-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_reward_model_causal.py
147 lines (122 loc) · 3.97 KB
/
train_reward_model_causal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# To run this script: `echo train_reward_model.py | entr -s "uv run train_reward_model.py"`
import torch
from datasets import load_dataset, DatasetDict
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
)
from trl import RewardTrainer, RewardConfig
from peft.tuners.lora import LoraConfig
from peft.mapping import get_peft_model
from peft import TaskType
import wandb
from dotenv import load_dotenv
load_dotenv("/workspace/.env")
# Configuration
model_name = "unsloth/Meta-Llama-3.1-8B"
output_dir = "./models/train_reward_model_causal"
num_epochs = 1
batch_size = 1
learning_rate = 5e-5
max_length = 4096
eval_steps = 1000
wandb.init(project="reward_model_training")
print("Loading dataset...")
dataset: DatasetDict = load_dataset("OpenPipe/best-hn-comment-pairs")
TESTING = False
if TESTING:
model_name = "unsloth/Llama-3.2-1B"
output_dir = "./models/train_reward_model_causal_test"
# Limit the training dataset to 1000 entries for testing
dataset["train"] = dataset["train"].select(range(1000))
dataset["validation"] = dataset["validation"].select(range(10))
eval_steps = 10
def preprocess_function(examples):
chosen = examples["chosen_prompt"]
rejected = examples["rejected_prompt"]
chosen_tokens = tokenizer(
chosen, truncation=True, padding="max_length", max_length=max_length
)
rejected_tokens = tokenizer(
rejected, truncation=True, padding="max_length", max_length=max_length
)
return {
"input_ids_chosen": chosen_tokens["input_ids"],
"attention_mask_chosen": chosen_tokens["attention_mask"],
"input_ids_rejected": rejected_tokens["input_ids"],
"attention_mask_rejected": rejected_tokens["attention_mask"],
}
print("Loading tokenizer and model...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
)
# model = AutoModelForSequenceClassification.from_pretrained(
# model_name,
# num_labels=1,
# device_map="auto",
# attn_implementation="flash_attention_2",
# torch_dtype=torch.bfloat16,
# )
print(f"Tokenizer padding token: {tokenizer.pad_token}")
print(f"Model padding token: {model.config.pad_token_id}")
model.config.pad_token_id = tokenizer.pad_token_id
tokenizer.padding_side = "right"
print("Processing dataset...")
processed_dataset = dataset.map(
preprocess_function,
batched=True,
remove_columns=dataset["train"].column_names,
)
print("Configuring LoRA...")
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=8,
lora_alpha=16,
lora_dropout=0,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "lm_head"],
)
model = get_peft_model(model, peft_config)
# Configure training arguments
training_args = RewardConfig(
output_dir=output_dir,
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
learning_rate=learning_rate,
weight_decay=0,
evaluation_strategy="steps",
eval_steps=eval_steps,
logging_steps=50,
save_strategy="steps",
save_steps=1000,
max_length=max_length,
report_to="wandb",
no_cuda=False,
bf16=True,
use_liger_kernel=True,
warmup_steps=100,
save_total_limit=1,
)
print("Initializing RewardTrainer...")
trainer = RewardTrainer(
model=model,
args=training_args,
train_dataset=processed_dataset["train"],
eval_dataset=processed_dataset["validation"],
processing_class=tokenizer,
compute_metrics=lambda x: {}, # TODO: implement
)
# print("Running initial evaluation on validation set...")
# eval_results = trainer.evaluate()
# print(f"Initial evaluation results: {eval_results}")
print("Starting model training...")
trainer.train()
print("Saving final model...")
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
print("Reward model training complete")