-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathPhIREGANs.py
540 lines (403 loc) · 21.7 KB
/
PhIREGANs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
''' @author: Andrew Glaws, Karen Stengel, Ryan King
'''
import os
import numpy as np
import tensorflow as tf
from time import strftime, time
from utils import plot_SR_data
from sr_network import SR_NETWORK
class PhIREGANs:
# Network training meta-parameters
DEFAULT_N_EPOCHS = 10 # Number of epochs of training
DEFAULT_LEARNING_RATE = 1e-4 # Learning rate for gradient descent (may decrease to 1e-5 after initial training)
DEFAULT_EPOCH_SHIFT = 0 # If reloading previously trained network, what epoch to start at
DEFAULT_SAVE_EVERY = 10 # How frequently (in epochs) to save model weights
DEFAULT_PRINT_EVERY = 2 # How frequently (in iterations) to write out performance
def __init__(self, data_type, N_epochs=None, learning_rate=None, epoch_shift=None, save_every=None, print_every=None, mu_sig=None):
self.N_epochs = N_epochs if N_epochs is not None else self.DEFAULT_N_EPOCHS
self.learning_rate = learning_rate if learning_rate is not None else self.DEFAULT_LEARNING_RATE
self.epoch_shift = epoch_shift if epoch_shift is not None else self.DEFAULT_EPOCH_SHIFT
self.save_every = save_every if save_every is not None else self.DEFAULT_SAVE_EVERY
self.print_every = print_every if print_every is not None else self.DEFAULT_PRINT_EVERY
self.data_type = data_type
self.mu_sig = mu_sig
self.LR_data_shape = None
# Set various paths for where to save data
self.run_id = '-'.join([self.data_type, strftime('%Y%m%d-%H%M%S')])
self.model_name = '/'.join(['models', self.run_id])
self.data_out_path = '/'.join(['data_out', self.run_id])
def setSave_every(self, in_save_every):
self.save_every = in_save_every
def setPrint_every(self, in_print_every):
self.print_every = in_print_every
def setEpochShift(self, shift):
self.epoch_shift = shift
def setNum_epochs(self, in_epochs):
self.N_epochs = in_epochs
def setLearnRate(self, learn_rate):
self.learning_rate = learn_rate
def setModel_name(self, in_model_name):
self.model_name = in_model_name
def set_data_out_path(self, in_data_path):
self.data_out_path = in_data_path
def reset_run_id(self):
self.run_id = '-'.join([self.data_type, strftime('%Y%m%d-%H%M%S')])
self.model_name = '/'.join(['models', self.run_id])
self.data_out_path = '/'.join(['data_out', self.run_id])
def pretrain(self, r, data_path, model_path=None, batch_size=100):
'''
This method trains the generator without using a disctiminator/adversarial training.
This method should be called to sufficiently train the generator to produce decent images before
moving on to adversarial training with the train() method.
inputs:
r - (int array) should be array of prime factorization of amount of super-resolution to perform
data_path - (string) path of training data file to load in
model_path - (string) path of previously trained model to load in if continuing training
batch_size - (int) number of images to grab per batch. decrease if running out of memory
output:
saved_model - (string) path to the trained model
'''
tf.reset_default_graph()
if self.mu_sig is None:
self.set_mu_sig(data_path, batch_size)
self.set_LR_data_shape(data_path)
h, w, C = self.LR_data_shape
print('Initializing network ...', end=' ')
x_LR = tf.placeholder(tf.float32, [None, h, w, C])
x_HR = tf.placeholder(tf.float32, [None, h*np.prod(r), w*np.prod(r), C])
model = SR_NETWORK(x_LR, x_HR, r=r, status='pretraining')
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
g_train_op = optimizer.minimize(model.g_loss, var_list= model.g_variables)
init = tf.global_variables_initializer()
g_saver = tf.train.Saver(var_list=model.g_variables, max_to_keep=10000)
print('Done.')
print('Building data pipeline ...', end=' ')
ds = tf.data.TFRecordDataset(data_path)
ds = ds.map(lambda xx: self._parse_train_(xx, self.mu_sig)).shuffle(1000).batch(batch_size)
iterator = tf.data.Iterator.from_structure(ds.output_types,
ds.output_shapes)
idx, LR_out, HR_out = iterator.get_next()
init_iter = iterator.make_initializer(ds)
print('Done.')
with tf.Session() as sess:
print('Training network ...')
sess.run(init)
if model_path is not None:
print('Loading previously trained network...', end=' ')
g_saver.restore(sess, model_path)
print('Done.')
# Start training
iters = 0
for epoch in range(self.epoch_shift+1, self.epoch_shift+self.N_epochs+1):
print('Epoch: %d' %(epoch))
start_time = time()
sess.run(init_iter)
try:
epoch_loss, N = 0, 0
while True:
batch_idx, batch_LR, batch_HR = sess.run([idx, LR_out, HR_out])
N_batch = batch_LR.shape[0]
feed_dict = {x_HR:batch_HR, x_LR:batch_LR}
# Training step of the generator
sess.run(g_train_op, feed_dict=feed_dict)
# Calculate current losses
gl = sess.run(model.g_loss, feed_dict={x_HR: batch_HR, x_LR: batch_LR})
epoch_loss += gl*N_batch
N += N_batch
iters += 1
if (iters % self.print_every) == 0:
print('Iteration=%d, G loss=%.5f' %(iters, gl))
except tf.errors.OutOfRangeError:
pass
if (epoch % self.save_every) == 0:
model_dir = '/'.join([self.model_name, 'cnn{0:05d}'.format(epoch)])
if not os.path.exists(model_dir):
os.makedirs(model_dir)
saved_model = '/'.join([model_dir, 'cnn'])
g_saver.save(sess, saved_model)
epoch_loss = epoch_loss/N
print('Epoch generator training loss=%.5f' %(epoch_loss))
print('Epoch took %.2f seconds\n' %(time() - start_time), flush=True)
model_dir = '/'.join([self.model_name, 'cnn'])
if not os.path.exists(self.model_name):
os.makedirs(self.model_name)
saved_model = '/'.join([model_dir, 'cnn'])
g_saver.save(sess, saved_model)
print('Done.')
return saved_model
def train(self, r, data_path, model_path, batch_size=100, alpha_advers=0.001):
'''
This method trains the generator using a disctiminator/adversarial training.
This method should be called after a sufficiently pretrained generator has been saved.
inputs:
r - (int array) should be array of prime factorization of amount of super-resolution to perform
data_path - (string) path of training data file to load in
model_path - (string) path of previously pretrained or trained model to load
batch_size - (int) number of images to grab per batch. decrease if running out of memory
alpha_advers - (float) scaling value for the effect of the discriminator
output:
g_saved_model - (string) path to the trained generator model
'''
tf.reset_default_graph()
assert model_path is not None, 'Must provide path for pretrained model'
if self.mu_sig is None:
self.set_mu_sig(data_path, batch_size)
self.set_LR_data_shape(data_path)
h, w, C = self.LR_data_shape
print('Initializing network ...', end=' ')
x_LR = tf.placeholder(tf.float32, [None, h, w, C])
x_HR = tf.placeholder(tf.float32, [None, h*np.prod(r), w*np.prod(r), C])
model = SR_NETWORK(x_LR, x_HR, r=r, status='training', alpha_advers=alpha_advers)
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
g_train_op = optimizer.minimize(model.g_loss, var_list=model.g_variables)
d_train_op = optimizer.minimize(model.d_loss, var_list=model.d_variables)
init = tf.global_variables_initializer()
g_saver = tf.train.Saver(var_list=model.g_variables, max_to_keep=10000)
gd_saver = tf.train.Saver(var_list=(model.g_variables+model.d_variables), max_to_keep=10000)
print('Done.')
print('Building data pipeline ...', end=' ')
ds = tf.data.TFRecordDataset(data_path)
ds = ds.map(lambda xx: self._parse_train_(xx, self.mu_sig)).shuffle(1000).batch(batch_size)
iterator = tf.data.Iterator.from_structure(ds.output_types,
ds.output_shapes)
idx, LR_out, HR_out = iterator.get_next()
init_iter = iterator.make_initializer(ds)
print('Done.')
with tf.Session() as sess:
print('Training network ...')
sess.run(init)
print('Loading previously trained network...', end=' ')
if 'gan-all' in model_path:
# Load both pretrained generator and discriminator networks
gd_saver.restore(sess, model_path)
else:
# Load only pretrained generator network, start discriminator training from scratch
g_saver.restore(sess, model_path)
print('Done.')
# Start training
iters = 0
for epoch in range(self.epoch_shift+1, self.epoch_shift+self.N_epochs+1):
print('Epoch: '+str(epoch))
start_time = time()
# Loop through training data
sess.run(init_iter)
try:
epoch_g_loss, epoch_d_loss, N = 0, 0, 0
while True:
batch_idx, batch_LR, batch_HR = sess.run([idx, LR_out, HR_out])
N_batch = batch_LR.shape[0]
feed_dict = {x_HR:batch_HR, x_LR:batch_LR}
# Initial training of the discriminator and generator
sess.run(d_train_op, feed_dict=feed_dict)
sess.run(g_train_op, feed_dict=feed_dict)
# Calculate current losses
gl, dl, p = sess.run([model.g_loss, model.d_loss, model.advers_perf], feed_dict=feed_dict)
gen_count = 1
while (dl < 0.460) and gen_count < 2:#30:
# Discriminator did too well -> train the generator extra
sess.run(g_train_op, feed_dict=feed_dict)
gl, dl, p = sess.run([model.g_loss, model.d_loss, model.advers_perf], feed_dict=feed_dict)
gen_count += 1
dis_count = 1
while (dl > 0.6) and dis_count < 2:#30:
# Generator fooled the discriminator -> train the discriminator extra
sess.run(d_train_op, feed_dict=feed_dict)
gl, dl, p = sess.run([model.g_loss, model.d_loss, model.advers_perf], feed_dict=feed_dict)
dis_count += 1
epoch_g_loss += gl*N_batch
epoch_d_loss += dl*N_batch
N += N_batch
iters += 1
if (iters % self.print_every) == 0:
g_cl, g_al = sess.run([model.content_loss, model.g_advers_loss], feed_dict=feed_dict)
print('Number of generator training steps=%d, Number of discriminator training steps=%d, ' %(gen_count, dis_count))
print('G loss=%.5f, Content component=%.5f, Adversarial component=%.5f' %(gl, np.mean(g_cl), np.mean(g_al)))
print('D loss=%.5f' %(dl))
print('TP=%.5f, TN=%.5f, FP=%.5f, FN=%.5f' %(p[0], p[1], p[2], p[3]))
print('')
except tf.errors.OutOfRangeError:
pass
if (epoch % self.save_every) == 0:
g_model_dir = '/'.join([self.model_name, 'gan{0:05d}'.format(epoch)])
gd_model_dir = '/'.join([self.model_name, 'gan-all{0:05d}'.format(epoch)])
if not os.path.exists(self.model_name):
os.makedirs(self.model_name)
g_saved_model = '/'.join([g_model_dir, 'gan'])
gd_saved_model = '/'.join([gd_model_dir, 'gan'])
g_saver.save(sess, g_saved_model)
gd_saver.save(sess, gd_saved_model)
g_loss = epoch_g_loss/N
d_loss = epoch_d_loss/N
print('Epoch generator training loss=%.5f, discriminator training loss=%.5f' %(g_loss, d_loss))
print('Epoch took %.2f seconds\n' %(time() - start_time), flush=True)
g_model_dir ='/'.join([self.model_name, 'gan'])
gd_model_dir = '/'.join([self.model_name, 'gan-all'])
if not os.path.exists(self.model_name):
os.makedirs(self.model_name)
g_saved_model = '/'.join([g_model_dir, 'gan'])
gd_saved_model = '/'.join([gd_model_dir, 'gan'])
g_saver.save(sess, g_saved_model)
gd_saver.save(sess, gd_saved_model)
print('Done.')
return g_saved_model
def test(self, r, data_path, model_path, batch_size=100, plot_data=False):
'''
This method loads a previously trained model and runs it on test data
inputs:
r - (int array) should be array of prime factorization of amount of super-resolution to perform
data_path - (string) path of test data file to load in
model_path - (string) path of model to load in
batch_size - (int) number of images to grab per batch. decrease if running out of memory
plot_data - (bool) flag for whether or not to plot LR and SR images
'''
tf.reset_default_graph()
assert self.mu_sig is not None, 'Value for mu_sig must be set first.'
self.set_LR_data_shape(data_path)
h, w, C = self.LR_data_shape
print('Initializing network ...', end=' ')
x_LR = tf.placeholder(tf.float32, [None, None, None, C])
model = SR_NETWORK(x_LR, r=r, status='testing')
init = tf.global_variables_initializer()
g_saver = tf.train.Saver(var_list=model.g_variables, max_to_keep=10000)
print('Done.')
print('Building data pipeline ...', end=' ')
ds = tf.data.TFRecordDataset(data_path)
ds = ds.map(lambda xx: self._parse_test_(xx, self.mu_sig)).batch(batch_size)
iterator = tf.data.Iterator.from_structure(ds.output_types,
ds.output_shapes)
idx, LR_out = iterator.get_next()
init_iter = iterator.make_initializer(ds)
print('Done.')
with tf.Session() as sess:
print('Loading saved network ...', end=' ')
sess.run(init)
g_saver.restore(sess, model_path)
print('Done.')
print('Running test data ...')
sess.run(init_iter)
try:
data_out = None
while True:
batch_idx, batch_LR = sess.run([idx, LR_out])
N_batch = batch_LR.shape[0]
feed_dict = {x_LR:batch_LR}
batch_SR = sess.run(model.x_SR, feed_dict=feed_dict)
batch_LR = self.mu_sig[1]*batch_LR + self.mu_sig[0]
batch_SR = self.mu_sig[1]*batch_SR + self.mu_sig[0]
if plot_data:
img_path = '/'.join([self.data_out_path, 'imgs'])
if not os.path.exists(img_path):
os.makedirs(img_path)
plot_SR_data(batch_idx, batch_LR, batch_SR, img_path)
if data_out is None:
data_out = batch_SR
else:
data_out = np.concatenate((data_out, batch_SR), axis=0)
except tf.errors.OutOfRangeError:
pass
if not os.path.exists(self.data_out_path):
os.makedirs(self.data_out_path)
np.save(self.data_out_path+'/dataSR.npy', data_out)
print('Done.')
def _parse_train_(self, serialized_example, mu_sig=None):
'''
Parser data from TFRecords for the models to read in for (pre)training
inputs:
serialized_example - batch of data drawn from tfrecord
mu_sig - mean, standard deviation if known
outputs:
idx - array of indicies for each sample
data_LR - array of LR images in the batch
data_HR - array of HR images in the batch
'''
feature = {'index': tf.FixedLenFeature([], tf.int64),
'data_LR': tf.FixedLenFeature([], tf.string),
'h_LR': tf.FixedLenFeature([], tf.int64),
'w_LR': tf.FixedLenFeature([], tf.int64),
'data_HR': tf.FixedLenFeature([], tf.string),
'h_HR': tf.FixedLenFeature([], tf.int64),
'w_HR': tf.FixedLenFeature([], tf.int64),
'c': tf.FixedLenFeature([], tf.int64)}
example = tf.parse_single_example(serialized_example, feature)
idx = example['index']
h_LR, w_LR = example['h_LR'], example['w_LR']
h_HR, w_HR = example['h_HR'], example['w_HR']
c = example['c']
data_LR = tf.decode_raw(example['data_LR'], tf.float64)
data_HR = tf.decode_raw(example['data_HR'], tf.float64)
data_LR = tf.reshape(data_LR, (h_LR, w_LR, c))
data_HR = tf.reshape(data_HR, (h_HR, w_HR, c))
if mu_sig is not None:
data_LR = (data_LR - mu_sig[0])/mu_sig[1]
data_HR = (data_HR - mu_sig[0])/mu_sig[1]
return idx, data_LR, data_HR
def _parse_test_(self, serialized_example, mu_sig=None):
'''
Parser data from TFRecords for the models to read in for testing
inputs:
serialized_example - batch of data drawn from tfrecord
mu_sig - mean, standard deviation if known
outputs:
idx - array of indicies for each sample
data_LR - array of LR images in the batch
'''
feature = {'index': tf.FixedLenFeature([], tf.int64),
'data_LR': tf.FixedLenFeature([], tf.string),
'h_LR': tf.FixedLenFeature([], tf.int64),
'w_LR': tf.FixedLenFeature([], tf.int64),
'c': tf.FixedLenFeature([], tf.int64)}
example = tf.parse_single_example(serialized_example, feature)
idx = example['index']
h_LR, w_LR = example['h_LR'], example['w_LR']
c = example['c']
data_LR = tf.decode_raw(example['data_LR'], tf.float64)
data_LR = tf.reshape(data_LR, (h_LR, w_LR, c))
if mu_sig is not None:
data_LR = (data_LR - mu_sig[0])/mu_sig[1]
return idx, data_LR
def set_mu_sig(self, data_path, batch_size=1):
'''
Compute mean (mu) and standard deviation (sigma) for each data channel
inputs:
data_path - (string) path to the tfrecord for the training data
batch_size - number of samples to grab each interation
outputs:
sets self.mu_sig
'''
print('Loading data ...', end=' ')
dataset = tf.data.TFRecordDataset(data_path)
dataset = dataset.map(self._parse_train_).batch(batch_size)
iterator = dataset.make_one_shot_iterator()
_, _, HR_out = iterator.get_next()
with tf.Session() as sess:
N, mu, sigma = 0, 0, 0
try:
while True:
data_HR = sess.run(HR_out)
N_batch, h, w, c = data_HR.shape
N_new = N + N_batch
mu_batch = np.mean(data_HR, axis=(0, 1, 2))
sigma_batch = np.var(data_HR, axis=(0, 1, 2))
sigma = (N/N_new)*sigma + (N_batch/N_new)*sigma_batch + (N*N_batch/N_new**2)*(mu - mu_batch)**2
mu = (N/N_new)*mu + (N_batch/N_new)*mu_batch
N = N_new
except tf.errors.OutOfRangeError:
pass
self.mu_sig = [mu, np.sqrt(sigma)]
print('Done.')
def set_LR_data_shape(self, data_path):
'''
Get size and shape of LR input data
inputs:
data_path - (string) path to the tfrecord of the data
outputs:
sets self.LR_data_shape
'''
print('Loading data ...', end=' ')
dataset = tf.data.TFRecordDataset(data_path)
dataset = dataset.map(self._parse_test_).batch(1)
iterator = dataset.make_one_shot_iterator()
_, LR_out = iterator.get_next()
with tf.Session() as sess:
data_LR = sess.run(LR_out)
self.LR_data_shape = data_LR.shape[1:]