-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat.py
82 lines (71 loc) · 2.83 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import random
import json
import pickle
import numpy as np
import nltk
from nltk.stem import WordNetLemmatizer
from tensorflow.keras.models import load_model
# Initialize the lemmatizer to reduce words to their base form
lemmatizer = WordNetLemmatizer()
# Load the intents file which contains the dataset for the chatbot
intents = json.loads(open('data/intents.json').read())
# Load the pre-processed words and classes lists from disk
words = pickle.load(open('models/words.pkl', 'rb'))
classes = pickle.load(open('models/classes.pkl', 'rb'))
# Load the trained model from disk
model = load_model('models/chatbotmodel.keras')
# Function to clean up and tokenize sentences
def clean_up_sentence(sentence):
# Tokenize the sentence into words
sentence_words = nltk.word_tokenize(sentence)
# Lemmatize each word to its base form
sentence_words = [lemmatizer.lemmatize(word) for word in sentence_words]
return sentence_words
# Function to convert sentences into a bag of words
def bag_of_words(sentence):
# Clean up the sentence
sentence_words = clean_up_sentence(sentence)
# Initialize a bag of words with zeros
bag = [0] * len(words)
# Mark the presence of words in the sentence
for w in sentence_words:
for i, word in enumerate(words):
if word == w:
bag[i] = 1
return np.array(bag)
# Function to predict the class of a given sentence
def predict_class(sentence):
# Convert the sentence into a bag of words
bow = bag_of_words(sentence)
# Predict the class probabilities using the trained model
res = model.predict(np.array([bow]))[0]
# Define an error threshold to filter out low probability classes
ERROR_THRESHOLD = 0.25
# Filter and sort the results by probability
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
results.sort(key=lambda x: x[1], reverse=True)
# Prepare the list of predicted classes with their probabilities
return_list = []
for r in results:
print('r: ', r)
return_list.append({'intent': classes[r[0]], 'probability': str(r[1])})
return return_list
# Function to get a response based on the predicted class
def get_response(intents_list):
# Get the tag of the first predicted intent
tag = intents_list[0]['intent']
# Get the list of intents from the intents file
list_of_intents = intents['intents']
# Find and return a random response for the matching intent
for i in list_of_intents:
if i['tag'] == tag:
result = random.choice(i['responses'])
break
return result
# Function to process a user message and generate a response
def chat(message):
# Predict the class of the user message
intents_list = predict_class(message)
# Get a response based on the predicted class
result = get_response(intents_list)
return result