-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_reward_model.py
122 lines (102 loc) · 3.24 KB
/
train_reward_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# To run this script: `echo train_reward_model.py | entr -s "uv run train_reward_model.py"`
import torch
from datasets import load_dataset, DatasetDict
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
)
from trl import RewardTrainer, RewardConfig
from peft.tuners.lora import LoraConfig
from peft.mapping import get_peft_model
import wandb
from dotenv import load_dotenv
load_dotenv("/workspace/.env")
# Configuration
base_model = "unsloth/Meta-Llama-3.1-8B"
run_name = "rm_l31_8b_v1"
output_dir = f"./models/{run_name}"
num_epochs = 1
batch_size = 1 # For some reason making this larger doesn't help training time, why?
learning_rate = 5e-5
max_length = 4096
# Initialize wandb
wandb.init(project="reward_model_training", name=run_name)
print("Loading dataset...")
dataset: DatasetDict = load_dataset("OpenPipe/best-hn-comment-pairs-v1")
def preprocess_function(examples):
chosen = examples["chosen_prompt"]
rejected = examples["rejected_prompt"]
chosen_tokens = tokenizer(
chosen, truncation=True, padding="max_length", max_length=max_length
)
rejected_tokens = tokenizer(
rejected, truncation=True, padding="max_length", max_length=max_length
)
return {
"input_ids_chosen": chosen_tokens["input_ids"],
"attention_mask_chosen": chosen_tokens["attention_mask"],
"input_ids_rejected": rejected_tokens["input_ids"],
"attention_mask_rejected": rejected_tokens["attention_mask"],
}
print("Loading tokenizer and model...")
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(
base_model,
num_labels=1,
device_map="auto",
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
)
print(f"Tokenizer padding token: {tokenizer.pad_token}")
print(f"Model padding token: {model.config.pad_token_id}")
model.config.pad_token_id = tokenizer.pad_token_id
tokenizer.padding_side = "right"
print("Processing dataset...")
processed_dataset = dataset.map(
preprocess_function,
batched=True,
remove_columns=dataset["train"].column_names,
)
print("Configuring LoRA...")
peft_config = LoraConfig(
task_type="SEQ_CLS",
r=8,
lora_alpha=16,
lora_dropout=0,
)
model = get_peft_model(model, peft_config)
# Configure training arguments
training_args = RewardConfig(
output_dir=output_dir,
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
learning_rate=learning_rate,
weight_decay=0,
evaluation_strategy="steps",
eval_steps=500,
logging_steps=100,
save_strategy="steps",
save_steps=1000,
# load_best_model_at_end=True,
max_length=max_length,
report_to="wandb",
no_cuda=False,
bf16=True,
use_liger_kernel=True,
warmup_steps=100,
)
print("Initializing RewardTrainer...")
trainer = RewardTrainer(
model=model,
args=training_args,
train_dataset=processed_dataset["train"],
eval_dataset=processed_dataset["validation"],
tokenizer=tokenizer,
)
print("Starting model training...")
trainer.train()
print("Saving final model...")
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
print("Reward model training complete")