-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvis_overfit_trainingsize.py
105 lines (71 loc) · 3.04 KB
/
vis_overfit_trainingsize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from comet_ml import experiment
from data_loader.uts_classification_data_loader import UtsClassificationDataLoader
from models.uts_classification_model import UtsClassificationModel
from trainers.uts_classification_trainer import UtsClassificationTrainer
from evaluater.uts_classification_evaluater import UtsClassificationEvaluater
from utils.config import process_config_VisOverfit
from utils.dirs import create_dirs
from utils.utils import get_args
# from utils.uts_classification.utils import plot_trainingsize_metric
import pandas as pd
import numpy as np
import os
import time
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# capture the config path from the run arguments
# then process the json configuration file
# try:
split = 10
training_size = []
accuracy = []
precision = []
recall = []
f1 = []
main_dir = ''
args = get_args()
for i in range(split):
config = process_config_VisOverfit(args.config,i)
# except:
# print("missing or invalid arguments")
# exit(0)
# create the experiments dirs
create_dirs([config.callbacks.tensorboard_log_dir, config.callbacks.checkpoint_dir,
config.log_dir, config.result_dir])
print('Create the data generator.')
data_loader = UtsClassificationDataLoader(config)
total_train_size = data_loader.get_train_size()
total_test_size = data_loader.get_test_size()
print("total_train_size: "+ str(total_train_size))
print("total_test_size: "+ str(total_test_size))
print('Create the model.')
model = UtsClassificationModel(config, data_loader.get_inputshape(), data_loader.get_nbclasses())
print('Create the trainer')
train_size = int(total_train_size / split) * (i + 1)
if i==split-1:
print("train_size: " + str(total_train_size))
trainer = UtsClassificationTrainer(model.model, data_loader.get_train_data(), config)
main_dir = config.main_dir
else:
print("train_size: " + str(train_size))
train_data =data_loader.get_train_data()
X_train = train_data[0][:train_size,:,:]
y_train = train_data[1][:train_size,:]
trainer = UtsClassificationTrainer(model.model,[X_train, y_train], config)
print('Start training the model.')
trainer.train()
print('Create the evaluater.')
evaluater = UtsClassificationEvaluater(trainer.best_model, data_loader.get_test_data(), data_loader.get_nbclasses(),
config)
print('Start evaluating the model.')
evaluater.evluate()
training_size.append(train_size)
accuracy.append(evaluater.acc)
precision.append(evaluater.precision)
recall.append(evaluater.recall)
f1.append(evaluater.f1)
print("ss")
metrics = {"accuracy":accuracy,"precision":precision,"recall":recall,"f1":f1,"training_size":training_size}
plot_trainingsize_metric(metrics, main_dir + 'vis_overfit_trainingsize.png')
if __name__ == '__main__':
main()