forked from cjlin1/liblinear
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnewton.cpp
251 lines (211 loc) · 5.04 KB
/
newton.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "newton.h"
#ifndef min
template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
#endif
#ifndef max
template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
#endif
#ifdef __cplusplus
extern "C" {
#endif
extern double dnrm2_(int *, double *, int *);
extern double ddot_(int *, double *, int *, double *, int *);
extern int daxpy_(int *, double *, double *, int *, double *, int *);
extern int dscal_(int *, double *, double *, int *);
#ifdef __cplusplus
}
#endif
static void default_print(const char *buf)
{
fputs(buf,stdout);
fflush(stdout);
}
// On entry *f must be the function value of w
// On exit w is updated and *f is the new function value
double function::linesearch_and_update(double *w, double *s, double *f, double *g, double alpha)
{
double gTs = 0;
double eta = 0.01;
int n = get_nr_variable();
int max_num_linesearch = 20;
double *w_new = new double[n];
double fold = *f;
for (int i=0;i<n;i++)
gTs += s[i] * g[i];
int num_linesearch = 0;
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
{
for (int i=0;i<n;i++)
w_new[i] = w[i] + alpha*s[i];
*f = fun(w_new);
if (*f - fold <= eta * alpha * gTs)
break;
else
alpha *= 0.5;
}
if (num_linesearch >= max_num_linesearch)
{
*f = fold;
return 0;
}
else
memcpy(w, w_new, sizeof(double)*n);
delete [] w_new;
return alpha;
}
void NEWTON::info(const char *fmt,...)
{
char buf[BUFSIZ];
va_list ap;
va_start(ap,fmt);
vsprintf(buf,fmt,ap);
va_end(ap);
(*newton_print_string)(buf);
}
NEWTON::NEWTON(const function *fun_obj, double eps, double eps_cg, int max_iter)
{
this->fun_obj=const_cast<function *>(fun_obj);
this->eps=eps;
this->eps_cg=eps_cg;
this->max_iter=max_iter;
newton_print_string = default_print;
}
NEWTON::~NEWTON()
{
}
void NEWTON::newton(double *w)
{
int n = fun_obj->get_nr_variable();
int i, cg_iter;
double step_size;
double f, fold, actred;
double init_step_size = 1;
int search = 1, iter = 1, inc = 1;
double *s = new double[n];
double *r = new double[n];
double *g = new double[n];
const double alpha_pcg = 0.01;
double *M = new double[n];
// calculate gradient norm at w=0 for stopping condition.
double *w0 = new double[n];
for (i=0; i<n; i++)
w0[i] = 0;
fun_obj->fun(w0);
fun_obj->grad(w0, g);
double gnorm0 = dnrm2_(&n, g, &inc);
delete [] w0;
f = fun_obj->fun(w);
fun_obj->grad(w, g);
double gnorm = dnrm2_(&n, g, &inc);
info("init f %5.3e |g| %5.3e\n", f, gnorm);
if (gnorm <= eps*gnorm0)
search = 0;
while (iter <= max_iter && search)
{
fun_obj->get_diag_preconditioner(M);
for(i=0; i<n; i++)
M[i] = (1-alpha_pcg) + alpha_pcg*M[i];
cg_iter = pcg(g, M, s, r);
fold = f;
step_size = fun_obj->linesearch_and_update(w, s, &f, g, init_step_size);
if (step_size == 0)
{
info("WARNING: line search fails\n");
break;
}
fun_obj->grad(w, g);
gnorm = dnrm2_(&n, g, &inc);
info("iter %2d f %5.3e |g| %5.3e CG %3d step_size %4.2e \n", iter, f, gnorm, cg_iter, step_size);
if (gnorm <= eps*gnorm0)
break;
if (f < -1.0e+32)
{
info("WARNING: f < -1.0e+32\n");
break;
}
actred = fold - f;
if (fabs(actred) <= 1.0e-12*fabs(f))
{
info("WARNING: actred too small\n");
break;
}
iter++;
}
if(iter >= max_iter)
info("\nWARNING: reaching max number of Newton iterations\n");
delete[] g;
delete[] r;
delete[] s;
delete[] M;
}
int NEWTON::pcg(double *g, double *M, double *s, double *r)
{
int i, inc = 1;
int n = fun_obj->get_nr_variable();
double one = 1;
double *d = new double[n];
double *Hd = new double[n];
double zTr, znewTrnew, alpha, beta, cgtol, dHd;
double *z = new double[n];
double Q = 0, newQ, Qdiff;
for (i=0; i<n; i++)
{
s[i] = 0;
r[i] = -g[i];
z[i] = r[i] / M[i];
d[i] = z[i];
}
zTr = ddot_(&n, z, &inc, r, &inc);
double gMinv_norm = sqrt(zTr);
cgtol = min(eps_cg, sqrt(gMinv_norm));
int cg_iter = 0;
int max_cg_iter = max(n, 5);
while (cg_iter < max_cg_iter)
{
cg_iter++;
fun_obj->Hv(d, Hd);
dHd = ddot_(&n, d, &inc, Hd, &inc);
// avoid 0/0 in getting alpha
if (dHd <= 1.0e-16)
break;
alpha = zTr/dHd;
daxpy_(&n, &alpha, d, &inc, s, &inc);
alpha = -alpha;
daxpy_(&n, &alpha, Hd, &inc, r, &inc);
// Using quadratic approximation as CG stopping criterion
newQ = -0.5*(ddot_(&n, s, &inc, r, &inc) - ddot_(&n, s, &inc, g, &inc));
Qdiff = newQ - Q;
if (newQ <= 0 && Qdiff <= 0)
{
if (cg_iter * Qdiff >= cgtol * newQ)
break;
}
else
{
info("WARNING: quadratic approximation > 0 or increasing in CG\n");
break;
}
Q = newQ;
for (i=0; i<n; i++)
z[i] = r[i] / M[i];
znewTrnew = ddot_(&n, z, &inc, r, &inc);
beta = znewTrnew/zTr;
dscal_(&n, &beta, d, &inc);
daxpy_(&n, &one, z, &inc, d, &inc);
zTr = znewTrnew;
}
if (cg_iter == max_cg_iter)
info("WARNING: reaching maximal number of CG steps\n");
delete[] d;
delete[] Hd;
delete[] z;
return(cg_iter);
}
void NEWTON::set_print_string(void (*print_string) (const char *buf))
{
newton_print_string = print_string;
}