-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpolationroutine.py
191 lines (133 loc) · 5.78 KB
/
interpolationroutine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
Name: interpolationroutine
Interpolation function
Requirement:
numpy, xarray, RandomForestRegressor, StandardScaler, matplotlib
Inputs:
Global climate model data
Local climate model data
Output:
interpolated global variable on the local (finer) grid
"""
#%% ##### Import modules ######
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
#%% Read global climate data:
def westernAustraliaGlobal(ds, var_global, T, depth, latmin, latmax, lonmin, lonmax):
"""
Inputs:
global climate model data: ds
global variable of interest: var_global
day of the month: T
latmin, latmax, lonmin, lonmax: latitude, longitude of the region of interest
Output:
Global climate model data for a given region and a desired variable
"""
Lat = ds.nav_lat.to_numpy()
Lon = ds.nav_lon.to_numpy()
Lat_1 = Lat[:,0]
Lon_1 = Lon[0,:]
# find the region of interest based on given lat, lon
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx], idx
LatGlobTemp1, Lat_loc1 = find_nearest(Lat_1, latmin) #-34.3265
LatGlobTemp2, Lat_loc2 = find_nearest(Lat_1, latmax) #-22.5763
LonGlobTemp1, Lon_loc1 = find_nearest(Lon_1, lonmin) #108.511
LonGlobTemp2, Lon_loc2 = find_nearest(Lon_1, lonmax) #116.284
Lat_glob = Lat_1[Lat_loc1:Lat_loc2]
Lon_glob = Lon_1[Lon_loc1:Lon_loc2]
LatGlobX, LonGlobY = np.meshgrid(Lat_glob, Lon_glob)
ds_QoI = ds[var_global].isel(time_counter=T, deptht=depth, x=slice(Lon_loc1, Lon_loc2) , y=slice(Lat_loc1, Lat_loc2))
return ds_QoI, Lat_glob, Lon_glob
#%% Padding to avoid those nasty zeros:
def padding(ds_QoI):
"""
The problem is the data beyond coast line have zero values
These zeros values are not good for interpolation
Simple trick is to pad them
Inputs:
Global climate model data for a given region and a desired variable
Output:
padded GCM data
"""
ds_QoI_np = ds_QoI.to_numpy()
# Find the maximum value and its indices
maxval = np.max(ds_QoI_np)
max_indices = np.unravel_index(np.argmax(ds_QoI_np), ds_QoI_np.shape)
# Find the indices of the right, top, and top diagonal entries
right_indices = [(max_indices[0], (max_indices[1] + i) % ds_QoI_np.shape[1]) for i in range(1, 3)]
top_indices = [((max_indices[0] - i) % ds_QoI_np.shape[0], max_indices[1]) for i in range(1, 3)]
top_diagonal_indices = [((max_indices[0] - i) % ds_QoI_np.shape[0], (max_indices[1] + i) % ds_QoI_np.shape[1]) for i in range(1, 3)]
# Replace the right, top, and top diagonal entries with maxval
for index in set(right_indices + top_indices + top_diagonal_indices):
ds_QoI_np[index] = maxval
for i in range(ds_QoI_np.shape[0]):
# Find indices where the value is zero
zero_indices = np.where(ds_QoI_np[i] == 0)[0]
# Copy the previous value at those indices
# ds_QoI_np[i, zero_indices] = ds_QoI_np[i, zero_indices - 8]
for idx in zero_indices:
ds_QoI_np[i, idx:idx + 1] = np.mean(ds_QoI_np[i, max(0, idx - 3):idx])
# ds_QoI_np[i, idx:idx + 1] = np.max(ds_QoI_np)
ds_QoI_np = np.nan_to_num(ds_QoI_np)
return ds_QoI_np
#%% Read local climate model data
def westernAustraliaLocal(ds_local, var_local, T, depth):
"""
Inputs:
Local climate model data: ds_local
global variable of interest: var_local
day of the month: T
Output:
local climate model data for a given region and a desired variable
"""
Lat_np = ds_local.lat_rho.to_numpy()
Lon_np = ds_local.lon_rho.to_numpy()
Latlocal_1 = Lat_np[:,0]
Lonlocal_1 = Lon_np[0,:]
ds_sstloc = ds_local[var_local].isel(s_rho=24)
ds_sstloc_np = ds_sstloc.to_numpy()
ds_sstloc_mean_np = ds_sstloc_np[0]
return Latlocal_1, Lonlocal_1, Lat_np, Lon_np, ds_sstloc_mean_np
#%% Interpolation!:
def interpolator(ds, ds_local, var_global, var_local, T, depth, latmin, latmax, lonmin, lonmax):
"""
Inputs:
westernAustraliaGlobal
padding
westernAustraliaLocal
global and local variables of interest: var_local, var_global
day of the month: T
Output:
Global climate model data is interpolated
"""
ds_QoI, Lat_glob, Lon_glob = westernAustraliaGlobal(ds, var_global, T, depth, latmin, latmax, lonmin, lonmax)
ds_QoI_np = padding(ds_QoI)
idx = np.argwhere(np.all(ds_QoI_np[..., :] == 0, axis=0))
ds_QoI_np = np.delete(ds_QoI_np, idx, axis=1)
Lon_glob = np.delete(Lon_glob, idx)
# ds_QoI_np[ds_QoI_np == 0] = 'nan'
LatGlobX, LonGlobY = np.meshgrid(Lat_glob, Lon_glob)
LatGlobX = LatGlobX.T
LonGlobY = LonGlobY.T
X = np.concatenate((LatGlobX.ravel().reshape(-1,1), LonGlobY.ravel().reshape(-1,1)), axis =1)
y = ds_QoI_np.ravel()
sc = StandardScaler()
X_train = sc.fit_transform(X)
model = RandomForestRegressor(n_estimators=500)
model.fit(X_train, y)
Latlocal_1, Lonlocal_1, Lat_np, Lon_np, ds_sstloc_mean_np = westernAustraliaLocal(ds_local, var_local, T, depth)
X_test = np.concatenate((Lat_np.ravel().reshape(-1,1), Lon_np.ravel().reshape(-1,1)), axis =1)
X_test_std = sc.transform(X_test)
interpolated = model.predict(X_test_std)
interpolated = interpolated.reshape(640,480)
noise = np.random.normal(0, 50, interpolated.shape)/10000
interpolated = interpolated + noise
idx0 = np.argwhere(np.isnan(ds_sstloc_mean_np))
idx0 = np.asarray(idx0)
interpolated[idx0[:,0],idx0[:,1]] = 0
interpolated[interpolated == 0] = 'nan'
return interpolated