forked from web-arena-x/webarena
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprompt_constructor.py
282 lines (250 loc) · 10.2 KB
/
prompt_constructor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import json
import re
from pathlib import Path
from typing import Any, TypedDict
from browser_env import Action, ActionParsingError, Trajectory
from browser_env.env_config import URL_MAPPINGS
from browser_env.utils import StateInfo
from llms import lm_config
from llms.tokenizers import Tokenizer
from llms.utils import APIInput
class Instruction(TypedDict):
"""Instruction for constructing prompt"""
intro: str
examples: list[tuple[str, str]]
template: str
meta_data: dict[str, Any]
class PromptConstructor(object):
def __init__(
self,
instruction_path: str | Path,
lm_config: lm_config.LMConfig,
tokenizer: Tokenizer,
):
self.instruction_path = Path(instruction_path)
self.obs_modality = "text"
self.lm_config = lm_config
instruction = json.load(open(self.instruction_path))
instruction["examples"] = [tuple(e) for e in instruction["examples"]]
self.instruction: Instruction = instruction
self.tokenizer = tokenizer
def get_lm_api_input(
self, intro: str, examples: list[tuple[str, str]], current: str
) -> APIInput:
"""Return the require format for an API"""
message: list[dict[str, str]] | str
if "openai" in self.lm_config.provider:
if self.lm_config.mode == "chat":
message = [{"role": "system", "content": intro}]
for (x, y) in examples:
message.append(
{
"role": "system",
"name": "example_user",
"content": x,
}
)
message.append(
{
"role": "system",
"name": "example_assistant",
"content": y,
}
)
message.append({"role": "user", "content": current})
return message
elif self.lm_config.mode == "completion":
message = f"{intro}\n\n"
message += "Here are a few examples:\n"
for example in examples:
message += f"Observation\n:{example[0]}\n\n"
message += f"Action: {example[1]}\n\n"
message += "Now make prediction given the observation\n\n"
message += f"Observation\n:{current}\n\n"
message += "Action:"
return message
else:
raise ValueError(
f"OpenAI models do not support mode {self.lm_config.mode}"
)
elif "huggingface" in self.lm_config.provider:
# https://huggingface.co/blog/llama2#how-to-prompt-llama-2
# https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L320
if "Llama-2" in self.lm_config.model:
if self.lm_config.mode == "chat":
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
BOS, EOS = "<s>", "</s>"
# adding the system message to be the starting of the first example
examples = [
(
B_SYS + intro + E_SYS + examples[0][0],
examples[0][1],
)
] + examples[1:]
message = "".join(
[
f"{BOS}{B_INST} {x.strip()} {E_INST} {y.strip()} {EOS}"
for (x, y) in examples
]
)
# add the current observation
message += f"{BOS}{B_INST} {current.strip()} {E_INST} {self.instruction['meta_data'].get('force_prefix', '')}"
return message
else:
raise ValueError("Only chat mode is supported for Llama-2")
else:
raise ValueError(
f"Huggingface models do not support model_tag {self.lm_config.gen_config['model_tag']}"
)
elif "vllm" in self.lm_config.provider:
if self.lm_config.mode == "chat":
message = [{"role": "system", "content": intro}]
for (x, y) in examples:
message.append(
{
"role": "user",
"content": x,
}
)
message.append(
{
"role": "assistant",
"content": y,
}
)
message.append({"role": "user", "content": current})
return message
else:
raise ValueError(
f"OpenAI models do not support mode {self.lm_config.mode}"
)
else:
raise NotImplementedError(
f"Provider {self.lm_config.provider} not implemented"
)
def construct(
self,
trajectory: Trajectory,
intent: str,
meta_data: dict[str, Any] = {},
) -> APIInput:
raise NotImplementedError
def map_url_to_real(self, url: str) -> str:
"""Map the urls to their real world counterparts"""
for i, j in URL_MAPPINGS.items():
if i in url:
url = url.replace(i, j)
return url
def map_url_to_local(self, url: str) -> str:
"""Map the urls to their local counterparts"""
for i, j in URL_MAPPINGS.items():
if j in url:
url = url.replace(j, i)
# https
if j.replace("http", "https") in url:
url = url.replace(j.replace("http", "https"), i)
return url
def _extract_action(self, response: str) -> str:
raise NotImplementedError
def extract_action(self, response: str) -> str:
response = self._extract_action(response)
response = self.map_url_to_local(response)
return response
class DirectPromptConstructor(PromptConstructor):
"""The agent will direct predict the action"""
def __init__(
self,
instruction_path: str | Path,
lm_config: lm_config.LMConfig,
tokenizer: Tokenizer,
):
super().__init__(instruction_path, lm_config, tokenizer)
def construct(
self,
trajectory: Trajectory,
intent: str,
meta_data: dict[str, Any] = {},
) -> APIInput:
"""Construct prompt given the trajectory"""
intro = self.instruction["intro"]
examples = self.instruction["examples"]
template = self.instruction["template"]
keywords = self.instruction["meta_data"]["keywords"]
state_info: StateInfo = trajectory[-1] # type: ignore[assignment]
obs = state_info["observation"][self.obs_modality]
max_obs_length = self.lm_config.gen_config["max_obs_length"]
if max_obs_length:
obs = self.tokenizer.decode(self.tokenizer.encode(obs)[:max_obs_length]) # type: ignore[arg-type]
page = state_info["info"]["page"]
url = page.url
previous_action_str = meta_data["action_history"][-1]
# input x
current = template.format(
objective=intent,
url=self.map_url_to_real(url),
observation=obs,
previous_action=previous_action_str,
)
# make sure all keywords are replaced
assert all([f"{{k}}" not in current for k in keywords])
prompt = self.get_lm_api_input(intro, examples, current)
return prompt
def _extract_action(self, response: str) -> str:
action_splitter = self.instruction["meta_data"]["action_splitter"]
pattern = rf"{action_splitter}((.|\n)*?){action_splitter}"
match = re.search(pattern, response)
if match:
return match.group(1).strip()
else:
raise ActionParsingError(
f"Cannot parse action from response {response}"
)
class CoTPromptConstructor(PromptConstructor):
"""The agent will perform step-by-step reasoning before the answer"""
def __init__(
self,
instruction_path: str | Path,
lm_config: lm_config.LMConfig,
tokenizer: Tokenizer,
):
super().__init__(instruction_path, lm_config, tokenizer)
self.answer_phrase = self.instruction["meta_data"]["answer_phrase"]
def construct(
self,
trajectory: Trajectory,
intent: str,
meta_data: dict[str, Any] = {},
) -> APIInput:
intro = self.instruction["intro"]
examples = self.instruction["examples"]
template = self.instruction["template"]
keywords = self.instruction["meta_data"]["keywords"]
state_info: StateInfo = trajectory[-1] # type: ignore[assignment]
obs = state_info["observation"][self.obs_modality]
max_obs_length = self.lm_config.gen_config["max_obs_length"]
if max_obs_length:
obs = self.tokenizer.decode(self.tokenizer.encode(obs)[:max_obs_length]) # type: ignore[arg-type]
page = state_info["info"]["page"]
url = page.url
previous_action_str = meta_data["action_history"][-1]
current = template.format(
objective=intent,
url=self.map_url_to_real(url),
observation=obs,
previous_action=previous_action_str,
)
assert all([f"{{k}}" not in current for k in keywords])
prompt = self.get_lm_api_input(intro, examples, current)
return prompt
def _extract_action(self, response: str) -> str:
# find the first occurence of action
action_splitter = self.instruction["meta_data"]["action_splitter"]
pattern = rf"{action_splitter}((.|\n)*?){action_splitter}"
match = re.search(pattern, response)
if match:
return match.group(1).strip()
else:
raise ActionParsingError(
f'Cannot find the answer phrase "{self.answer_phrase}" in "{response}"'
)