-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate.py
340 lines (308 loc) · 15.5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# This code builds on the AWD-LSTM codebase
# (https://github.com/salesforce/awd-lstm-lm).
#
# groc is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 3 as
# published by the Free Software Foundation.
#
# groc is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with groc. If not, see http://www.gnu.org/licenses/
import argparse
import os, shutil
import hashlib
import time
import math
import numpy as np
import torch
import torch.nn as nn
import data
import model
from utils import batchify, get_batch, repackage_hidden, get_external_knowledge
import sys
import random
import pickle
from collections import deque
import IPython as ipy
parser = argparse.ArgumentParser(description='PyTorch PennTreeBank RNN/LSTM Language Model')
parser.add_argument('--bptt', type=int, default=70,
help='sequence length')
parser.add_argument('--test_data', type=str, default='data/penn/',
help='location of the test data corpus')
parser.add_argument('--save', type=str,
help='path from which to load the model')
parser.add_argument('--cuda', action="store_true", default=False,
help='use CUDA device')
parser.add_argument('--cuda_device', type=int, default=-1,
help='set CUDA device')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--test_batch_size', type=int, default=64,
help='test batch size')
parser.add_argument('--adapt_method', default="change_vocab",
help='method to adapt to new vocabulary')
parser.add_argument('--lam', type=float, default=0.9,
help='interpolation weight for the cache distribution')
parser.add_argument('--lamu', type=float, default=0.99,
help='interpolation weight for the uniform distribution')
parser.add_argument('--theta', type=float, default=0.24,
help='flattening parameter for neural cache, between 0 and 1')
parser.add_argument('--cache_size', type=int, default=10000,
help='length of history to cache')
parser.add_argument('--global_norm', action="store_true",
help='use global normalization')
parser.add_argument('--alpha', type=float, default=2.0,
help='weight for global normalization')
parser.add_argument('--hyp_search', type=str, default=None,
help='search over ranges for various hyperparams (edit file to specify values)')
parser.add_argument('--downweight_oov', type=float, default=-1.0,
help='weight for new words in test vocab')
args = parser.parse_args()
interpolate_methods = ["interpolate_uniform", "interpolate_unigram", "interpolate_neural"]
# Set the random seed manually for reproducibility.
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
logging("WARNING: You have a CUDA device, so you should probably run with --cuda and --cuda_device [device_id]")
else:
torch.cuda.set_device(int(args.cuda_device))
torch.cuda.manual_seed(args.seed)
def logging(s, print_=True, log_=True):
print(s, file=sys.stderr)
if log_:
with open(os.path.join(args.save, 'eval_log.txt'), 'a+') as f_log:
f_log.write(str(s) + '\n')
def log_interpolate(d1, d2, weight=0.5):
"""
Interpolates the two distributions in log space. Uses torch.logsumexp
just in case, even though we're only adding pairs of probabilities,
because some of the probabilities in question can be quite small to
begin with!
Inputs:
d1: Tensor, requires_grad=True, size=(batch_size, vocab_size)
d2: Tensor, size=(batch_size, vocab_size)
weight: int. the interpolation weight (relative weight of d1 and d2)
makes the resulting distribution sum to 1 and not 2 :)
Returns:
A Tensor of size (batch_size, vocab_size) representing the interpolation of
d2 with each of the distributions for the batch instances in d1
"""
batch_size, vocab_size = d1.size()
lse_tensor = torch.cat((d1.view(batch_size,vocab_size,1) + np.log(weight),
d2.view(batch_size,vocab_size,1) + np.log(1-weight))
,2)
return torch.logsumexp(lse_tensor,2)
def model_load(fn, device=0):
with open(fn+'/model.pt', 'rb') as f:
model = torch.load(f, map_location=f'cuda:{device}')
with open(fn+'/criterion.pt', 'rb') as f:
criterion = torch.load(f, map_location=f'cuda:{device}')
with open(fn+'/optimizer.pt', 'rb') as f:
optimizer = torch.load(f, map_location=f'cuda:{device}')
return model, criterion, optimizer
def corpus_load(corpus_path, test, use_unk=False):
if test:
fn = 'corpus.{}.data'.format(hashlib.md5((corpus_path.strip('/')+"-test").encode()).hexdigest())
else:
fn = 'corpus.{}.data'.format(hashlib.md5(corpus_path.strip('/').encode()).hexdigest())
print (fn)
if os.path.exists(fn):
logging('Loading cached dataset from {}...'.format(corpus_path))
corpus = torch.load(fn)
else:
logging('Producing dataset from {} ...'.format(corpus_path))
corpus = data.Corpus(args.test_data, use_unk=use_unk)
torch.save(corpus, fn)
return corpus
def evaluate(model, criterion, data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
n = data_source.size(0)
cache_N = args.cache_size
output_dim = model.H.emsize
V = len(model.dict.word2idx)
batch_row_idx = torch.arange(batch_size).long()
uniform_prob = 1/V
uniform_dist = (torch.zeros((1,V)).cuda() + uniform_prob).log()
unigram_counts = torch.zeros((batch_size,V)).cuda()
cache = deque(maxlen=cache_N)
hidden = model.init_hidden(batch_size)
if not os.path.isfile(os.path.join(args.save, 'recover-state.pkl')):
start_iter = 0
total_loss = 0
else:
logging("Restoring from recover-state.pkl...")
with open(os.path.join(args.save, 'recover-state.pkl'),'rb') as f:
start_iter, total_loss = pickle.load(f)
logging("Restoring from recover-cache-targets.pt...")
if args.adapt_method in ["interpolate_neural", "interpolate_unigram"]:
hidden = torch.load(os.path.join(args.save, 'recover-hidden.pt'))
cache_targets = torch.load(os.path.join(args.save, 'recover-cache-targets.pt'))
if args.adapt_method == "interpolate_neural":
logging("Restoring from recover-cache.pt...")
cache_vectors = torch.load(os.path.join(args.save, 'recover-cache.pt'))
else:
cache_vectors = torch.zeros((batch_size,2,cache_targets.size(0)))
for ci in range(cache_targets.size(0)):
cache.append((cache_targets[ci],cache_vectors[:,:,ci]))
unigram_counts[batch_row_idx,cache_targets[ci]] += 1
if len(cache) > 0:
print("{} {}".format(cache[0][0].size(), cache[0][1].size()))
logging("Restore complete.")
if args.bptt > 1 and args.adapt_method in interpolate_methods:
logging("Warning: cache will not work with bptt > 1")
if isinstance(criterion, nn.CrossEntropyLoss):
softmax = nn.LogSoftmax(dim=1)
loss_function = nn.NLLLoss()
if args.downweight_oov > 0.0 and args.downweight_oov < 1.0:
dw_inds = model.get_new()
uniform_dist_shaped = None
for i in range(start_iter, n-1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, weight, bias, hidden = model(data, hidden, eval_mode=True)
if isinstance(criterion, nn.CrossEntropyLoss):
logits = torch.mm(output,weight.t())
if args.downweight_oov > 0.0 and args.downweight_oov < 1.0:
lexp = logits.exp()
lexp[:,dw_inds] *= args.downweight_oov
logits = lexp.log()
logits += bias
if args.adapt_method == "change_vocab":
loss = criterion(logits, targets).data
elif args.adapt_method in interpolate_methods:
# first do uniform interpolation by adding a constant to logits
model_dist = softmax(logits)
if uniform_dist_shaped is None:
uniform_dist_shaped = uniform_dist.repeat(model_dist.size(0),1)
model_dist = log_interpolate(model_dist,
uniform_dist_shaped,
weight=args.lamu)
if args.adapt_method == "interpolate_unigram":
unigram_dist = softmax(unigram_counts)
model_dist = log_interpolate(model_dist, unigram_dist,
weight=args.lam)
elif args.adapt_method == "interpolate_neural" and i != 0:
cache_inds = torch.cat([c[0].view(1,-1) for c in cache],dim=0)
# b * n * m (n = 1, m = dim)
batched_output = output.view(batch_size,1,-1)
# b * m * p (m = dim, p = number of elements in cache)
batched_cache_weight = torch.cat([c[1].view(batch_size,-1,1) for c in cache],
dim=2)
# b * n * p (n = 1, p = number of elements in cache. squeeze out n to get
# b distributions over the cache (batch_size * cache_size)
cache_scores = torch.bmm(batched_output,batched_cache_weight).view(batch_size,-1)
if args.global_norm:
cache_scores = (cache_scores * args.theta + args.alpha).exp()
else:
cache_scores = (cache_scores * args.theta).exp()
cache_vocab_scores = torch.zeros_like(logits)
cache_vocab_scores.scatter_add_(dim=1,
index=cache_inds.t(),
src=cache_scores)
if args.global_norm:
model_dist = softmax((logits.exp() + cache_vocab_scores).log())
else:
neural_cache_dist = softmax(cache_vocab_scores.log())
model_dist = log_interpolate(model_dist, neural_cache_dist,
weight=args.lam)
loss = loss_function(model_dist, targets).data
else:
raise ValueError("Unknown adaptation method: {}".format(args.adapt_method))
total_loss += len(data) * loss
hidden = repackage_hidden(hidden)
# update cache
if len(cache) == cache.maxlen:
old_targets, _ = cache.popleft()
unigram_counts[batch_row_idx,old_targets] -= 1
if args.adapt_method == "interpolate_unigram":
cache.append((targets,None))
elif args.adapt_method == "interpolate_neural":
cache.append((targets,output))
unigram_counts[batch_row_idx,targets] += 1
print("\r{}/{} - ppl: {:3.2f}".format(i,n, math.exp(total_loss/n) ))
if i % 100 == 0 and i > 0:
logging("{}/{} - ppl: {:3.2f}".format(i,n, math.exp(total_loss/n)))
if i % 5000 == 0 and i > 0:
logging("Saving to recover-state.pkl...")
with open(os.path.join(args.save, 'recover-state.pkl'),'wb') as f:
pickle.dump((i, total_loss),f)
if args.adapt_method in ["interpolate_neural", "interpolate_unigram"]:
torch.save(hidden, os.path.join(args.save,'recover-hidden.pt'))
if args.adapt_method == "interpolate_neural":
logging("Saving to recover-cache.pt... ({})".format(batched_cache_weight.size()))
torch.save(batched_cache_weight, os.path.join(args.save,'recover-cache.pt'))
else:
cache_inds = torch.cat([c[0].view(1,-1) for c in cache],dim=0)
logging("Saving to recover-cache-targets.pt... ({})".format(cache_inds.size()))
torch.save(cache_inds,os.path.join(args.save, 'recover-cache-targets.pt'))
logging("Save complete.")
return total_loss.item() / n
# Log command
logging("Command: python " + " ".join(sys.argv))
# Load the best saved model.
model, criterion, optimizer = model_load(args.save, device=args.cuda_device)
if args.adapt_method in interpolate_methods:
"""
use the original vocab for indexing, no change to model parameters
K = size of new words (OOVs in the original vocab)
N = size of train vocab plus new words
uniform interpolation:
- likelihood = (lambda * likelihood) + ((1-lambda) * 1/N)
unigram interpolation:
- likelihood = (lambda * likelihood) +
((1-lambda) * (p_unigram(target)/sum(p_unigram(w) for w in observed_vocab)))
neural cache interpolation:
- likelihood = (lambda * likelihood) +
((1-lambda) * (p_cache(target)/sum(p_cache(w) for w in cache_vocab)))
"""
test_corpus = corpus_load(args.test_data, test=True)
model.H.ntoken = len(test_corpus.dictionary.idx2word)
char_arr, rel_arr, def_arr = get_external_knowledge(model.H, test_corpus)
model.change_embedding_vocab(char_arr, rel_arr, def_arr,
test_corpus.dictionary, set_zero=True)
logging("Vocab size pre-change: {}".format(len(model.old_dict.word2idx)))
logging("Vocab size post-change: {}".format(len(model.dict.word2idx)))
else:
raise AssertionError("new vocabulary provided but model vocab not changed or interpolated")
test_data = batchify(test_corpus.test, args.test_batch_size, args)
if args.cuda:
model = model.cuda()
criterion = criterion.cuda()
else:
model = model.cpu()
criterion = criterion.cpu()
# Run on test data.
logging("Evaluating...")
with torch.no_grad():
if args.hyp_search is not None:
best_score = (np.inf,0.0,0.0)
scores = np.zeros((5,6))
import pickle
# grid search is ok here bc for few hyperparams and small k,
# it helps minimize gaps. also, based on Grave et al. (2016)
# we expect lam and theta are ~equally important/sensitive here
for i,lam in enumerate([0.833, 0.866, 0.9, 0.933, 0.966]):
for j,theta in enumerate([0, 0.1, 0.3, 0.5, 0.7, 0.9]):
args.lam = lam
args.theta = theta
test_loss = evaluate(model, criterion, test_data, args.test_batch_size)
scores[i,j] = math.exp(test_loss)
if math.exp(test_loss) < best_score[0]:
best_score = (math.exp(test_loss), lam, theta)
print(" ({},{})".format(i,j),flush=True)
with open('hyperparam_search_{}.pkl'.format(args.hyp_search), 'wb') as f:
pickle.dump(scores,f)
ppl, lam, theta = best_score
logging(f"Best ppl {ppl} with lambda {lam} and theta {theta}")
else:
test_loss = evaluate(model, criterion, test_data, args.test_batch_size)
print("")
logging('=' * 89)
logging('| End of evaluation | test loss {:5.2f} | test ppl {:8.2f} | test bpc {:8.3f}'.format(test_loss, math.exp(test_loss), test_loss / math.log(2)))
logging
logging('=' * 89)