-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathavxintrin-emu.h
1061 lines (807 loc) · 44.2 KB
/
avxintrin-emu.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (c) 2010, Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*/
/***
Provide feedback to: maxim.locktyukhin intel com, phil.j.kerly intel com
Version 1.0 - Initial release.
This AVX intrinsics emulation header file designed to work with Intel C/C++
as well as GCC compilers.
Known Issues and limitations:
- does not support immediate values higher than 0x7 for _mm[256]_cmp_[ps|pd]
intrinsics, UD2 instruction will be generated instead
- -O0 optimization level may _sometimes_ result with compile time errors due
to failed forced inline and compiler not being able to generate instruction
with constant immediate operand becasue of it, compiling with -O1 and/or
-finline-functions should help.
***/
#define __SSE__
#ifndef __EMU_M256_AVXIMMINTRIN_EMU_H__
#define __EMU_M256_AVXIMMINTRIN_EMU_H__
#ifdef __GNUC__
#ifdef __SSE__
#include <xmmintrin.h>
#endif
#ifdef __SSE2__
#include <emmintrin.h>
#endif
#ifdef __SSE3__
#include <pmmintrin.h>
#endif
#ifdef __SSSE3__
#include <tmmintrin.h>
#endif
#if defined (__SSE4_2__) || defined (__SSE4_1__)
#include <smmintrin.h>
#endif
#if defined (__AES__) || defined (__PCLMUL__)
#include <wmmintrin.h>
#endif
#else
#include <xmmintrin.h>
#endif
#pragma message (" --- Intel remark: AVX intrinsics are emulated with SSE ---")
/*
* Intel(R) AVX compiler intrinsics.
*/
#ifdef __cplusplus
extern "C" {
#endif
/*
* This is an emulation of Intel AVX
*/
#if defined( _MSC_VER ) || defined( __INTEL_COMPILER )
#define __EMU_M256_ALIGN( a ) __declspec(align(a))
#define __emu_inline __forceinline
#define __emu_int64_t __int64
#elif defined( __GNUC__ )
#define __EMU_M256_ALIGN( a ) __attribute__((__aligned__(a)))
#define __emu_inline __inline __attribute__((__always_inline__))
#define __emu_int64_t long long
#else
#error "unsupported platform"
#endif
typedef union __EMU_M256_ALIGN(32) __emu__m256
{
float __emu_arr[8];
__m128 __emu_m128[2];
} __emu__m256;
typedef union __EMU_M256_ALIGN(32) __emu__m256d
{
double __emu_arr[4];
__m128d __emu_m128[2];
} __emu__m256d;
typedef union __EMU_M256_ALIGN(32) __emu__m256i
{
int __emu_arr[8];
__m128i __emu_m128[2];
} __emu__m256i;
static __emu_inline __emu__m256 __emu_set_m128( const __m128 arr[] ) { __emu__m256 ret; ret.__emu_m128[0] = arr[0]; ret.__emu_m128[1] = arr[1]; return (ret); }
static __emu_inline __emu__m256d __emu_set_m128d( const __m128d arr[] ) { __emu__m256d ret; ret.__emu_m128[0] = arr[0]; ret.__emu_m128[1] = arr[1]; return (ret); }
static __emu_inline __emu__m256i __emu_set_m128i( const __m128i arr[] ) { __emu__m256i ret; ret.__emu_m128[0] = arr[0]; ret.__emu_m128[1] = arr[1]; return (ret); }
#define __EMU_M256_IMPL_M1( type, func ) \
static __emu_inline __emu##type __emu_mm256_##func( __emu##type m256_param1 ) \
{ __emu##type res; \
res.__emu_m128[0] = _mm_##func( m256_param1.__emu_m128[0] ); \
res.__emu_m128[1] = _mm_##func( m256_param1.__emu_m128[1] ); \
return ( res ); \
}
#define __EMU_M256_IMPL_M1_RET( ret_type, type, func ) \
static __emu_inline __emu##ret_type __emu_mm256_##func( __emu##type m256_param1 ) \
{ __emu##ret_type res; \
res.__emu_m128[0] = _mm_##func( m256_param1.__emu_m128[0] ); \
res.__emu_m128[1] = _mm_##func( m256_param1.__emu_m128[1] ); \
return ( res ); \
}
#define __EMU_M256_IMPL_M1_RET_NAME( ret_type, type, func, name ) \
static __emu_inline __emu##ret_type __emu_mm256_##name( __emu##type m256_param1 ) \
{ __emu##ret_type res; \
res.__emu_m128[0] = _mm_##func( m256_param1.__emu_m128[0] ); \
res.__emu_m128[1] = _mm_##func( m256_param1.__emu_m128[1] ); \
return ( res ); \
}
#define __EMU_M256_IMPL_M1_LH( type, type_128, func ) \
static __emu_inline __emu##type __emu_mm256_##func( type_128 m128_param ) \
{ __emu##type res; \
res.__emu_m128[0] = _mm_##func( m128_param ); \
__m128 m128_param_high = _mm_movehl_ps( *(__m128*)&m128_param, *(__m128*)&m128_param ); \
res.__emu_m128[1] = _mm_##func( *(type_128*)&m128_param_high ); \
return ( res ); \
}
#define __EMU_M256_IMPL_M1_HL( type_128, type, func ) \
static __emu_inline type_128 __emu_mm256_##func( __emu##type m256_param1 ) \
{ type_128 res, tmp; \
res = _mm_##func( m256_param1.__emu_m128[0] ); \
tmp = _mm_##func( m256_param1.__emu_m128[1] ); \
*(((__emu_int64_t*)&res)+1) = *(__emu_int64_t*)&tmp; \
return ( res ); \
}
#define __EMU_M256_IMPL_M1P_DUP( type, type_param, func ) \
static __emu_inline __emu##type __emu_mm256_##func( type_param param ) \
{ __emu##type res; \
res.__emu_m128[0] = _mm_##func( param ); \
res.__emu_m128[1] = _mm_##func( param ); \
return ( res ); \
}
#define __EMU_M256_IMPL_M1I_DUP( type, func ) \
static __emu_inline __emu##type __emu_mm256_##func( __emu##type m256_param1, const int param2 ) \
{ __emu##type res; \
res.__emu_m128[0] = _mm_##func( m256_param1.__emu_m128[0], param2 ); \
res.__emu_m128[1] = _mm_##func( m256_param1.__emu_m128[1], param2 ); \
return ( res ); \
}
#define __EMU_M256_IMPL2_M1I_DUP( type, func ) \
static __emu_inline __emu##type __emu_mm256_##func( __emu##type m256_param1, const int param2 ) \
{ __emu##type res; \
res.__emu_m128[0] = __emu_mm_##func( m256_param1.__emu_m128[0], param2 ); \
res.__emu_m128[1] = __emu_mm_##func( m256_param1.__emu_m128[1], param2 ); \
return ( res ); \
}
#define __EMU_M256_IMPL2_M1I_SHIFT( type, func, shift_for_hi ) \
static __emu_inline __emu##type __emu_mm256_##func( __emu##type m256_param1, const int param2 ) \
{ __emu##type res; \
res.__emu_m128[0] = __emu_mm_##func( m256_param1.__emu_m128[0], param2 & ((1<<shift_for_hi)-1) ); \
res.__emu_m128[1] = __emu_mm_##func( m256_param1.__emu_m128[1], param2 >> shift_for_hi); \
return ( res ); \
}
#define __EMU_M256_IMPL_M2( type, func ) \
static __emu_inline __emu##type __emu_mm256_##func( __emu##type m256_param1, __emu##type m256_param2 ) \
{ __emu##type res; \
res.__emu_m128[0] = _mm_##func( m256_param1.__emu_m128[0], m256_param2.__emu_m128[0] ); \
res.__emu_m128[1] = _mm_##func( m256_param1.__emu_m128[1], m256_param2.__emu_m128[1] ); \
return ( res ); \
}
#define __EMU_M256_IMPL2_M2T( type, type_2, func ) \
static __emu_inline __emu##type __emu_mm256_##func( __emu##type m256_param1, __emu##type_2 m256_param2 ) \
{ __emu##type res; \
res.__emu_m128[0] = __emu_mm_##func( m256_param1.__emu_m128[0], m256_param2.__emu_m128[0] ); \
res.__emu_m128[1] = __emu_mm_##func( m256_param1.__emu_m128[1], m256_param2.__emu_m128[1] ); \
return ( res ); \
}
#define __EMU_M256_IMPL_M2I_DUP( type, func ) \
static __emu_inline __emu##type __emu_mm256_##func( __emu##type m256_param1, __emu##type m256_param2, const int param3 ) \
{ __emu##type res; \
res.__emu_m128[0] = _mm_##func( m256_param1.__emu_m128[0], m256_param2.__emu_m128[0], param3 ); \
res.__emu_m128[1] = _mm_##func( m256_param1.__emu_m128[1], m256_param2.__emu_m128[1], param3 ); \
return ( res ); \
}
#define __EMU_M256_IMPL2_M2I_DUP( type, func ) \
static __emu_inline __emu##type __emu_mm256_##func( __emu##type m256_param1, __emu##type m256_param2, const int param3 ) \
{ __emu##type res; \
res.__emu_m128[0] = __emu_mm_##func( m256_param1.__emu_m128[0], m256_param2.__emu_m128[0], param3 ); \
res.__emu_m128[1] = __emu_mm_##func( m256_param1.__emu_m128[1], m256_param2.__emu_m128[1], param3 ); \
return ( res ); \
}
#define __EMU_M256_IMPL_M2I_SHIFT( type, func, shift_for_hi ) \
static __emu_inline __emu##type __emu_mm256_##func( __emu##type m256_param1, __emu##type m256_param2, const int param3 ) \
{ __emu##type res; \
res.__emu_m128[0] = _mm_##func( m256_param1.__emu_m128[0], m256_param2.__emu_m128[0], param3 & ((1<<shift_for_hi)-1) ); \
res.__emu_m128[1] = _mm_##func( m256_param1.__emu_m128[1], m256_param2.__emu_m128[1], param3 >> shift_for_hi ); \
return ( res ); \
}
#define __EMU_M256_IMPL_M3( type, func ) \
static __emu_inline __emu##type __emu_mm256_##func( __emu##type m256_param1, __emu##type m256_param2, __emu##type m256_param3 ) \
{ __emu##type res; \
res.__emu_m128[0] = _mm_##func( m256_param1.__emu_m128[0], m256_param2.__emu_m128[0], m256_param3.__emu_m128[0] ); \
res.__emu_m128[1] = _mm_##func( m256_param1.__emu_m128[1], m256_param2.__emu_m128[1], m256_param3.__emu_m128[1] ); \
return ( res ); \
}
/*
* Compare predicates for scalar and packed compare intrinsics
*/
#define _CMP_EQ_OQ 0x00 /* Equal (ordered, nonsignaling) */
#define _CMP_LT_OS 0x01 /* Less-than (ordered, signaling) */
#define _CMP_LE_OS 0x02 /* Less-than-or-equal (ordered, signaling) */
#define _CMP_UNORD_Q 0x03 /* Unordered (nonsignaling) */
#define _CMP_NEQ_UQ 0x04 /* Not-equal (unordered, nonsignaling) */
#define _CMP_NLT_US 0x05 /* Not-less-than (unordered, signaling) */
#define _CMP_NLE_US 0x06 /* Not-less-than-or-equal (unordered, signaling) */
#define _CMP_ORD_Q 0x07 /* Ordered (nonsignaling) */
#define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */
#define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unordered, signaling) */
#define _CMP_NGT_US 0x0A /* Not-greater-than (unordered, signaling) */
#define _CMP_FALSE_OQ 0x0B /* False (ordered, nonsignaling) */
#define _CMP_NEQ_OQ 0x0C /* Not-equal (ordered, non-signaling) */
#define _CMP_GE_OS 0x0D /* Greater-than-or-equal (ordered, signaling) */
#define _CMP_GT_OS 0x0E /* Greater-than (ordered, signaling) */
#define _CMP_TRUE_UQ 0x0F /* True (unordered, non-signaling) */
#define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */
#define _CMP_LT_OQ 0x11 /* Less-than (ordered, nonsignaling) */
#define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, nonsignaling) */
#define _CMP_UNORD_S 0x13 /* Unordered (signaling) */
#define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */
#define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, nonsignaling) */
#define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unordered, nonsignaling) */
#define _CMP_ORD_S 0x17 /* Ordered (signaling) */
#define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */
#define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unordered, nonsignaling) */
#define _CMP_NGT_UQ 0x1A /* Not-greater-than (unordered, nonsignaling) */
#define _CMP_FALSE_OS 0x1B /* False (ordered, signaling) */
#define _CMP_NEQ_OS 0x1C /* Not-equal (ordered, signaling) */
#define _CMP_GE_OQ 0x1D /* Greater-than-or-equal (ordered, nonsignaling) */
#define _CMP_GT_OQ 0x1E /* Greater-than (ordered, nonsignaling) */
#define _CMP_TRUE_US 0x1F /* True (unordered, signaling) */
__EMU_M256_IMPL_M2( __m256d, add_pd );
__EMU_M256_IMPL_M2( __m256, add_ps );
__EMU_M256_IMPL_M2( __m256d, addsub_pd );
__EMU_M256_IMPL_M2( __m256, addsub_ps );
__EMU_M256_IMPL_M2( __m256d, and_pd );
__EMU_M256_IMPL_M2( __m256, and_ps );
__EMU_M256_IMPL_M2( __m256d, andnot_pd );
__EMU_M256_IMPL_M2( __m256, andnot_ps );
__EMU_M256_IMPL_M2( __m256d, div_pd );
__EMU_M256_IMPL_M2( __m256, div_ps );
__EMU_M256_IMPL_M2( __m256d, hadd_pd );
__EMU_M256_IMPL_M2( __m256, hadd_ps );
__EMU_M256_IMPL_M2( __m256d, hsub_pd );
__EMU_M256_IMPL_M2( __m256, hsub_ps );
__EMU_M256_IMPL_M2( __m256d, max_pd );
__EMU_M256_IMPL_M2( __m256, max_ps );
__EMU_M256_IMPL_M2( __m256d, min_pd );
__EMU_M256_IMPL_M2( __m256, min_ps );
__EMU_M256_IMPL_M2( __m256d, mul_pd );
__EMU_M256_IMPL_M2( __m256, mul_ps );
__EMU_M256_IMPL_M2( __m256d, or_pd );
__EMU_M256_IMPL_M2( __m256, or_ps );
__EMU_M256_IMPL_M2I_SHIFT( __m256d, shuffle_pd, 2 );
__EMU_M256_IMPL_M2I_DUP( __m256, shuffle_ps );
__EMU_M256_IMPL_M2( __m256d, sub_pd );
__EMU_M256_IMPL_M2( __m256, sub_ps );
__EMU_M256_IMPL_M2( __m256d, xor_pd );
__EMU_M256_IMPL_M2( __m256, xor_ps );
#if defined (__SSE4_2__) || defined (__SSE4_1__)
__EMU_M256_IMPL_M2I_SHIFT( __m256d, blend_pd, 2 );
__EMU_M256_IMPL_M2I_SHIFT( __m256, blend_ps, 4 );
__EMU_M256_IMPL_M3( __m256d, blendv_pd );
__EMU_M256_IMPL_M3( __m256, blendv_ps );
__EMU_M256_IMPL_M2I_DUP( __m256, dp_ps );
__EMU_M256_IMPL_M1I_DUP( __m256d, round_pd );
#define _mm256_ceil_pd(val) _mm256_round_pd((val), 0x0A);
#define _mm256_floor_pd(val) _mm256_round_pd((val), 0x09);
__EMU_M256_IMPL_M1I_DUP( __m256, round_ps );
#define _mm256_ceil_ps(val) _mm256_round_ps((val), 0x0A);
#define _mm256_floor_ps(val) _mm256_round_ps((val), 0x09);
#define __emu_mm_test_impl( op, sfx, vec_type ) \
static __emu_inline int __emu_mm_test##op##_##sfx(vec_type s1, vec_type s2) { \
__m128d sign_bits_pd = _mm_castsi128_pd( _mm_set_epi32( 1 << 31, 0, 1 << 31, 0 ) ); \
__m128 sign_bits_ps = _mm_castsi128_ps( _mm_set1_epi32( 1 << 31 ) ); \
\
s1 = _mm_and_##sfx( s1, sign_bits_##sfx ); \
s2 = _mm_and_##sfx( s2, sign_bits_##sfx ); \
return _mm_test##op##_si128( _mm_cast##sfx##_si128( s1 ), _mm_cast##sfx##_si128( s2 ) ); \
}
__emu_mm_test_impl( z, pd, __m128d );
__emu_mm_test_impl( c, pd, __m128d );
__emu_mm_test_impl( nzc, pd, __m128d );
__emu_mm_test_impl( z, ps, __m128 );
__emu_mm_test_impl( c, ps, __m128 );
__emu_mm_test_impl( nzc, ps, __m128 );
#define __emu_mm256_test_impl( prfx, op, sfx, sfx_impl, vec_type ) \
static __emu_inline int __emu_mm256_test##op##_##sfx(vec_type s1, vec_type s2) { \
int ret1 = prfx##_test##op##_##sfx_impl( s1.__emu_m128[0], s2.__emu_m128[0] ); \
int ret2 = prfx##_test##op##_##sfx_impl( s1.__emu_m128[1], s2.__emu_m128[1] ); \
return ( ret1 && ret2 ); \
};
__emu_mm256_test_impl( _mm, z, si256, si128, __emu__m256i );
__emu_mm256_test_impl( _mm, c, si256, si128, __emu__m256i );
__emu_mm256_test_impl( _mm, nzc, si256, si128, __emu__m256i );
__emu_mm256_test_impl( __emu_mm, z, pd, pd, __emu__m256d );
__emu_mm256_test_impl( __emu_mm, c, pd, pd, __emu__m256d );
__emu_mm256_test_impl( __emu_mm, nzc, pd, pd, __emu__m256d );
__emu_mm256_test_impl( __emu_mm, z, ps, ps, __emu__m256 );
__emu_mm256_test_impl( __emu_mm, c, ps, ps, __emu__m256 );
__emu_mm256_test_impl( __emu_mm, nzc, ps, ps, __emu__m256 );
#endif
#if defined( __GNUC__ ) && ( __GNUC__ == 4 ) && (__GNUC_MINOR__ < 4 )
/* use macro implementation instead of inline functions to allow -O0 for GCC pre 4.4 */
#pragma message ("Using macro for GCC <4.4" )
#define __emu_mm_cmp_ps(m1, m2, predicate) \
({ \
__m128 res_ = (m1), m2_ = (m2); \
if ( 7 < (unsigned)predicate ) __asm__ __volatile__ ( "ud2" : : : "memory" ); \
__asm__ ( "cmpps %[pred_], %[m2_], %[res_]" : [res_] "+x" (res_) : [m2_] "xm" (m2_), [pred_] "i" (predicate) ); \
res_; })
#define __emu_mm256_cmp_ps(m1, m2, predicate) \
({ \
__emu__m256 res_ = (m1), m2_ = (m2); \
if ( 7 < (unsigned)predicate ) __asm__ __volatile__ ( "ud2" : : : "memory" ); /* not supported yet */ \
__asm__ ( "cmpps %[pred_], %[m2_], %[res_]" : [res_] "+x" (res_.__emu_m128[0]) : [m2_] "xm" (m2_.__emu_m128[0]), [pred_] "i" (predicate) ); \
__asm__ ( "cmpps %[pred_], %[m2_], %[res_]" : [res_] "+x" (res_.__emu_m128[1]) : [m2_] "xm" (m2_.__emu_m128[1]), [pred_] "i" (predicate) ); \
res_; })
#define __emu_mm_cmp_pd(m1, m2, predicate) \
({ \
__m128 res_ = (m1), m2_ = (m2); \
if ( 7 < (unsigned)predicate ) __asm__ __volatile__ ( "ud2" : : : "memory" ); /* not supported yet */ \
__asm__ ( "cmppd %[pred_], %[m2_], %[res_]" : [res_] "+x" (res_) : [m2_] "xm" (m2_), [pred_] "i" (predicate) ); \
res_; })
#define __emu_mm256_cmp_pd(m1, m2, predicate) \
({ \
__emu__m256 res_ = (m1), m2_ = (m2); \
if ( 7 < (unsigned)predicate ) __asm__ __volatile__ ( "ud2" : : : "memory" ); /* not supported yet */ \
__asm__ ( "cmppd %[pred_], %[m2_], %[res_]" : [res_] "+x" (res_.__emu_m128[0]) : [m2_] "xm" (m2_.__emu_m128[0]), [pred_] "i" (predicate) ); \
__asm__ ( "cmppd %[pred_], %[m2_], %[res_]" : [res_] "+x" (res_.__emu_m128[1]) : [m2_] "xm" (m2_.__emu_m128[1]), [pred_] "i" (predicate) ); \
res_; })
#define __emu_mm_cmp_ss(m1, m2, predicate) \
({ \
__m128 res_ = (m1), m2_ = (m2); \
if ( 7 < (unsigned)predicate ) __asm__ __volatile__ ( "ud2" : : : "memory" ); /* not supported yet */ \
__asm__ ( "cmpss %[pred_], %[m2_], %[res_]" : [res_] "+x" (res_) : [m2_] "xm" (m2_), [pred_] "i" (predicate) ); \
res_; })
#define __emu_mm_cmp_sd(m1, m2, predicate) \
({ \
__m128 res_ = (m1), m2_ = (m2); \
if ( 7 < (unsigned)predicate ) __asm__ __volatile__ ( "ud2" : : : "memory" ); /* not supported yet */ \
__asm__ ( "cmpsd %[pred_], %[m2_], %[res_]" : [res_] "+x" (res_) : [m2_] "xm" (m2_), [pred_] "i" (predicate) ); \
res_; })
#else /* __GNUC__==4 && __GNUC_MINOR__ <4 */
static __emu_inline __m128 __emu_mm_cmp_ps(__m128 m1, __m128 m2, const int predicate)
{
__m128 res;
if ( predicate >= 0 && predicate <= 7 ) {
res = m1;
__asm__ ( "cmpps %[pred_], %[m2_], %[res_]" : [res_] "+x" (res) : [m2_] "xm" (m2), [pred_] "i" (predicate) );
} else {
__asm__ __volatile__ ( "ud2" : : : "memory" ); /* not supported yet */
}
return ( res );
}
__EMU_M256_IMPL2_M2I_DUP( __m256, cmp_ps )
static __emu_inline __m128d __emu_mm_cmp_pd(__m128d m1, __m128d m2, const int predicate)
{
__m128d res;
if ( predicate >= 0 && predicate <= 7 ) {
res = m1;
__asm__ ( "cmppd %[pred_], %[m2_], %[res_]" : [res_] "+x" (res) : [m2_] "xm" (m2), [pred_] "i" (predicate) );
} else {
__asm__ __volatile__ ( "ud2" : : : "memory" ); /* not supported yet */
}
return ( res );
}
__EMU_M256_IMPL2_M2I_DUP( __m256d, cmp_pd )
static __emu_inline __m128d __emu_mm_cmp_sd(__m128d m1, __m128d m2, const int predicate)
{
__m128d res;
if ( predicate >= 0 && predicate <= 7 ) {
res = m1;
__asm__ ( "cmpsd %[pred_], %[m2_], %[res_]" : [res_] "+x" (res) : [m2_] "xm" (m2), [pred_] "i" (predicate) );
} else {
__asm__ __volatile__ ( "ud2" : : : "memory" ); /* not supported yet */
}
return ( res );
}
static __emu_inline __m128 __emu_mm_cmp_ss(__m128 m1, __m128 m2, const int predicate)
{
__m128 res;
if ( predicate >= 0 && predicate <= 7 ) {
res = m1;
__asm__ ( "cmpss %[pred_], %[m2_], %[res_]" : [res_] "+x" (res) : [m2_] "xm" (m2), [pred_] "i" (predicate) );
} else {
__asm__ __volatile__ ( "ud2" : : : "memory" ); /* not supported yet */
}
return ( res );
}
#endif
__EMU_M256_IMPL_M1_LH( __m256d, __m128i, cvtepi32_pd );
__EMU_M256_IMPL_M1_RET( __m256, __m256i, cvtepi32_ps );
__EMU_M256_IMPL_M1_HL( __m128, __m256d, cvtpd_ps );
__EMU_M256_IMPL_M1_RET( __m256i, __m256, cvtps_epi32 );
__EMU_M256_IMPL_M1_LH( __m256d, __m128, cvtps_pd );
__EMU_M256_IMPL_M1_HL( __m128i, __m256d, cvttpd_epi32);
__EMU_M256_IMPL_M1_HL( __m128i, __m256d, cvtpd_epi32);
__EMU_M256_IMPL_M1_RET( __m256i, __m256, cvttps_epi32 );
static __emu_inline __m128 __emu_mm256_extractf128_ps(__emu__m256 m1, const int offset) { return m1.__emu_m128[ offset ]; }
static __emu_inline __m128d __emu_mm256_extractf128_pd(__emu__m256d m1, const int offset) { return m1.__emu_m128[ offset ]; }
static __emu_inline __m128i __emu_mm256_extractf128_si256(__emu__m256i m1, const int offset) { return m1.__emu_m128[ offset ]; }
static __emu_inline void __emu_mm256_zeroall(void) {}
static __emu_inline void __emu_mm256_zeroupper(void) {}
static __emu_inline __m128 __emu_mm_permutevar_ps(__m128 a, __m128i control)
{
int const* sel = (int const*)&control;
float const* src = (float const*)&a;
__EMU_M256_ALIGN(16) float dest[4];
int i=0;
for (; i<4; ++i)
dest[i] = src[ 3 & sel[i] ];
return ( *(__m128*)dest );
}
__EMU_M256_IMPL2_M2T( __m256, __m256i, permutevar_ps );
static __emu_inline __m128 __emu_mm_permute_ps(__m128 a, int control) { return _mm_castsi128_ps( _mm_shuffle_epi32( *(__m128i*)&a, control ) ); }
__EMU_M256_IMPL2_M1I_DUP( __m256, permute_ps );
static __emu_inline __m128d __emu_mm_permutevar_pd(__m128d a, __m128i control)
{
__emu_int64_t const* sel = (__emu_int64_t const*)&control;
double const* src = (double const*)&a;
__EMU_M256_ALIGN(16) double dest[2];
int i=0;
for (; i<2; ++i)
dest[i] = src[ (2 & sel[i]) >> 1 ];
return ( *(__m128d*)dest );
}
__EMU_M256_IMPL2_M2T( __m256d, __m256i, permutevar_pd );
static __emu_inline __m128d __emu_mm_permute_pd(__m128d a, int control)
{
double const* src = (double const*)&a;
__EMU_M256_ALIGN(16) double dest[2];
int i=0;
for (; i<2; ++i)
dest[i] = src[ 1 & (control >> i) ];
return ( *(__m128d*)dest );
}
__EMU_M256_IMPL2_M1I_SHIFT( __m256d, permute_pd, 2 );
#define __emu_mm256_permute2f128_impl( name, m128_type, m256_type ) \
static __emu_inline m256_type name( m256_type m1, m256_type m2, int control) { \
m256_type res; \
__m128 zero = _mm_setzero_ps(); \
const m128_type param[4] = { m1.__emu_m128[0], m1.__emu_m128[1], m2.__emu_m128[0], m2.__emu_m128[1] }; \
res.__emu_m128[0] = (control & 8) ? *(m128_type*)&zero : param[ control & 0x3 ]; control >>= 4; \
res.__emu_m128[1] = (control & 8) ? *(m128_type*)&zero : param[ control & 0x3 ]; \
return ( res ); \
}
__emu_mm256_permute2f128_impl( __emu_mm256_permute2f128_ps, __m128, __emu__m256 );
__emu_mm256_permute2f128_impl( __emu_mm256_permute2f128_pd, __m128d, __emu__m256d );
__emu_mm256_permute2f128_impl( __emu_mm256_permute2f128_si256, __m128i, __emu__m256i );
#define __emu_mm_broadcast_impl( name, res_type, type ) \
static __emu_inline res_type name(type const *a) { \
const size_t size = sizeof( res_type ) / sizeof( type );\
__EMU_M256_ALIGN(32) type res[ size ]; \
size_t i = 0; \
for ( ; i < size; ++i ) \
res[ i ] = *a; \
return (*(res_type*)&res); \
}
__emu_mm_broadcast_impl( __emu_mm_broadcast_ss, __m128, float )
__emu_mm_broadcast_impl( __emu_mm256_broadcast_ss, __emu__m256, float )
__emu_mm_broadcast_impl( __emu_mm_broadcast_sd, __m128, double )
__emu_mm_broadcast_impl( __emu_mm256_broadcast_sd, __emu__m256d, double )
__emu_mm_broadcast_impl( __emu_mm256_broadcast_ps, __emu__m256, __m128 )
__emu_mm_broadcast_impl( __emu_mm256_broadcast_pd, __emu__m256d, __m128d )
static __emu_inline __emu__m256 __emu_mm256_insertf128_ps(__emu__m256 a, __m128 b, int offset) { a.__emu_m128[ offset ] = b; return a; }
static __emu_inline __emu__m256d __emu_mm256_insertf128_pd(__emu__m256d a, __m128d b, int offset) { a.__emu_m128[ offset ] = b; return a; }
static __emu_inline __emu__m256i __emu_mm256_insertf128_si256(__emu__m256i a, __m128i b, int offset) { a.__emu_m128[ offset ] = b; return a; }
#define __emu_mm_load_impl( name, sfx, m256_sfx, m256_type, type_128, type ) \
static __emu_inline __emu##m256_type __emu_mm256_##name##_##m256_sfx(const type* a) { \
__emu##m256_type res; \
res.__emu_m128[0] = _mm_##name##_##sfx( (const type_128 *)a ); \
res.__emu_m128[1] = _mm_##name##_##sfx( (const type_128 *)(1+(const __m128 *)a) ); \
return (res); \
}
#define __emu_mm_store_impl( name, sfx, m256_sfx, m256_type, type_128, type ) \
static __emu_inline void __emu_mm256_##name##_##m256_sfx(type *a, __emu##m256_type b) { \
_mm_##name##_##sfx( (type_128*)a, b.__emu_m128[0] ); \
_mm_##name##_##sfx( (type_128*)(1+(__m128*)a), b.__emu_m128[1] ); \
}
__emu_mm_load_impl( load, pd, pd, __m256d, double, double );
__emu_mm_store_impl( store, pd, pd, __m256d, double, double );
__emu_mm_load_impl( load, ps, ps, __m256, float, float );
__emu_mm_store_impl( store, ps, ps, __m256, float, float );
__emu_mm_load_impl( loadu, pd, pd, __m256d, double, double );
__emu_mm_store_impl( storeu, pd, pd, __m256d, double, double );
__emu_mm_load_impl( loadu, ps, ps, __m256, float, float );
__emu_mm_store_impl( storeu, ps, ps, __m256, float, float );
__emu_mm_load_impl( load, si128, si256, __m256i, __m128i, __emu__m256i );
__emu_mm_store_impl( store, si128, si256, __m256i, __m128i, __emu__m256i );
__emu_mm_load_impl( loadu, si128, si256, __m256i, __m128i, __emu__m256i );
__emu_mm_store_impl( storeu, si128, si256, __m256i, __m128i, __emu__m256i );
#define __emu_maskload_impl( name, vec_type, mask_vec_type, type, mask_type ) \
static __emu_inline vec_type name(type const *a, mask_vec_type mask) { \
const size_t size_type = sizeof( type ); \
const size_t size = sizeof( vec_type ) / size_type; \
__EMU_M256_ALIGN(32) type res[ size ]; \
const mask_type* p_mask = (const mask_type*)&mask; \
size_t i = 0; \
mask_type sign_bit = 1; \
sign_bit <<= (8*size_type - 1); \
for ( ; i < size; ++i ) \
res[ i ] = (sign_bit & *(p_mask + i)) ? *(a+i) : 0; \
return (*(vec_type*)&res); \
}
#define __emu_maskstore_impl( name, vec_type, mask_vec_type, type, mask_type ) \
static __emu_inline void name(type *a, mask_vec_type mask, vec_type data) { \
const size_t size_type = sizeof( type ); \
const size_t size = sizeof( vec_type ) / sizeof( type ); \
type* p_data = (type*)&data; \
const mask_type* p_mask = (const mask_type*)&mask; \
size_t i = 0; \
mask_type sign_bit = 1; \
sign_bit <<= (8*size_type - 1); \
for ( ; i < size; ++i ) \
if ( *(p_mask + i ) & sign_bit) \
*(a + i) = *(p_data + i); \
}
__emu_maskload_impl( __emu_mm256_maskload_pd, __emu__m256d, __emu__m256i, double, __emu_int64_t );
__emu_maskstore_impl( __emu_mm256_maskstore_pd, __emu__m256d, __emu__m256i, double, __emu_int64_t );
__emu_maskload_impl( __emu_mm_maskload_pd, __m128d, __m128i, double, __emu_int64_t );
__emu_maskstore_impl( __emu_mm_maskstore_pd, __m128d, __m128i, double, __emu_int64_t );
__emu_maskload_impl( __emu_mm256_maskload_ps, __emu__m256, __emu__m256i, float, int );
__emu_maskstore_impl( __emu_mm256_maskstore_ps, __emu__m256, __emu__m256i, float, int );
__emu_maskload_impl( __emu_mm_maskload_ps, __m128, __m128i, float, int );
__emu_maskstore_impl( __emu_mm_maskstore_ps, __m128, __m128i, float, int );
__EMU_M256_IMPL_M1( __m256, movehdup_ps );
__EMU_M256_IMPL_M1( __m256, moveldup_ps );
__EMU_M256_IMPL_M1( __m256d, movedup_pd );
__emu_mm_load_impl( lddqu, si128, si256, __m256i, __m128i, __emu__m256i );
__emu_mm_store_impl( stream, si128, si256, __m256i, __m128i, __emu__m256i );
__emu_mm_store_impl( stream, pd, pd, __m256d, double, double );
__emu_mm_store_impl( stream, ps, ps, __m256, float, float );
__EMU_M256_IMPL_M1( __m256, rcp_ps );
__EMU_M256_IMPL_M1( __m256, rsqrt_ps );
__EMU_M256_IMPL_M1( __m256d, sqrt_pd );
__EMU_M256_IMPL_M1( __m256, sqrt_ps );
__EMU_M256_IMPL_M2( __m256d, unpackhi_pd );
__EMU_M256_IMPL_M2( __m256, unpackhi_ps );
__EMU_M256_IMPL_M2( __m256d, unpacklo_pd );
__EMU_M256_IMPL_M2( __m256, unpacklo_ps );
static __emu_inline int __emu_mm256_movemask_pd(__emu__m256d a)
{
return
(_mm_movemask_pd( a.__emu_m128[1] ) << 2) |
_mm_movemask_pd( a.__emu_m128[0] );
}
static __emu_inline int __emu_mm256_movemask_ps(__emu__m256 a)
{
return
(_mm_movemask_ps( a.__emu_m128[1] ) << 4) |
_mm_movemask_ps( a.__emu_m128[0] );
}
static __emu_inline __emu__m256d __emu_mm256_setzero_pd(void) { __m128d ret[2] = { _mm_setzero_pd(), _mm_setzero_pd() }; return __emu_set_m128d( ret ); }
static __emu_inline __emu__m256 __emu_mm256_setzero_ps(void) { __m128 ret[2] = { _mm_setzero_ps(), _mm_setzero_ps() }; return __emu_set_m128( ret ); }
static __emu_inline __emu__m256i __emu_mm256_setzero_si256(void) { __m128i ret[2] = { _mm_setzero_si128(), _mm_setzero_si128() }; return __emu_set_m128i( ret ); }
static __emu_inline __emu__m256d __emu_mm256_set_pd(double a1, double a2, double a3, double a4)
{ __m128d ret[2] = { _mm_set_pd( a3, a4 ), _mm_set_pd( a1, a2 ) }; return __emu_set_m128d( ret ); }
static __emu_inline __emu__m256 __emu_mm256_set_ps(float a1, float a2, float a3, float a4, float a5, float a6, float a7, float a8)
{ __m128 ret[2] = { _mm_set_ps( a5, a6, a7, a8 ), _mm_set_ps( a1, a2, a3, a4 ) }; return __emu_set_m128( ret ); }
static __emu_inline __emu__m256i __emu_mm256_set_epi8(char a1, char a2, char a3, char a4, char a5, char a6, char a7, char a8,
char a9, char a10, char a11, char a12, char a13, char a14, char a15, char a16,
char a17, char a18, char a19, char a20, char a21, char a22, char a23, char a24,
char a25, char a26, char a27, char a28, char a29, char a30, char a31, char a32)
{ __m128i ret[2] = { _mm_set_epi8( a17, a18, a19, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31, a32 ),
_mm_set_epi8( a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16 ) };
return __emu_set_m128i( ret );
}
static __emu_inline __emu__m256i __emu_mm256_set_epi16(short a1, short a2, short a3, short a4, short a5, short a6, short a7, short a8,
short a9, short a10, short a11, short a12, short a13, short a14, short a15, short a16)
{ __m128i ret[2] = { _mm_set_epi16( a9, a10, a11, a12, a13, a14, a15, a16 ),
_mm_set_epi16( a1, a2, a3, a4, a5, a6, a7, a8 ) };
return __emu_set_m128i( ret );
}
static __emu_inline __emu__m256i __emu_mm256_set_epi32(int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
{ __m128i ret[2] = { _mm_set_epi32( a5, a6, a7, a8 ), _mm_set_epi32( a1, a2, a3, a4 ) }; return __emu_set_m128i( ret ); }
static __emu_inline __m128i __emu_mm_set_epi64x( __emu_int64_t a, __emu_int64_t b ) { return _mm_set_epi64( *(__m64*)&a, *(__m64*)&b ); }
static __emu_inline __emu__m256i __emu_mm256_set_epi64x(__emu_int64_t a1, __emu_int64_t a2, __emu_int64_t a3, __emu_int64_t a4)
{ __m128i ret[2] = { __emu_mm_set_epi64x( a3, a4 ), __emu_mm_set_epi64x( a1, a2 ) }; return __emu_set_m128i( ret ); }
static __emu_inline __emu__m256d __emu_mm256_setr_pd(double a1, double a2, double a3, double a4)
{ __m128d ret[2] = { _mm_setr_pd( a1, a2 ), _mm_setr_pd( a3, a4 ) }; return __emu_set_m128d( ret ); }
static __emu_inline __emu__m256 __emu_mm256_setr_ps(float a1, float a2, float a3, float a4, float a5, float a6, float a7, float a8)
{ __m128 ret[2] = { _mm_setr_ps( a1, a2, a3, a4 ), _mm_setr_ps( a5, a6, a7, a8 ) }; return __emu_set_m128( ret ); }
static __emu_inline __emu__m256i __emu_mm256_setr_epi8(char a1, char a2, char a3, char a4, char a5, char a6, char a7, char a8,
char a9, char a10, char a11, char a12, char a13, char a14, char a15, char a16,
char a17, char a18, char a19, char a20, char a21, char a22, char a23, char a24,
char a25, char a26, char a27, char a28, char a29, char a30, char a31, char a32)
{ __m128i ret[2] = { _mm_setr_epi8( a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16 ),
_mm_setr_epi8( a17, a18, a19, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31, a32 ) };
return __emu_set_m128i( ret );
}
static __emu_inline __emu__m256i __emu_mm256_setr_epi16(short a1, short a2, short a3, short a4, short a5, short a6, short a7, short a8,
short a9, short a10, short a11, short a12, short a13, short a14, short a15, short a16)
{ __m128i ret[2] = { _mm_setr_epi16( a1, a2, a3, a4, a5, a6, a7, a8 ),
_mm_setr_epi16( a9, a10, a11, a12, a13, a14, a15, a16 ) }; return __emu_set_m128i( ret );
}
static __emu_inline __emu__m256i __emu_mm256_setr_epi32(int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
{ __m128i ret[2] = { _mm_setr_epi32( a1, a2, a3, a4 ), _mm_setr_epi32( a5, a6, a7, a8 ), }; return __emu_set_m128i( ret ); }
static __emu_inline __emu__m256i __emu_mm256_setr_epi64x(__emu_int64_t a1, __emu_int64_t a2, __emu_int64_t a3, __emu_int64_t a4)
{ __m128i ret[2] = { __emu_mm_set_epi64x( a2, a1 ), __emu_mm_set_epi64x( a4, a3 ) }; return __emu_set_m128i( ret ); }
__EMU_M256_IMPL_M1P_DUP( __m256d, double, set1_pd );
__EMU_M256_IMPL_M1P_DUP( __m256, float, set1_ps );
__EMU_M256_IMPL_M1P_DUP( __m256i, char, set1_epi8 );
__EMU_M256_IMPL_M1P_DUP( __m256i, short, set1_epi16 );
__EMU_M256_IMPL_M1P_DUP( __m256i, int, set1_epi32 );
static __emu__m256i __emu_mm256_set1_epi64x(__emu_int64_t a)
{
__emu_int64_t res[4] = { a, a, a, a };
return *((__emu__m256i*)res);
}
/*
* Support intrinsics to do vector type casts. These intrinsics do not introduce
* extra moves to generated code. When cast is done from a 128 to 256-bit type
* the low 128 bits of the 256-bit result contain source parameter value; the
* upper 128 bits of the result are undefined
*/
__EMU_M256_IMPL_M1_RET( __m256, __m256d, castpd_ps );
__EMU_M256_IMPL_M1_RET( __m256d, __m256, castps_pd );
__EMU_M256_IMPL_M1_RET_NAME( __m256i, __m256, castps_si128, castps_si256 );
__EMU_M256_IMPL_M1_RET_NAME( __m256i, __m256d, castpd_si128, castpd_si256 );
__EMU_M256_IMPL_M1_RET_NAME( __m256, __m256i, castsi128_ps, castsi256_ps );
__EMU_M256_IMPL_M1_RET_NAME( __m256d, __m256i, castsi128_pd, castsi256_pd );
static __emu_inline __m128 __emu_mm256_castps256_ps128(__emu__m256 a) { return ( a.__emu_m128[0] ); }
static __emu_inline __m128d __emu_mm256_castpd256_pd128(__emu__m256d a) { return ( a.__emu_m128[0] ); }
static __emu_inline __m128i __emu_mm256_castsi256_si128(__emu__m256i a) { return ( a.__emu_m128[0] ); }
static __emu_inline __emu__m256 __emu_mm256_castps128_ps256(__m128 a) { __m128 ret[2] = { a, _mm_setzero_ps() }; return __emu_set_m128( ret ); };
static __emu_inline __emu__m256d __emu_mm256_castpd128_pd256(__m128d a) { __m128d ret[2] = { a, _mm_setzero_pd() }; return __emu_set_m128d( ret ); };
static __emu_inline __emu__m256i __emu_mm256_castsi128_si256(__m128i a) { __m128i ret[2] = { a, _mm_setzero_si128() }; return __emu_set_m128i( ret ); };
#if defined __cplusplus
}; /* End "C" */
#endif /* __cplusplus */
#ifndef __EMU_M256_NOMAP
#define __m256 __emu__m256
#define __m256i __emu__m256i
#define __m256d __emu__m256d
#define _mm256_add_pd __emu_mm256_add_pd
#define _mm256_add_ps __emu_mm256_add_ps
#define _mm256_addsub_pd __emu_mm256_addsub_pd
#define _mm256_addsub_ps __emu_mm256_addsub_ps
#define _mm256_and_pd __emu_mm256_and_pd
#define _mm256_and_ps __emu_mm256_and_ps
#define _mm256_andnot_pd __emu_mm256_andnot_pd
#define _mm256_andnot_ps __emu_mm256_andnot_ps
#define _mm256_blend_pd __emu_mm256_blend_pd
#define _mm256_blend_ps __emu_mm256_blend_ps
#define _mm256_blendv_pd __emu_mm256_blendv_pd
#define _mm256_blendv_ps __emu_mm256_blendv_ps
#define _mm256_div_pd __emu_mm256_div_pd
#define _mm256_div_ps __emu_mm256_div_ps
#define _mm256_dp_ps __emu_mm256_dp_ps
#define _mm256_hadd_pd __emu_mm256_hadd_pd
#define _mm256_hadd_ps __emu_mm256_hadd_ps
#define _mm256_hsub_pd __emu_mm256_hsub_pd
#define _mm256_hsub_ps __emu_mm256_hsub_ps
#define _mm256_max_pd __emu_mm256_max_pd
#define _mm256_max_ps __emu_mm256_max_ps
#define _mm256_min_pd __emu_mm256_min_pd
#define _mm256_min_ps __emu_mm256_min_ps
#define _mm256_mul_pd __emu_mm256_mul_pd
#define _mm256_mul_ps __emu_mm256_mul_ps
#define _mm256_or_pd __emu_mm256_or_pd
#define _mm256_or_ps __emu_mm256_or_ps
#define _mm256_shuffle_pd __emu_mm256_shuffle_pd
#define _mm256_shuffle_ps __emu_mm256_shuffle_ps
#define _mm256_sub_pd __emu_mm256_sub_pd
#define _mm256_sub_ps __emu_mm256_sub_ps
#define _mm256_xor_pd __emu_mm256_xor_pd
#define _mm256_xor_ps __emu_mm256_xor_ps
#define _mm_cmp_pd __emu_mm_cmp_pd
#define _mm256_cmp_pd __emu_mm256_cmp_pd
#define _mm_cmp_ps __emu_mm_cmp_ps
#define _mm256_cmp_ps __emu_mm256_cmp_ps
#define _mm_cmp_sd __emu_mm_cmp_sd
#define _mm_cmp_ss __emu_mm_cmp_ss
#define _mm256_cvtepi32_pd __emu_mm256_cvtepi32_pd
#define _mm256_cvtepi32_ps __emu_mm256_cvtepi32_ps
#define _mm256_cvtpd_ps __emu_mm256_cvtpd_ps
#define _mm256_cvtps_epi32 __emu_mm256_cvtps_epi32
#define _mm256_cvtps_pd __emu_mm256_cvtps_pd
#define _mm256_cvttpd_epi32 __emu_mm256_cvttpd_epi32
#define _mm256_cvtpd_epi32 __emu_mm256_cvtpd_epi32
#define _mm256_cvttps_epi32 __emu_mm256_cvttps_epi32
#define _mm256_extractf128_ps __emu_mm256_extractf128_ps
#define _mm256_extractf128_pd __emu_mm256_extractf128_pd
#define _mm256_extractf128_si256 __emu_mm256_extractf128_si256
#define _mm256_zeroall __emu_mm256_zeroall
#define _mm256_zeroupper __emu_mm256_zeroupper
#define _mm256_permutevar_ps __emu_mm256_permutevar_ps
#define _mm_permutevar_ps __emu_mm_permutevar_ps
#define _mm256_permute_ps __emu_mm256_permute_ps
#define _mm_permute_ps __emu_mm_permute_ps
#define _mm256_permutevar_pd __emu_mm256_permutevar_pd
#define _mm_permutevar_pd __emu_mm_permutevar_pd
#define _mm256_permute_pd __emu_mm256_permute_pd
#define _mm_permute_pd __emu_mm_permute_pd
#define _mm256_permute2f128_ps __emu_mm256_permute2f128_ps
#define _mm256_permute2f128_pd __emu_mm256_permute2f128_pd
#define _mm256_permute2f128_si256 __emu_mm256_permute2f128_si256
#define _mm256_broadcast_ss __emu_mm256_broadcast_ss
#define _mm_broadcast_ss __emu_mm_broadcast_ss
#define _mm256_broadcast_sd __emu_mm256_broadcast_sd
#define _mm256_broadcast_ps __emu_mm256_broadcast_ps
#define _mm256_broadcast_pd __emu_mm256_broadcast_pd
#define _mm256_insertf128_ps __emu_mm256_insertf128_ps
#define _mm256_insertf128_pd __emu_mm256_insertf128_pd
#define _mm256_insertf128_si256 __emu_mm256_insertf128_si256
#define _mm256_load_pd __emu_mm256_load_pd
#define _mm256_store_pd __emu_mm256_store_pd
#define _mm256_load_ps __emu_mm256_load_ps
#define _mm256_store_ps __emu_mm256_store_ps
#define _mm256_loadu_pd __emu_mm256_loadu_pd
#define _mm256_storeu_pd __emu_mm256_storeu_pd
#define _mm256_loadu_ps __emu_mm256_loadu_ps
#define _mm256_storeu_ps __emu_mm256_storeu_ps
#define _mm256_load_si256 __emu_mm256_load_si256
#define _mm256_store_si256 __emu_mm256_store_si256
#define _mm256_loadu_si256 __emu_mm256_loadu_si256
#define _mm256_storeu_si256 __emu_mm256_storeu_si256
#define _mm256_maskload_pd __emu_mm256_maskload_pd
#define _mm256_maskstore_pd __emu_mm256_maskstore_pd
#define _mm_maskload_pd __emu_mm_maskload_pd
#define _mm_maskstore_pd __emu_mm_maskstore_pd
#define _mm256_maskload_ps __emu_mm256_maskload_ps
#define _mm256_maskstore_ps __emu_mm256_maskstore_ps
#define _mm_maskload_ps __emu_mm_maskload_ps
#define _mm_maskstore_ps __emu_mm_maskstore_ps
#define _mm256_movehdup_ps __emu_mm256_movehdup_ps
#define _mm256_moveldup_ps __emu_mm256_moveldup_ps
#define _mm256_movedup_pd __emu_mm256_movedup_pd
#define _mm256_lddqu_si256 __emu_mm256_lddqu_si256
#define _mm256_stream_si256 __emu_mm256_stream_si256
#define _mm256_stream_pd __emu_mm256_stream_pd
#define _mm256_stream_ps __emu_mm256_stream_ps
#define _mm256_rcp_ps __emu_mm256_rcp_ps
#define _mm256_rsqrt_ps __emu_mm256_rsqrt_ps
#define _mm256_sqrt_pd __emu_mm256_sqrt_pd
#define _mm256_sqrt_ps __emu_mm256_sqrt_ps
#define _mm256_round_pd __emu_mm256_round_pd
#define _mm256_round_ps __emu_mm256_round_ps
#define _mm256_unpackhi_pd __emu_mm256_unpackhi_pd
#define _mm256_unpackhi_ps __emu_mm256_unpackhi_ps
#define _mm256_unpacklo_pd __emu_mm256_unpacklo_pd
#define _mm256_unpacklo_ps __emu_mm256_unpacklo_ps
#define _mm256_testz_si256 __emu_mm256_testz_si256
#define _mm256_testc_si256 __emu_mm256_testc_si256
#define _mm256_testnzc_si256 __emu_mm256_testnzc_si256