From 5e3f06c6d47f347bbaa656d27155b63a7a76c02b Mon Sep 17 00:00:00 2001 From: Stepan Konev Date: Wed, 20 Nov 2024 18:29:07 +0100 Subject: [PATCH 1/3] Add highD dataset --- src/trajdata/caching/df_cache.py | 24 ++ .../dataset_specific/highD/__init__.py | 1 + .../dataset_specific/highD/highd_dataset.py | 272 ++++++++++++++++++ .../dataset_specific/scene_records.py | 6 + src/trajdata/utils/env_utils.py | 5 + src/trajdata/visualization/vis.py | 7 +- 6 files changed, 313 insertions(+), 2 deletions(-) create mode 100644 src/trajdata/dataset_specific/highD/__init__.py create mode 100644 src/trajdata/dataset_specific/highD/highd_dataset.py diff --git a/src/trajdata/caching/df_cache.py b/src/trajdata/caching/df_cache.py index 329bb3d..42453bd 100644 --- a/src/trajdata/caching/df_cache.py +++ b/src/trajdata/caching/df_cache.py @@ -749,6 +749,30 @@ def is_map_cached( and raster_map_path.exists() ) + @staticmethod + def cache_raster_map( + env_name: str, + data_idx: str, + cache_path: Path, + raster_map: np.ndarray, # RasterizedMap, + raster_metadata: RasterizedMapMetadata, + map_params: Dict[str, Any], + ) -> None: + raster_resolution: float = map_params["px_per_m"] + maps_path: Path = DataFrameCache.get_maps_path(cache_path, env_name) + raster_map_path: Path = ( + maps_path / f"{int(data_idx)+1}_{raster_resolution:.2f}px_m.zarr" + ) + raster_metadata_path: Path = ( + maps_path / f"{int(data_idx)+1}_{raster_resolution:.2f}px_m.dill" + ) + + maps_path.mkdir(parents=True, exist_ok=True) + zarr.save(raster_map_path, raster_map) + + with open(raster_metadata_path, "wb") as f: + dill.dump(raster_metadata, f) + @staticmethod def finalize_and_cache_map( cache_path: Path, diff --git a/src/trajdata/dataset_specific/highD/__init__.py b/src/trajdata/dataset_specific/highD/__init__.py new file mode 100644 index 0000000..759f685 --- /dev/null +++ b/src/trajdata/dataset_specific/highD/__init__.py @@ -0,0 +1 @@ +from .highd_dataset import HighDDataset \ No newline at end of file diff --git a/src/trajdata/dataset_specific/highD/highd_dataset.py b/src/trajdata/dataset_specific/highD/highd_dataset.py new file mode 100644 index 0000000..4244f67 --- /dev/null +++ b/src/trajdata/dataset_specific/highD/highd_dataset.py @@ -0,0 +1,272 @@ +import pandas as pd +import numpy as np +from pathlib import Path +from typing import Any, Dict, Final, List, Optional, Tuple, Type +from trajdata.dataset_specific.raw_dataset import RawDataset +from trajdata.data_structures.environment import EnvMetadata +from trajdata.data_structures import ( + AgentMetadata, + EnvMetadata, + Scene, + SceneMetadata, + SceneTag, +) +from trajdata.caching import EnvCache, SceneCache +from trajdata.dataset_specific.scene_records import HighDRecord +from trajdata.caching.df_cache import STATE_COLS, EXTENT_COLS +from trajdata.data_structures.agent import ( + AgentType, + VariableExtent, +) +from trajdata.maps import RasterizedMapMetadata +from tqdm import tqdm +import cv2 +import math + + +HIGHD_DT: Final[float] = 0.04 +HIGHD_NUM_SCENES: Final[int] = 60 +HIGHD_ENV_NAME: Final[str] = "highD" +HIGHD_SPLIT_NAME: Final[str] = "all" +# Scailing factor for the HighD raster map +# https://github.com/RobertKrajewski/highD-dataset/blob/master/Python/src/visualization/visualize_frame.py#L151-L152 +HIGHD_PX_PER_M: Final[float] = 0.40424 + + +class HighDDataset(RawDataset): + def compute_metadata(self, env_name: str, data_dir: str) -> EnvMetadata: + if env_name != HIGHD_ENV_NAME: + raise ValueError(f"Invalid environment name: {env_name}") + dataset_parts = [(HIGHD_SPLIT_NAME,)] + scene_split_map = { + str(scene_id): HIGHD_SPLIT_NAME + for scene_id in range(1, HIGHD_NUM_SCENES + 1) + } + return EnvMetadata( + name=env_name, + data_dir=data_dir, + dt=HIGHD_DT, + parts=dataset_parts, + scene_split_map=scene_split_map, + ) + + def load_dataset_obj(self, verbose: bool = False) -> None: + if verbose: + print(f"Loading {self.name} dataset...", flush=True) + self.dataset_obj: Dict[int, Dict[str, Any]] = dict() + for scene_id in tqdm(range(1, HIGHD_NUM_SCENES + 1)): + raw_data_idx = scene_id - 1 + scene_id_str = str(scene_id).zfill(2) + tracks_metadata = pd.read_csv( + Path(self.metadata.data_dir) / f"{scene_id_str}_tracksMeta.csv" + ) + tracks_metadata["id"] = tracks_metadata["id"].astype(str) + tracks_data = pd.read_csv( + Path(self.metadata.data_dir) / f"{scene_id_str}_tracks.csv" + ) + tracks_data["id"] = tracks_data["id"].astype(str) + tracks_data = tracks_data.merge( + tracks_metadata[["id", "numFrames"]], on="id" + ) + tracks_metadata.set_index("id", inplace=True) + tracks_data = tracks_data[tracks_data["numFrames"] > 1].reset_index( + drop=True + ) + tracks_data["z"] = np.zeros_like(tracks_data["x"]) + # Regarding width -> length and height -> width plz see + # https://levelxdata.com/wp-content/uploads/2023/10/highD-Format.pdf + # Track Meta Information + tracks_data.rename( + columns={ + "frame": "scene_ts", + "id": "agent_id", + "width": "length", + "height": "width", + "xVelocity": "vx", + "yVelocity": "vy", + "xAcceleration": "ax", + "yAcceleration": "ay", + }, + inplace=True, + ) + # Originally in the data: + # The x position of the upper left corner of the vehicle's bounding box. + tracks_data["x"] = tracks_data["x"] + tracks_data["length"] / 2 + tracks_data["y"] = tracks_data["y"] + tracks_data["width"] / 2 + tracks_data["heading"] = np.arctan2(tracks_data["vy"], tracks_data["vx"]) + # agent_id -> {scene_id}_{agent_id} + tracks_data["agent_id"] = tracks_data["agent_id"].apply( + lambda x: f"{scene_id_str}_{x}" + ) + # "height" is unavailable in the HighD dataset + index_cols = ["agent_id", "scene_ts"] + tracks_data = tracks_data[ + ["heading"] + STATE_COLS + EXTENT_COLS[:-1] + index_cols + ] + tracks_data.set_index(["agent_id", "scene_ts"], inplace=True) + tracks_data.sort_index(inplace=True) + tracks_data.reset_index(level=1, inplace=True) + scene_data = ( + pd.read_csv( + Path(self.metadata.data_dir) / f"{scene_id_str}_recordingMeta.csv" + ) + .iloc[0] + .to_dict() + ) + self.dataset_obj[raw_data_idx] = { + "scene_id": scene_id, + "tracks_data": tracks_data, + "scene_data": scene_data, + "tracks_metadata": tracks_metadata, + } + + def _get_location_from_scene_info(self, scene_info: Dict) -> str: + return str(scene_info["scene_id"]) + + def _get_matching_scenes_from_obj( + self, + scene_tag: SceneTag, + scene_desc_contains: Optional[List[str]], + env_cache: EnvCache, + ) -> List[SceneMetadata]: + all_scenes_list: List[HighDRecord] = list() + scenes_list: List[SceneMetadata] = list() + for raw_data_idx, scene_info in self.dataset_obj.items(): + scene_id = raw_data_idx + 1 + scene_location = self._get_location_from_scene_info(scene_info) + scene_length: int = scene_info["tracks_data"]["scene_ts"].max().item() + 1 + all_scenes_list.append( + HighDRecord(raw_data_idx, scene_length, scene_location) + ) + scene_metadata = SceneMetadata( + env_name=self.metadata.name, + name=str(scene_id), + dt=self.metadata.dt, + raw_data_idx=raw_data_idx, + ) + scenes_list.append(scene_metadata) + self.cache_all_scenes_list(env_cache, all_scenes_list) + return scenes_list + + def _get_matching_scenes_from_cache( + self, + scene_tag: SceneTag, + scene_desc_contains: Optional[List[str]], + env_cache: EnvCache, + ) -> List[Scene]: + all_scenes_list: List[HighDRecord] = env_cache.load_env_scenes_list(self.name) + scenes_list: List[Scene] = list() + for scene_record in all_scenes_list: + data_idx, scene_length, scene_location = scene_record + scene_id = data_idx + 1 + scene_metadata = Scene( + self.metadata, + str(scene_id), + scene_location, + HIGHD_SPLIT_NAME, + scene_length, + data_idx, + None, + ) + scenes_list.append(scene_metadata) + return scenes_list + + def get_scene(self, scene_info: SceneMetadata) -> Scene: + _, scene_name, _, data_idx = scene_info + scene_data: pd.DataFrame = self.dataset_obj[data_idx]["tracks_data"] + scene_location: str = self._get_location_from_scene_info( + self.dataset_obj[data_idx] + ) + scene_split: str = self.metadata.scene_split_map[scene_name] + scene_length: int = scene_data["scene_ts"].max().item() + 1 + return Scene( + self.metadata, + scene_name, + scene_location, + scene_split, + scene_length, + data_idx, + None, + ) + + def get_agent_info( + self, scene: Scene, cache_path: Path, cache_class: Type[SceneCache] + ) -> Tuple[List[AgentMetadata], List[List[AgentMetadata]]]: + scene_data: pd.DataFrame = self.dataset_obj[scene.raw_data_idx][ + "tracks_data" + ].copy() + agent_list: List[AgentMetadata] = list() + agent_presence: List[List[AgentMetadata]] = [ + [] for _ in range(scene.length_timesteps) + ] + for agent_id, frames in scene_data.groupby("agent_id")["scene_ts"]: + start_frame: int = frames.iat[0].item() + last_frame: int = frames.iat[-1].item() + agent_metadata = self.dataset_obj[scene.raw_data_idx][ + "tracks_metadata" + ].loc[agent_id.split("_")[1]] + assert start_frame == agent_metadata["initialFrame"] + assert last_frame == agent_metadata["finalFrame"] + agent_info = AgentMetadata( + name=str(agent_id), + agent_type=AgentType.VEHICLE, + first_timestep=start_frame, + last_timestep=last_frame, + extent=VariableExtent(), + ) + agent_list.append(agent_info) + for frame in frames: + agent_presence[frame].append(agent_info) + cache_class.save_agent_data( + scene_data, + cache_path, + scene, + ) + return agent_list, agent_presence + + def cache_map( + self, + data_idx: int, + cache_path: Path, + map_cache_class: Type[SceneCache], + map_params: Dict[str, Any], + ) -> None: + env_name = self.metadata.name + resolution = map_params["px_per_m"] + raster_map = ( + cv2.imread( + Path(self.metadata.data_dir) + / f"{str(data_idx + 1).zfill(2)}_highway.png" + ).astype(np.float32) + / 255.0 + ) + raster_map = cv2.resize( + raster_map, + ( + math.ceil(HIGHD_PX_PER_M * resolution * raster_map.shape[1]), + math.ceil(HIGHD_PX_PER_M * resolution * raster_map.shape[0]), + ), + interpolation=cv2.INTER_AREA, + ).transpose(2, 0, 1) + raster_from_world = np.eye(3) + raster_from_world[:2, :2] *= resolution + raster_metadata = RasterizedMapMetadata( + name=f"{data_idx + 1}_map", + shape=raster_map.shape, + layers=["road", "lane", "shoulder"], + layer_rgb_groups=([0], [1], [2]), + resolution=map_params["px_per_m"], + map_from_world=raster_from_world, + ) + map_cache_class.cache_raster_map( + env_name, str(data_idx), cache_path, raster_map, raster_metadata, map_params + ) + + def cache_maps( + self, + cache_path: Path, + map_cache_class: Type[SceneCache], + map_params: Dict[str, Any], + ): + for data_idx in range(HIGHD_NUM_SCENES): + self.cache_map(data_idx, cache_path, map_cache_class, map_params) diff --git a/src/trajdata/dataset_specific/scene_records.py b/src/trajdata/dataset_specific/scene_records.py index f29835e..9830fe2 100644 --- a/src/trajdata/dataset_specific/scene_records.py +++ b/src/trajdata/dataset_specific/scene_records.py @@ -1,6 +1,12 @@ from typing import NamedTuple +class HighDRecord(NamedTuple): + data_idx: int + length: int + location: str + + class Argoverse2Record(NamedTuple): name: str data_idx: int diff --git a/src/trajdata/utils/env_utils.py b/src/trajdata/utils/env_utils.py index 3b5da9a..9408878 100644 --- a/src/trajdata/utils/env_utils.py +++ b/src/trajdata/utils/env_utils.py @@ -50,6 +50,11 @@ def get_raw_dataset(dataset_name: str, data_dir: str) -> RawDataset: return Av2Dataset(dataset_name, data_dir, parallelizable=True, has_maps=True) + if "highD" in dataset_name: + from trajdata.dataset_specific.highD import HighDDataset + + return HighDDataset(dataset_name, data_dir, parallelizable=True, has_maps=True) + raise ValueError(f"Dataset with name '{dataset_name}' is not supported") diff --git a/src/trajdata/visualization/vis.py b/src/trajdata/visualization/vis.py index 5fff19d..37cfdad 100644 --- a/src/trajdata/visualization/vis.py +++ b/src/trajdata/visualization/vis.py @@ -103,7 +103,9 @@ def draw_map( ): patch_size: int = map.shape[-1] map_array = RasterizedMap.to_img(map.cpu()) - brightened_map_array = map_array * 0.2 + 0.8 + if alpha > 1.0 or alpha < 0.0: + raise ValueError("alpha must be between 0 and 1") + brightened_map_array = map_array * alpha + (1 - alpha) im = ax.imshow( brightened_map_array, @@ -242,6 +244,7 @@ def plot_agent_batch( legend: bool = True, show: bool = True, close: bool = True, + alpha: float = 0.2, ) -> None: if ax is None: _, ax = plt.subplots() @@ -262,7 +265,7 @@ def plot_agent_batch( agent_from_raster_tf: Tensor = agent_from_world_tf @ world_from_raster_tf - draw_map(ax, batch.maps[batch_idx], agent_from_raster_tf, alpha=1.0) + draw_map(ax, batch.maps[batch_idx], agent_from_raster_tf, alpha) agent_hist = batch.agent_hist[batch_idx].cpu() agent_fut = batch.agent_fut[batch_idx].cpu() From b4fc1f8e9d7b8337b2beda6a7a8f418c37ad5420 Mon Sep 17 00:00:00 2001 From: Stepan Konev Date: Wed, 20 Nov 2024 18:39:59 +0100 Subject: [PATCH 2/3] add to Readme --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index e182ffe..45b4514 100644 --- a/README.md +++ b/README.md @@ -116,6 +116,7 @@ Currently, the dataloader supports interfacing with the following datasets: | UCY - Zara1 | `eupeds_zara1` | `train`, `val`, `train_loo`, `val_loo`, `test_loo` | `cyprus` | The Zara1 scene from the UCY Pedestrians dataset | 0.4s (2.5Hz) | | | UCY - Zara2 | `eupeds_zara2` | `train`, `val`, `train_loo`, `val_loo`, `test_loo` | `cyprus` | The Zara2 scene from the UCY Pedestrians dataset | 0.4s (2.5Hz) | | | Stanford Drone Dataset | `sdd` | `train`, `val`, `test` | `stanford` | Stanford Drone Dataset (60 scenes, randomly split 42/9/9 (70%/15%/15%) for training/validation/test) | 0.0333...s (30Hz) | | +| highD | `highD` | `all` | N/A | Traffic recordings for more than 110 500 vehicles | 0.04s (25Hz) | :white_check_mark: | ### Adding New Datasets The code that interfaces the original datasets (dealing with their unique formats) can be found in `src/trajdata/dataset_specific`. From 68dceda1cebe4f876a6fce38b9c38cff24c5d3fe Mon Sep 17 00:00:00 2001 From: Stepan Konev Date: Thu, 21 Nov 2024 03:24:49 +0100 Subject: [PATCH 3/3] highD set parallelizable to False --- src/trajdata/utils/env_utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/trajdata/utils/env_utils.py b/src/trajdata/utils/env_utils.py index 9408878..7848c71 100644 --- a/src/trajdata/utils/env_utils.py +++ b/src/trajdata/utils/env_utils.py @@ -53,7 +53,7 @@ def get_raw_dataset(dataset_name: str, data_dir: str) -> RawDataset: if "highD" in dataset_name: from trajdata.dataset_specific.highD import HighDDataset - return HighDDataset(dataset_name, data_dir, parallelizable=True, has_maps=True) + return HighDDataset(dataset_name, data_dir, parallelizable=False, has_maps=True) raise ValueError(f"Dataset with name '{dataset_name}' is not supported")