We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hardware platform: GPU + docker
TAO version: 5.0
NVIDIA GPU Driver Version:
Problem: classification_tf1 gen_trt_engine crashes for etlt vehicletype model.
Reproduce: run nvcr.io/nvidia/tao/tao-toolkit:5.0.0-deploy docker with:
docker container run --rm --net host --runtime=nvidia --gpus=1 -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY -it nvcr.io/nvidia/tao/tao-toolkit:5.0.0-deploy bash
Download vehicletypenet etlt model using ngc:
wget https://ngc.nvidia.com/downloads/ngccli_cat_linux.zip unzip -u -q ngccli_cat_linux.zip ngc-cli/ngc registry model download-version nvidia/tao/vehicletypenet:pruned_v1.0.1 --dest samples/models/
Clone nvidia-tao repo with:
git clone https://github.com/NVIDIA-AI-IOT/nvidia-tao.git
Generate trt engine with:
classification_tf1 gen_trt_engine -m vehicletypenet_vpruned_v1.0.1/resnet18_vehicletypenet_pruned.etlt -k nvidia_tlt -e nvidia-tao/tao_deploy/specs/VehicleTypeNet/VehicleTypeNet.txt --data_type fp32 --batch_size 1 --max_batch_size 1 --batches 10 --engine_file models/vehicletypenet/vehicle_type.engine --results_dir vehicletypenet_vpruned_v1.0.1/
Program crashes with:
Loading uff directly from the package source code Loading uff directly from the package source code 2024-01-20 14:21:00,440 [TAO Toolkit] [INFO] root 174: Starting classification_tf1 gen_trt_engine. 2024-01-20 14:21:00,440 [TAO Toolkit] [INFO] root 61: The provided .etlt file is in UFF format. 2024-01-20 14:21:00,440 [TAO Toolkit] [INFO] root 62: Input name: b'input_1' [01/20/2024-14:21:00] [TRT] [I] [MemUsageChange] Init CUDA: CPU +2, GPU +0, now: CPU 43, GPU 480 (MiB) [01/20/2024-14:21:03] [TRT] [I] [MemUsageChange] Init builder kernel library: CPU +342, GPU +76, now: CPU 440, GPU 556 (MiB) 2024-01-20 14:21:03,279 [TAO Toolkit] [INFO] nvidia_tao_deploy.cv.classification_tf1.engine_builder 165: Parsing UFF model [01/20/2024-14:21:03] [TRT] [W] The implicit batch dimension mode has been deprecated. Please create the network with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag whenever possible. 2024-01-20 14:21:03,289 [TAO Toolkit] [INFO] root 174: Error parsing message with type 'uff.MetaGraph' Traceback (most recent call last): File "</usr/local/lib/python3.8/dist-packages/nvidia_tao_deploy/cv/classification_tf1/scripts/gen_trt_engine.py>", line 3, in <module> File "<frozen cv.classification_tf1.scripts.gen_trt_engine>", line 209, in <module> File "<frozen cv.common.decorators>", line 63, in _func File "<frozen cv.common.decorators>", line 48, in _func File "<frozen cv.classification_tf1.scripts.gen_trt_engine>", line 82, in main File "<frozen cv.classification_tf1.engine_builder>", line 173, in create_network File "<frozen cv.classification_tf1.engine_builder>", line 94, in get_uff_input_dims google.protobuf.message.DecodeError: Error parsing message with type 'uff.MetaGraph'
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hardware platform:
GPU + docker
TAO version: 5.0
NVIDIA GPU Driver Version:
Problem:
classification_tf1 gen_trt_engine crashes for etlt vehicletype model.
Reproduce:
run nvcr.io/nvidia/tao/tao-toolkit:5.0.0-deploy docker with:
Download vehicletypenet etlt model using ngc:
Clone nvidia-tao repo with:
Generate trt engine with:
Program crashes with:
The text was updated successfully, but these errors were encountered: