forked from TrystanScottLambert/Cross_Matching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCross_Match.py
102 lines (84 loc) · 5.02 KB
/
Cross_Match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#########################################
# #
# Cross Matching function #
# Trystan Scott Lambert #
# #
# Function which mimics the astropy #
# SkyCoord function but works for both #
# cartesian, equitorial, and galacitc #
# #
# It is also much faster due to not #
# assigning units to any arrays #
# (except for some crash cases) #
# #
#########################################
import numpy as np
import pylab as plt
import astropy.units as u
from astropy.coordinates import SkyCoord
# Function to work out the xy cartesian distance. (only works for cartesian).
def radii_distance(x1,y1,x2,y2):
return np.sqrt((x1-x2)**2+(y1-y2)**2)
# Function to work out the distance between z1 and z2 (This works for both vel and/or z)
def los_distance(z1,z2):
return np.abs(z1-z2)
# In the case that we want to use the ra/dec/vel (or l,b,vel) we need calculate the angular separation. This is the explicit formulism
def angsep(ra1,ra2,dec1,dec2):
try:
faq=(np.pi/180)
ra_1,ra_2,dec_1,dec_2=faq*ra1,faq*ra2,faq*dec1,faq*dec2
cosl=np.cos((np.pi/2)-dec_2)*np.cos((np.pi/2)-dec_1)+np.sin((np.pi/2)-dec_2)*np.sin((np.pi/2)-dec_1)*np.cos(ra_2-ra_1)
val=(1./faq)*np.arccos(cosl)
except RuntimeWarning:
c1=SkyCoord(ra=ra1*u.degree,dec=dec1*u.degree,frame='icrs')
c2=SkyCoord(ra=ra2*u.degree,dec=dec2*u.degree,frame='icrs')
sep=c1.separation(c2)
val=sep.value
return val
# Function which takes a point (x,y,z) and finds the closest point in x_array,y_array,z_array GIVEN some xy lim and then z lim. Weighted towards the xy lim.
# This function will also work for RA/Dec/vel and l/b/vel (or any other distance metric)
# Note that xy-lim and z_lim are in cartesian coordinates or 3D Spherical depending out what the user puts in
def search_around_point(x,y,z,x_array,y_array,z_array,xy_lim,z_lim,frame='cartesian'):
idx = np.arange(0,len(x_array)) #making an array representing the positions in the x_array
if frame=='cartesian': #checking which frame we are using.
os_distances = radii_distance(x,x_array,y,y_array) #if cartesian we get the distances in xy
elif frame=='spherical':
os_distances = angsep(x,x_array,y,y_array) #if spherical getting the distance in degrees
os_cut = os_distances < xy_lim #checking where the distances are less than the limit
os_idx = idx[os_cut] #applying our cut where distances are less than the limit
los_distances = los_distance(z,z_array) #working out all the line of sight distances
los_cut = los_distances < z_lim #checking where the distances are less than the limit
los_idx = idx[los_cut] #applying our cut.
idx = np.intersect1d(los_idx,os_idx) # This finds the common indicies between our 2 cuts. which means this shows the indicies in the arrays where both limits are passed
if len(idx)>1: #in this case there are multiple matches to our one x,y,z point and we need to find the closest one
print(f'{len(idx)} possible matches') #printing out how many matches there are (We could remove this if need be)
cut = np.where(os_distances[idx]==np.min(os_distances[idx]))[0] #This is finding the smallest distance
idx = idx[cut] #This is getting the index in the array that is the closest match (which passes both limits)
return idx[0],os_distances[idx][0],los_distances[idx][0]
elif len(idx) == 0: # In this case there are no matches and so we can just return fokol
print('No matches found')
return None
else: # The only other possible thing is that there is exactly one match.
return idx[0],os_distances[idx][0],los_distances[idx][0]
#Function which will do the cross matching for an entire array
def Cross_match(x1,y1,z1,x2,y2,z2,xy_lim,z_lim,frame='cartesian'):
# Error capturing to makes sure that the frame is correct.
if frame != 'cartesian' and frame != 'equitorial':
print('Error: frame needs to be "cartesian" or "equitorial"')
return #returning nothing like this will end the function right away
#lists which we will populate with values
idx_1 = [] #this is the index for the x1,y1,z1 arrays
idx_2 = [] #this is the corresponding index for x2,y2,z2
d2d = [] #this is the on sky distances (either in cartesian units or degrees depending on frame choice)
d3d = [] #this is the line-of-sight distance which will be in whatever units the user points in
for i in range(len(x1)):
val=search_around_point(x1[i],y1[i],z1[i],x2,y2,z2,xy_lim,z_lim,frame=frame) # returns the index in 2 with the closest match plus the offsets (on-sky and line-of-sight)
if val != None: #if val is empty (i.e. there isn't any match) then do nothing. I.e. only populate the lists if there is a match
idx_1.append(i)
idx_2.append(val[0])
d2d.append(val[1])
d3d.append(val[2])
idx_1,idx_2,d2d,d3d = np.array(idx_1),np.array(idx_2),np.array(d2d),np.array(d3d)
idx_1_not_matches = np.setdiff1d(np.arange(0,len(x1)),idx_1) #getting the inverses of the arrays so that we can find the failed matches.
idx_2_not_matches = np.setdiff1d(np.arange(0,len(x2)),idx_2)
return idx_1,idx_2,idx_1_not_matches,idx_2_not_matches,d2d,d3d #return them as arrays