From dbdcf796df229dcd13ef46aca00e3eb7f109a44e Mon Sep 17 00:00:00 2001 From: Azadeh Date: Wed, 1 May 2024 02:30:46 +0000 Subject: [PATCH] Updated the code to speed up the process of making summary plots. --- .../SpatialTemporalStats.py | 57 ++++++++++++------- ush/SpatialTemporalStatsTool/user_Analysis.py | 16 ++++-- 2 files changed, 47 insertions(+), 26 deletions(-) diff --git a/ush/SpatialTemporalStatsTool/SpatialTemporalStats.py b/ush/SpatialTemporalStatsTool/SpatialTemporalStats.py index ed28cb1..ffca03f 100644 --- a/ush/SpatialTemporalStatsTool/SpatialTemporalStats.py +++ b/ush/SpatialTemporalStatsTool/SpatialTemporalStats.py @@ -355,34 +355,41 @@ def make_summary_plots( ds = xarray.open_dataset(studied_cycle_files[index[0]]) unique_channels = np.unique(ds["Channel_Index"].data).tolist() print('Total Number of Channels ', len(unique_channels)) - print('Channels ', unique_channels) + Allchannels_data={} for this_channel in unique_channels: - this_channel_values = np.empty(shape=(0,)) - for this_cycle_obs_file in studied_cycle_files: - ds = xarray.open_dataset(this_cycle_obs_file) - Combined_bool = ds["Channel_Index"].data == this_channel - - if QC_filter: - QC_bool = ds["QC_Flag"].data == 0 - Combined_bool = Combined_bool * QC_bool - - this_cycle_var_values = ds[var_name].data[Combined_bool] - this_channel_values = np.append( - this_channel_values, this_cycle_var_values + Allchannels_data[this_channel] = np.empty(shape=(0,)) + for this_cycle_obs_file in studied_cycle_files: + ds = xarray.open_dataset(this_cycle_obs_file) + if QC_filter: + QC_bool = ds["QC_Flag"].data == 0 + + for this_channel in unique_channels: + channel_bool = ds["Channel_Index"].data == this_channel + + this_cycle_channel_var_values = ds[var_name].data[channel_bool*QC_bool] + Allchannels_data[this_channel] = np.append( + Allchannels_data[this_channel], this_cycle_channel_var_values ) + for this_channel in unique_channels: + this_channel_values=Allchannels_data[this_channel] + squared_values = [x**2 for x in this_channel_values] + mean_of_squares = sum(squared_values) / len(squared_values) + rms_value=mean_of_squares ** 0.5 Summary_results.append( [ this_channel, np.size(this_channel_values), np.std(this_channel_values), np.mean(this_channel_values), + rms_value ] ) + Summary_resultsDF = pd.DataFrame( - Summary_results, columns=["channel", "count", "std", "mean"] + Summary_results, columns=["channel", "count", "std", "mean", "rms"] ) # Plotting plt.figure(figsize=(10, 6)) @@ -390,8 +397,8 @@ def make_summary_plots( plt.xlabel("Channel") plt.ylabel("Count") plt.title("%s %s" % ((self.sensor, var_name))) - plt.xticks(Summary_resultsDF["channel"]) - plt.xticks(rotation=45) + #plt.xticks(Summary_resultsDF["channel"]) + #plt.xticks(rotation=45) plt.grid(True) plt.tight_layout() plt.savefig( @@ -402,26 +409,34 @@ def make_summary_plots( plt.close() # Plotting scatter plot for mean and std - plt.figure(figsize=(10, 6)) + plt.figure(figsize=(15, 6)) plt.scatter( Summary_resultsDF["channel"], Summary_resultsDF["mean"], s=50, - c="red", + c="green", label="Mean", ) plt.scatter( Summary_resultsDF["channel"], Summary_resultsDF["std"], s=50, - c="green", + c="red", label="Std", ) + plt.scatter( + Summary_resultsDF["channel"], + Summary_resultsDF["rms"], + s=50, + label="Rms", + facecolors='none', + edgecolors='blue' + ) plt.xlabel("Channel") plt.ylabel("Statistics") plt.title("%s %s" % ((self.sensor, var_name))) - plt.xticks(Summary_resultsDF["channel"]) - plt.xticks(rotation=45) + #plt.xticks(Summary_resultsDF["channel"]) + #plt.xticks(rotation=45) plt.grid(True) plt.tight_layout() plt.legend() diff --git a/ush/SpatialTemporalStatsTool/user_Analysis.py b/ush/SpatialTemporalStatsTool/user_Analysis.py index 7ee18d0..c98354a 100644 --- a/ush/SpatialTemporalStatsTool/user_Analysis.py +++ b/ush/SpatialTemporalStatsTool/user_Analysis.py @@ -2,23 +2,24 @@ # Set input and output paths input_path = "/PATH/TO/Input/Files" -output_path = r'./Results' + +#output_path = r'./Results' # Set sensor name -sensor = "atms_n20" +sensor = "iasi_metop-c" # Set variable name and channel number var_name = "Obs_Minus_Forecast_adjusted" channel_no = 1 # Set start and end dates -start_date, end_date = '2023-03-01', '2023-03-10' +start_date, end_date = '2024-01-01', '2024-01-31' # Set region # 1: global, 2: polar region, 3: mid-latitudes region, # 4: tropics region, 5:southern mid-latitudes region, 6: southern polar region -region = 3 +region = 1 # Initialize SpatialTemporalStats object my_tool = SpatialTemporalStats() @@ -28,6 +29,7 @@ # Generate grid my_tool.generate_grid(resolution) # Call generate_grid method) +print("grid created!") # Set QC filter QC_filter = True # should be always False or true @@ -52,16 +54,20 @@ QC_filter, ) +print("read obs values!") # Can save the results in a gpkg file # o_minus_f_gdf.to_file("filename.gpkg", driver='GPKG') # Plot observations +print("creating plots...") my_tool.plot_obs(o_minus_f_gdf, var_name, region, resolution, output_path) +print("Time/Area stats plots created!") # Make summary plots +print("Creating summary plots...") summary_results = my_tool.make_summary_plots( input_path, sensor, var_name, start_date, end_date, QC_filter, output_path ) +print("Summary plots created!") # Print summary results -print(summary_results)