-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTextRecognition_trainer.py
42 lines (35 loc) · 1.59 KB
/
TextRecognition_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from venv import create
import matplotlib.pyplot as plt
from PIL import Image
from pathlib import Path
from TextRecognition.vietocr.vietocr.tool.config import Cfg
from TextRecognition.vietocr.vietocr.model.trainer import Trainer
import cv2
config = Cfg.load_config_from_name('vgg_transformer')
config[
'vocab'] = 'aAàÀảẢãÃáÁạẠăĂằẰẳẲẵẴắẮặẶâÂầẦẩẨẫẪấẤậẬbBcCdDđĐeEèÈẻẺẽẼéÉẹẸêÊềỀểỂễỄếẾệỆfFgGhHiIìÌỉỈĩĨíÍịỊjJkKlLmMnNoOòÒỏỎõÕóÓọỌôÔồỒổỔỗỖốỐộỘơƠờỜởỞỡỠớỚợỢpPqQrRsStTuUùÙủỦũŨúÚụỤưƯừỪửỬữỮứỨựỰvVwWxXyYỳỲỷỶỹỸýÝỵỴzZ0123456789!"#$%&\'()*+,-./:;<=>?[\\]^_`{|}~°‰µΔ '
dataset_params = {
'name': 'resorted_adaptive_1000',
'data_root': './TextRecognition/vietocr/Sorted/',
'train_annotation': 'annotation_full.txt',
'valid_annotation': 'annotation_test_resorted.txt'
}
predictor_params = {
'beamsearch': False
}
params = {
'batch_size': 16,
'print_every': 100,
'valid_every': 200,
'iters': 10000,
'checkpoint': './TextRecognition/vietocr/weights/transformerocr_checkpoint.pth',
'export': './TextRecognition/vietocr/weights/transformerocr_test.pth',
'metrics': 100
}
config['trainer'].update(params)
config['dataset'].update(dataset_params)
config['predictor'].update(predictor_params)
config['device'] = 'cuda:0'
config['weights'] = './TextRecognition/vietocr/weights/transformerocr_new_resorted.pth'
trainer = Trainer(config, pretrained=False)
trainer.train()