-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathsimpleStreams.cu
445 lines (380 loc) · 16.4 KB
/
simpleStreams.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample illustrates the usage of CUDA streams for overlapping
* kernel execution with device/host memcopies. The kernel is used to
* initialize an array to a specific value, after which the array is
* copied to the host (CPU) memory. To increase performance, multiple
* kernel/memcopy pairs are launched asynchronously, each pair in its
* own stream. Devices with Compute Capability 1.1 can overlap a kernel
* and a memcopy as long as they are issued in different streams. Kernels
* are serialized. Thus, if n pairs are launched, streamed approach
* can reduce the memcopy cost to the (1/n)th of a single copy of the entire
* data set.
*
* Additionally, this sample uses CUDA events to measure elapsed time for
* CUDA calls. Events are a part of CUDA API and provide a system independent
* way to measure execution times on CUDA devices with approximately 0.5
* microsecond precision.
*
* Elapsed times are averaged over nreps repetitions (10 by default).
*
*/
const char *sSDKsample = "simpleStreams";
const char *sEventSyncMethod[] = {"cudaEventDefault", "cudaEventBlockingSync",
"cudaEventDisableTiming", NULL};
const char *sDeviceSyncMethod[] = {
"cudaDeviceScheduleAuto", "cudaDeviceScheduleSpin",
"cudaDeviceScheduleYield", "INVALID",
"cudaDeviceScheduleBlockingSync", NULL};
// System includes
#include <stdio.h>
#include <assert.h>
// CUDA runtime
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
#ifndef WIN32
#include <sys/mman.h> // for mmap() / munmap()
#endif
// Macro to aligned up to the memory size in question
#define MEMORY_ALIGNMENT 4096
#define ALIGN_UP(x, size) (((size_t)x + (size - 1)) & (~(size - 1)))
__global__ void init_array(int *g_data, int *factor, int num_iterations) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = 0; i < num_iterations; i++) {
g_data[idx] += *factor; // non-coalesced on purpose, to burn time
}
}
bool correct_data(int *a, const int n, const int c) {
for (int i = 0; i < n; i++) {
if (a[i] != c) {
printf("%d: %d %d\n", i, a[i], c);
return false;
}
}
return true;
}
inline void AllocateHostMemory(bool bPinGenericMemory, int **pp_a,
int **ppAligned_a, int nbytes) {
#if CUDART_VERSION >= 4000
#if !defined(__arm__) && !defined(__aarch64__)
if (bPinGenericMemory) {
// allocate a generic page-aligned chunk of system memory
#ifdef WIN32
printf(
"> VirtualAlloc() allocating %4.2f Mbytes of (generic page-aligned "
"system memory)\n",
(float)nbytes / 1048576.0f);
*pp_a = (int *)VirtualAlloc(NULL, (nbytes + MEMORY_ALIGNMENT),
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
#else
printf(
"> mmap() allocating %4.2f Mbytes (generic page-aligned system "
"memory)\n",
(float)nbytes / 1048576.0f);
*pp_a = (int *)mmap(NULL, (nbytes + MEMORY_ALIGNMENT),
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
#endif
*ppAligned_a = (int *)ALIGN_UP(*pp_a, MEMORY_ALIGNMENT);
printf(
"> cudaHostRegister() registering %4.2f Mbytes of generic allocated "
"system memory\n",
(float)nbytes / 1048576.0f);
// pin allocate memory
checkCudaErrors(
cudaHostRegister(*ppAligned_a, nbytes, cudaHostRegisterMapped));
} else
#endif
#endif
{
printf("> cudaMallocHost() allocating %4.2f Mbytes of system memory\n",
(float)nbytes / 1048576.0f);
// allocate host memory (pinned is required for achieve asynchronicity)
checkCudaErrors(cudaMallocHost((void **)pp_a, nbytes));
*ppAligned_a = *pp_a;
}
}
inline void FreeHostMemory(bool bPinGenericMemory, int **pp_a,
int **ppAligned_a, int nbytes) {
#if CUDART_VERSION >= 4000
#if !defined(__arm__) && !defined(__aarch64__)
// CUDA 4.0 support pinning of generic host memory
if (bPinGenericMemory) {
// unpin and delete host memory
checkCudaErrors(cudaHostUnregister(*ppAligned_a));
#ifdef WIN32
VirtualFree(*pp_a, 0, MEM_RELEASE);
#else
munmap(*pp_a, nbytes);
#endif
} else
#endif
#endif
{
cudaFreeHost(*pp_a);
}
}
static const char *sSyncMethod[] = {
"0 (Automatic Blocking)",
"1 (Spin Blocking)",
"2 (Yield Blocking)",
"3 (Undefined Blocking Method)",
"4 (Blocking Sync Event) = low CPU utilization",
NULL};
void printHelp() {
printf("Usage: %s [options below]\n", sSDKsample);
printf("\t--sync_method=n for CPU/GPU synchronization\n");
printf("\t n=%s\n", sSyncMethod[0]);
printf("\t n=%s\n", sSyncMethod[1]);
printf("\t n=%s\n", sSyncMethod[2]);
printf("\t <Default> n=%s\n", sSyncMethod[4]);
printf(
"\t--use_generic_memory (default) use generic page-aligned for system "
"memory\n");
printf(
"\t--use_cuda_malloc_host (optional) use cudaMallocHost to allocate "
"system memory\n");
}
#if defined(__APPLE__) || defined(MACOSX)
#define DEFAULT_PINNED_GENERIC_MEMORY false
#else
#define DEFAULT_PINNED_GENERIC_MEMORY true
#endif
int main(int argc, char **argv) {
int cuda_device = 0;
int nstreams = 4; // number of streams for CUDA calls
int nreps = 10; // number of times each experiment is repeated
int n = 16 * 1024 * 1024; // number of ints in the data set
int nbytes = n * sizeof(int); // number of data bytes
dim3 threads, blocks; // kernel launch configuration
float elapsed_time, time_memcpy, time_kernel; // timing variables
float scale_factor = 1.0f;
// allocate generic memory and pin it laster instead of using cudaHostAlloc()
bool bPinGenericMemory =
DEFAULT_PINNED_GENERIC_MEMORY; // we want this to be the default behavior
int device_sync_method =
cudaDeviceBlockingSync; // by default we use BlockingSync
int niterations; // number of iterations for the loop inside the kernel
printf("[ %s ]\n\n", sSDKsample);
if (checkCmdLineFlag(argc, (const char **)argv, "help")) {
printHelp();
return EXIT_SUCCESS;
}
if ((device_sync_method = getCmdLineArgumentInt(argc, (const char **)argv,
"sync_method")) >= 0) {
if (device_sync_method == 0 || device_sync_method == 1 ||
device_sync_method == 2 || device_sync_method == 4) {
printf("Device synchronization method set to = %s\n",
sSyncMethod[device_sync_method]);
printf("Setting reps to 100 to demonstrate steady state\n");
nreps = 100;
} else {
printf("Invalid command line option sync_method=\"%d\"\n",
device_sync_method);
return EXIT_FAILURE;
}
} else {
printHelp();
return EXIT_SUCCESS;
}
if (checkCmdLineFlag(argc, (const char **)argv, "use_generic_memory")) {
#if defined(__APPLE__) || defined(MACOSX)
bPinGenericMemory = false; // Generic Pinning of System Paged memory not
// currently supported on Mac OSX
#else
bPinGenericMemory = true;
#endif
}
if (checkCmdLineFlag(argc, (const char **)argv, "use_cuda_malloc_host")) {
bPinGenericMemory = false;
}
printf("\n> ");
cuda_device = findCudaDevice(argc, (const char **)argv);
// check the compute capability of the device
int num_devices = 0;
checkCudaErrors(cudaGetDeviceCount(&num_devices));
if (0 == num_devices) {
printf(
"your system does not have a CUDA capable device, waiving test...\n");
return EXIT_WAIVED;
}
// check if the command-line chosen device ID is within range, exit if not
if (cuda_device >= num_devices) {
printf(
"cuda_device=%d is invalid, must choose device ID between 0 and %d\n",
cuda_device, num_devices - 1);
return EXIT_FAILURE;
}
checkCudaErrors(cudaSetDevice(cuda_device));
// Checking for compute capabilities
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, cuda_device));
niterations = 5;
// Check if GPU can map host memory (Generic Method), if not then we override
// bPinGenericMemory to be false
if (bPinGenericMemory) {
printf("Device: <%s> canMapHostMemory: %s\n", deviceProp.name,
deviceProp.canMapHostMemory ? "Yes" : "No");
if (deviceProp.canMapHostMemory == 0) {
printf(
"Using cudaMallocHost, CUDA device does not support mapping of "
"generic host memory\n");
bPinGenericMemory = false;
}
}
// Anything that is less than 32 Cores will have scaled down workload
scale_factor =
max((32.0f / (_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
(float)deviceProp.multiProcessorCount)),
1.0f);
n = (int)rint((float)n / scale_factor);
printf("> CUDA Capable: SM %d.%d hardware\n", deviceProp.major,
deviceProp.minor);
printf("> %d Multiprocessor(s) x %d (Cores/Multiprocessor) = %d (Cores)\n",
deviceProp.multiProcessorCount,
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor),
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
deviceProp.multiProcessorCount);
printf("> scale_factor = %1.4f\n", 1.0f / scale_factor);
printf("> array_size = %d\n\n", n);
// enable use of blocking sync, to reduce CPU usage
printf("> Using CPU/GPU Device Synchronization method (%s)\n",
sDeviceSyncMethod[device_sync_method]);
checkCudaErrors(cudaSetDeviceFlags(
device_sync_method | (bPinGenericMemory ? cudaDeviceMapHost : 0)));
// allocate host memory
int c = 5; // value to which the array will be initialized
int *h_a = 0; // pointer to the array data in host memory
int *hAligned_a = 0; // pointer to the array data in host memory (aligned to
// MEMORY_ALIGNMENT)
// Allocate Host memory (could be using cudaMallocHost or VirtualAlloc/mmap if
// using the new CUDA 4.0 features
AllocateHostMemory(bPinGenericMemory, &h_a, &hAligned_a, nbytes);
// allocate device memory
int *d_a = 0,
*d_c = 0; // pointers to data and init value in the device memory
checkCudaErrors(cudaMalloc((void **)&d_a, nbytes));
checkCudaErrors(cudaMemset(d_a, 0x0, nbytes));
checkCudaErrors(cudaMalloc((void **)&d_c, sizeof(int)));
checkCudaErrors(cudaMemcpy(d_c, &c, sizeof(int), cudaMemcpyHostToDevice));
printf("\nStarting Test\n");
// allocate and initialize an array of stream handles
cudaStream_t *streams =
(cudaStream_t *)malloc(nstreams * sizeof(cudaStream_t));
for (int i = 0; i < nstreams; i++) {
checkCudaErrors(cudaStreamCreate(&(streams[i])));
}
// create CUDA event handles
// use blocking sync
cudaEvent_t start_event, stop_event;
int eventflags =
((device_sync_method == cudaDeviceBlockingSync) ? cudaEventBlockingSync
: cudaEventDefault);
checkCudaErrors(cudaEventCreateWithFlags(&start_event, eventflags));
checkCudaErrors(cudaEventCreateWithFlags(&stop_event, eventflags));
// time memcopy from device
checkCudaErrors(cudaEventRecord(start_event, 0)); // record in stream-0, to
// ensure that all previous
// CUDA calls have
// completed
checkCudaErrors(cudaMemcpyAsync(hAligned_a, d_a, nbytes,
cudaMemcpyDeviceToHost, streams[0]));
checkCudaErrors(cudaEventRecord(stop_event, 0));
checkCudaErrors(cudaEventSynchronize(
stop_event)); // block until the event is actually recorded
checkCudaErrors(cudaEventElapsedTime(&time_memcpy, start_event, stop_event));
printf("memcopy:\t%.2f\n", time_memcpy);
// time kernel
threads = dim3(512, 1);
blocks = dim3(n / threads.x, 1);
checkCudaErrors(cudaEventRecord(start_event, 0));
init_array<<<blocks, threads, 0, streams[0]>>>(d_a, d_c, niterations);
checkCudaErrors(cudaEventRecord(stop_event, 0));
checkCudaErrors(cudaEventSynchronize(stop_event));
checkCudaErrors(cudaEventElapsedTime(&time_kernel, start_event, stop_event));
printf("kernel:\t\t%.2f\n", time_kernel);
//////////////////////////////////////////////////////////////////////
// time non-streamed execution for reference
threads = dim3(512, 1);
blocks = dim3(n / threads.x, 1);
checkCudaErrors(cudaEventRecord(start_event, 0));
for (int k = 0; k < nreps; k++) {
init_array<<<blocks, threads>>>(d_a, d_c, niterations);
checkCudaErrors(
cudaMemcpy(hAligned_a, d_a, nbytes, cudaMemcpyDeviceToHost));
}
checkCudaErrors(cudaEventRecord(stop_event, 0));
checkCudaErrors(cudaEventSynchronize(stop_event));
checkCudaErrors(cudaEventElapsedTime(&elapsed_time, start_event, stop_event));
printf("non-streamed:\t%.2f\n", elapsed_time / nreps);
//////////////////////////////////////////////////////////////////////
// time execution with nstreams streams
threads = dim3(512, 1);
blocks = dim3(n / (nstreams * threads.x), 1);
memset(hAligned_a, 255,
nbytes); // set host memory bits to all 1s, for testing correctness
checkCudaErrors(cudaMemset(
d_a, 0, nbytes)); // set device memory to all 0s, for testing correctness
checkCudaErrors(cudaEventRecord(start_event, 0));
for (int k = 0; k < nreps; k++) {
// asynchronously launch nstreams kernels, each operating on its own portion
// of data
for (int i = 0; i < nstreams; i++) {
init_array<<<blocks, threads, 0, streams[i]>>>(d_a + i * n / nstreams,
d_c, niterations);
}
// asynchronously launch nstreams memcopies. Note that memcopy in stream x
// will only
// commence executing when all previous CUDA calls in stream x have
// completed
for (int i = 0; i < nstreams; i++) {
checkCudaErrors(cudaMemcpyAsync(hAligned_a + i * n / nstreams,
d_a + i * n / nstreams, nbytes / nstreams,
cudaMemcpyDeviceToHost, streams[i]));
}
}
checkCudaErrors(cudaEventRecord(stop_event, 0));
checkCudaErrors(cudaEventSynchronize(stop_event));
checkCudaErrors(cudaEventElapsedTime(&elapsed_time, start_event, stop_event));
printf("%d streams:\t%.2f\n", nstreams, elapsed_time / nreps);
// check whether the output is correct
printf("-------------------------------\n");
bool bResults = correct_data(hAligned_a, n, c * nreps * niterations);
// release resources
for (int i = 0; i < nstreams; i++) {
checkCudaErrors(cudaStreamDestroy(streams[i]));
}
checkCudaErrors(cudaEventDestroy(start_event));
checkCudaErrors(cudaEventDestroy(stop_event));
// Free cudaMallocHost or Generic Host allocated memory (from CUDA 4.0)
FreeHostMemory(bPinGenericMemory, &h_a, &hAligned_a, nbytes);
checkCudaErrors(cudaFree(d_a));
checkCudaErrors(cudaFree(d_c));
return bResults ? EXIT_SUCCESS : EXIT_FAILURE;
}