_sumamryCounts.png" % (self.sensor, var_name) + ) + ) + plt.close() + + # Plotting scatter plot for mean and std + plt.figure(figsize=(15, 6)) + plt.scatter( + Summary_resultsDF["channel"], + Summary_resultsDF["mean"], + s=50, + c="green", + label="Mean", + ) + plt.scatter( + Summary_resultsDF["channel"], + Summary_resultsDF["std"], + s=50, + c="red", + label="Std", + ) + plt.scatter( + Summary_resultsDF["channel"], + Summary_resultsDF["rms"], + s=50, + label="Rms", + facecolors="none", + edgecolors="blue", + ) + plt.xlabel("Channel") + plt.ylabel("Statistics") + plt.title("%s %s" % ((self.sensor, var_name))) + plt.grid(True) + plt.tight_layout() + plt.legend() + plt.savefig( + os.path.join(output_path, "%s_%s_mean_std.png" % (self.sensor, var_name)) + ) + + return Summary_resultsDF diff --git a/ush/SpatialTemporalStatsTool/user_Analysis.py b/ush/SpatialTemporalStatsTool/user_Analysis.py new file mode 100644 index 0000000..7f69c82 --- /dev/null +++ b/ush/SpatialTemporalStatsTool/user_Analysis.py @@ -0,0 +1,70 @@ +from SpatialTemporalStats import SpatialTemporalStats + +# Set input and output paths +input_path = "/PATH/TO/Input/Files" +output_path = r'./Results' + +# Set sensor name +sensor = "iasi_metop-c" + +# Set variable name and channel number +var_name = "Obs_Minus_Forecast_adjusted" +channel_no = 1 + +# Set start and end dates +start_date, end_date = "2024-01-01", "2024-01-31" + +# Set region +# 1: global, 2: polar region, 3: mid-latitudes region, +# 4: tropics region, 5:southern mid-latitudes region, 6: southern polar region +region = 1 + +# Initialize SpatialTemporalStats object +my_tool = SpatialTemporalStats() + +# Set resolution for grid generation +resolution = 2 + +# Generate grid +my_tool.generate_grid(resolution) # Call generate_grid method) +print("grid created!") + +# Set QC filter +QC_filter = True # should be always False or true + +# Set filter by variables +# can be an empty list +filter_by_vars = [] + +# filter_by_vars = [("Land_Fraction", "lt", 0.9),] +# list each case in a separate tuple inside this list. +# options are 'lt' or 'gt' for 'less than' and 'greater than' + +# Read observational values and perform analysis +o_minus_f_gdf = my_tool.read_obs_values( + input_path, + sensor, + var_name, + channel_no, + start_date, + end_date, + filter_by_vars, + QC_filter, +) + +print("read obs values!") +# Can save the results in a gpkg file +# o_minus_f_gdf.to_file("filename.gpkg", driver='GPKG') + +# Plot observations +print("creating plots...") +my_tool.plot_obs(o_minus_f_gdf, var_name, region, resolution, output_path) +print("Time/Area stats plots created!") + +# Make summary plots +print("Creating summary plots...") +summary_results = my_tool.make_summary_plots( + input_path, sensor, var_name, start_date, end_date, QC_filter, output_path +) +print("Summary plots created!") +# Print summary results